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Abstract: Landsat 8 images have been widely used for many applications, but cloud and cloud-shadow
cover issues remain. In this study, multitemporal cloud masking (MCM), designed to detect
cloud and cloud-shadow for Landsat 8 in tropical environments, was improved for application in
sub-tropical environments, with the greatest improvement in cloud masking. We added a haze
optimized transformation (HOT) test and thermal band in the previous MCM algorithm to improve
the algorithm in the detection of haze, thin-cirrus cloud, and thick cloud. We also improved the
previous MCM in the detection of cloud-shadow by adding a blue band. In the visual assessment,
the algorithm can detect a thick cloud, haze, thin-cirrus cloud, and cloud-shadow accurately. In the
statistical assessment, the average user’s accuracy and producer’s accuracy of cloud masking
results across the different land cover in the selected area was 98.03% and 98.98%, respectively.
On the other hand, the average user’s accuracy and producer’s accuracy of cloud-shadow masking
results was 97.97% and 96.66%, respectively. Compared to the Landsat 8 cloud cover assessment
(L8 CCA) algorithm, MCM has better accuracies, especially in cloud-shadow masking. Our preliminary
tests showed that the new MCM algorithm can detect cloud and cloud-shadow for Landsat 8 in a
variety of environments.

Keywords: cloud and cloud-shadow masking; Landsat 8; multitemporal images; multitemporal
cloud masking

1. Introduction

Landsat 8 satellite was launched on 11 February 2013. Landsat 8 images can now be downloaded
over the internet at no cost to users from United States Geological Survey (USGS). Recently, the images
have been sought and collected by many scientists and researchers, and the total number of images
downloaded by users is more than one million from 2014 to 2017 [1]. Landsat 8 images with
scene-based Level 1 Precision Terrain (Corrected) (L1TP) data were used in this study. Collection L1TP
is radiometrically calibrated and orthorectified using ground control points and digital elevation model
(DEM) data and geometric corrections. This level is the highest quality level and the data are suitable
for pixel-level time series analysis. Landsat 8 has two main sensors: Operational Land Imager (OLI)
and Thermal Infrared Sensor (TIRS) [2].

Landsat 8 images have been widely used for many applications, such as land cover classification [3],
agriculture [4–6], and disaster monitoring [7–9]. Unfortunately, cloud and cloud-shadow cover on
the images is an obstacle to further applications. Every year, the average cloud cover over the Earth
is about 66% [10]. However, it may differ in each region of the Earth. Clouds and cloud-shadows
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significantly interfere with optical sensors, such as Landsat. These objects decrease accuracy of
remote sensing application results because they obscure the land surface, and the brightening effect
of clouds and the darkening effect of cloud-shadows influence the reflectance of each band [11].
Therefore, the development of a robust method for cloud and cloud-shadow is needed to address
the issues. The complexity of clouds (e.g., various of cloud types, each type may have a different
spectral signature based on cloud properties) and limited Landsat spectral bands makes it difficult
to detect clouds [12]. Clouds can be categorized into three types based on the height, i.e., low cloud,
middle cloud, and high cloud, and classified visually into 10 classes as presented in Table 1. According
to the cloud masking studies, a cloud is frequently classified based on to its thickness, i.e., thin cloud
and thick cloud. Thin cloud is more difficult to detect in multispectral satellite images because it is
transparent over land [13].

Table 1. Cloud types identified visually (adapted from [14]).

Genus Height
The Height of Cloud Base

Polar Regions Temperate Regions Tropical Regions
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Over recent decades, many cloud and cloud-shadow masking approaches have been developed.
We can classify the approaches of cloud and cloud-shadow masking into two categories:
Single image-based, and multitemporal image-based. The single image-based approach uses an
individual image to detect cloud and cloud-shadow. The existing methods of this approach frequently
use a threshold to screen cloud and cloud-shadow. The automatic cloud cover assessment (ACCA)
algorithm has been used to detect clouds for Landsat-7 Enhanced Thematic Mapper Plus (ETM+).
It helps to schedule the acquisition of Landsat 7 ETM+ of global cloud-free images [15]. The mean
and standard deviation of pixel values of the image can be used to obtain the threshold for detecting
clouds [16]. To detect haze/cloud in Landsat scenes, a haze-optimized transformation (HOT) was
developed [17,18]. Multi-feature combined (MFC) was proposed to detect cloud and cloud-shadow
based on spectral, geometric, and texture features [19]. Machine learning, e.g., the spatial procedures
for automated removal of cloud and shadow (SPARCS) algorithm based on neural networks have
also been used to detect clouds for Landsat [20]. In addition, to handle the big amounts of data,
ready-to-use methods based on machine learning techniques to detect cloud, cirrus, snow, shadow,
and clear sky pixels in Sentinel-2 MSI images also exist [21]. The function of mask (Fmask) algorithm
was developed by integrating a new object-based approach with combined existing approaches to
detect cloud, cloud-shadow, and snow at the same time for Landsat and Sentinel-2 images [12,22].
The Fmask is a popular algorithm, which has been used by USGS for L8 CCA (Fmask 3.3 version) to
produce Landsat cloud and cloud-shadow masks. The Fmask was improved in detecting cloud and
cloud-shadow in mountainous areas for Landsat 4–8 images by integrating digital elevation models
(DEMs) [23].
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On the other hands, the multitemporal image-based approach uses multiple images from different
acquisition dates to detect cloud and cloud-shadow. To highlight pixels that change in the brightness
of a derived metric overtime, multitemporal date approaches have the advantage over a single date
approach [24]. Moreover, multitemporal image-based approaches have a higher cloud detection
accuracy than a single image-based approach [19]. A time-series method for screening cloud and
cloud-shadow across Queensland, Australia was developed and compared to Fmask the algorithm.
They found that their algorithm had better results in detecting cloud-shadow [25]. To support the
monitoring of land cover change, the multi-temporal mask (Tmask) developed for automated masking
of cloud, cloud-shadow, and snow for multi-temporal Landsat images [11]. The multi-temporal
cloud detection (MTCD) method was developed to detect cloud for FORMOSAT-2, Venµs, Landsat,
and Sentinel-2 images [26]. This method works on a pixel-by-pixel basis, which combines a sudden
increase of reflectance in the blue wavelength, and a linear correlation of the pixel neighborhoods test
taken from couples of images. In response to the limitations of these methods in tropical environments,
cloud and cloud-shadow masking using a multi-temporal image approach named multi-temporal
cloud masking (MCM) was developed [27]. This approach uses two images: The target image and
reference image. The target image has cloud- and cloud-shadow-contaminated pixels and the reference
image is a clear image. This approach uses the different reflectance between them to detect cloud and
cloud-shadow. The results showed that this approach successfully detected cloud and cloud-shadow
with a significantly high accuracy regarding cloud and cloud-shadow masking.

Based on the above overview of current cloud and cloud-shadow masking approaches,
automatic identification of cloud and cloud-shadow in a variety of environments remains challenging.
In this study, we improved the previous MCM algorithm for application to Landsat 8 images in
variety of environments, especially in sub-tropical environments. The improved MCM algorithm was
evaluated for Landsat 8 images that have heterogeneous land cover, such as settlement, cropland,
open land, forest, mountain, water, and desert, and various cloud types, such as haze, thin cloud,
and thick cloud. The improved algorithm was also tested in various environments.

To address this challenge, we focused on the limitation of the previous MCM algorithm.
Some limitations of the algorithm were identified after applying it to sub-tropical environments.
For instance, increased commission error in desert areas is caused as dust occurs in this area and makes
the dark object brighter, thus it is identified as a cloud by the previous MCM algorithm. In the design
of the new MCM algorithm, most of the previous MCM algorithm were used. Improvements were
made based on the limitation of the previous algorithm. The new MCM algorithm can be used to
detect cloud and cloud-shadow in a variety of environments and the accuracies are expected to be
significantly high.

2. Material

In this study, we used 10 Landsat 8 images, which sample a variety of cloud types, have
heterogeneous land cover, and a variety of environments (see Figure 1 and Table 2). Landsat 8 images
with scene-based Level-1 Precision Terrain (L1TP) data were used in this study. Collected L1TP are
radiometrically calibrated and orthorectified using ground control points and digital elevation model
(DEM) data and geometric corrections. This level is the highest quality level and the data are suitable
for pixel-level time series analysis.

Landsat 8 has two main sensors: Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS).
We used band 2, 3, 4, 5, 6, and 9 from OLI and band 11 from TIRS to detect cloud and cloud-shadow.
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image. However, Figure 2 shows that the annual availability of clear images in a variety of 
environments was sufficient as the average of the availability number of clear images in variety of 
environments was 3.43 annually. In addition, the highest availability of clear images was 9 on 
average. It is significantly high, as the total images per year was about 23 images. 
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Figure 1. Landsat 8 images were selected in a global area with a variety of cloud types and different
environments in sub-tropical south, tropical, and sub-tropical north. The scenes of Landsat 8 images
are shown by the red color. (adapted from [28]).

Table 2. Selected Landsat 8 images with path/row, area, environment types, cloud types, and surface
cover features.

Path/Row Area Environment Cloud Type Land Cover Class

090/079 Queensland, Australia Sub-tropical South Thick Settlement, crop land, forest, wetland,
and open land

091/085 New South Wales,
Australia Sub-tropical South Thick Settlement, cropland, forest, wetland,

open land, and water

091/085 New South Wales,
Australia Sub-tropical South Thin Settlement, cropland, forest, wetland,

open land, and water

170/078 Johannesburg, South
Africa Sub-tropical South Thick Settlement, cropland, open land, and

water

171/074 Bulawayo, Zimbabwe Tropical Thick and thin Settlement, cropland, forest, open
land, swamp, and water

175/062 Kindu—Democratic
Republic of The Congo Tropical Thick Settlement, open land, cropland,

forest, water
170/063 Tabora, Tanzania Tropical Thick Open land, wet land, forest and water
041/033 Nevada, USA Sub-tropical North Thick Settlement, open land, and water

192/024 Berlin, Germany Sub-tropical North Thick Settlement, cropland, forest, open
land, and water

202/038 Marrakesh, Morocco Sub-tropical North Thick Settlement, desert, cropland, open
land, and water

We used two kinds of Landsat-8 images: (1) reference image and (2) target image. The reference
image was a clear image and the target image was the image that had cloud and cloud-shadow
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contaminated pixels. The reference image and target image had an adjacent acquisition date to
minimize significant land cover change. In the multitemporal image-based cloud and cloud-shadow
masking approach, the main difficulty is to collect a clear image that has the same area as a target image.
However, Figure 2 shows that the annual availability of clear images in a variety of environments was
sufficient as the average of the availability number of clear images in variety of environments was
3.43 annually. In addition, the highest availability of clear images was 9 on average. It is significantly
high, as the total images per year was about 23 images.Remote Sens. 2019, 11 FOR PEER REVIEW  6 
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Figure 2. The annual availability of clear images of Landsat-8 in a variety of environments (sub-tropical
south, tropical, and sub-tropical north). X-axis is path/row and Y-axis is the total number of clear images.

3. Methods

3.1. MCM Algorithm Improvements

Multitemporal cloud masking (MCM) was proposed to detect cloud and cloud masking for
Landsat 8 in tropical environments using multitemporal images [27]. In this study, we improved
this approach to detect cloud and cloud-shadow in an extended range of environments, such as
sub-tropical south, tropical, and sub-tropical north. We selected 10 Landsat 8 images to represent the
variety of environments. In addition, Table 2 shows the heterogeneous land cover and various cloud
types in each scene of Landsat 8. The land cover classes of each scene were determined by using visual
interpretation. The basic idea of the MCM algorithm is to utilize the difference between reflectance
values of the target image and reference image to detect cloud and cloud-shadow. We chose bands of
Landsat 8 that have a big difference in reflectance values between these images. After that, we chose
thresholds by using the range of the difference of the reflectance values between these images and
conducted some observations to adjust the thresholds to increase the accuracy of the results.

The limitation of the previous MCM is that it was developed only for tropical environments.
For instance, in some experiments, the previous MCM generated significant commission errors when
detecting cloud in some areas in different environments. The commission error can be caused by land
cover change. For example, an object in cropland that is dark on the reference image can change to
being brighter on the target image. This usually happens on the object that becomes brighter, such
as in cropland area before and after harvest. Therefore, the area is detected as cloud because the
difference in the top of atmosphere (TOA) reflectance between them is quite high. The commission
error can also be caused by natural phenomena, such as dust in desert areas. It especially occurs
in dark objects on desert areas. For instance, an object that is dark on the reference image changes
to being brighter due to dust on the target image. The other issue lies in the detection of haze and
thin cloud. The previous MCM algorithm failed to detect haze and thin cloud, especially in dark area,
such as forest. This increases the omission error.

Issues are also found in the detection of cloud-shadow caused by land cover change and natural
phenomena, but the circumstances in cloud-shadow masking are the opposite to the circumstances
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in the cloud masking described above. Figure 3 shows a flow chart of the new MCM algorithm and
details of the improvements of the previous MCM algorithm.Remote Sens. 2019, 11 FOR PEER REVIEW  7 
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Figure 3. The flowchart of the new Multitemporal Cloud Masking (MCM) algorithm for Landsat 8. 
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value of D(X). B2, B3, B4, B5, B6, B9, and B11 represent the blue, green, red, near infrared, shortwave 
infrared, cirrus, and thermal bands in Landsat 8, respectively. 
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reflectance values similar to the reflectance values of the Earth’s surface. Haze-optimized 
transformation (HOT) was introduced for Landsat data in the detection of haze and thin clouds [17]. 
The basic idea of this algorithm is to utilize the difference between the blue and red wavelengths as 
their spectral response has high sensitivity. Fmask also uses this algorithm, especially to separate 
haze and thin cloud. Fmask uses TOA reflectance as inputs in the algorithm. 

In this study, we also used the algorithm to improve the ability to detect haze and thin cloud in 
the previous MCM algorithm. The hot test was used in Fmask, and this approach used 0 for the 
threshold. In this improved MCM, we slightly changed the threshold to –0.01, as the use of 0 causes 
omission error in the detection of haze and thin clouds in dark areas, such as forest. Therefore, this 
change decreased this error: 

HOTTest = TI(B1) − 0.5 × TI(B3) – 0.08 > − 0.01 (1)
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Figure 3. The flowchart of the new Multitemporal Cloud Masking (MCM) algorithm for Landsat 8.
TI(Bi) is band i in the target image and RI(Bj) is band j in the reference image. Abs(D(X)) is the
absolute value of D(X). B2, B3, B4, B5, B6, B9, and B11 represent the blue, green, red, near infrared,
shortwave infrared, cirrus, and thermal bands in Landsat 8, respectively.

Haze and thin clouds are very difficult to detect due to their transparency, which makes their
reflectance values similar to the reflectance values of the Earth’s surface. Haze-optimized transformation
(HOT) was introduced for Landsat data in the detection of haze and thin clouds [17]. The basic idea
of this algorithm is to utilize the difference between the blue and red wavelengths as their spectral
response has high sensitivity. Fmask also uses this algorithm, especially to separate haze and thin cloud.
Fmask uses TOA reflectance as inputs in the algorithm.

In this study, we also used the algorithm to improve the ability to detect haze and thin cloud in the
previous MCM algorithm. The hot test was used in Fmask, and this approach used 0 for the threshold.
In this improved MCM, we slightly changed the threshold to −0.01, as the use of 0 causes omission
error in the detection of haze and thin clouds in dark areas, such as forest. Therefore, this change
decreased this error:

HOTTest = TI(B1) − 0.5 × TI(B3) − 0.08 > − 0.01 (1)

where Bi(TI) is band i on the target image and Bj(RI) is band j on the reference image.
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Historically, an issue regarding the detection of cirrus clouds exists as lack of the 1.375-µm wavelength,
especially in Landsat ETM+ images. Fortunately, Landsat-8 images have band nine (1.360–1.390 µm),
and we used this band to detect cirrus clouds. To make the new MCM more robust in the detection
of haze and thin-cirrus clouds, we combined the algorithm with the cirrus band. The use of a small
threshold to identify cirrus, such as 0, results in all cirrus being detected but much information of
the image is lost. Moreover, the use of a big threshold, such as 0.5, results in the omission error
being high. It means that many cirrus clouds still exist in the data. Therefore, we used 0.1 to minimize
the omission error. The following algorithm was used for detecting haze and thin-cirrus clouds:

HOTTest > − 0.01 and TI(B9) > 0.01 (2)

The presence of a thermal band in Landsat 8 offers a significant advantage for the detection
of cloud [12,16,29,30]. We added the thermal band into the previous MCM algorithm to make it
more robust, especially in the detection of thick cloud.

Figure 4 shows the range of the brightness temperature of the image in band 10 and band 11.
We preferred to use the thermal band from band 11 rather than band 10 because it is narrower and has
greater sensitivity to thick cloud. Moreover, we minimized commission error in the detection of cloud
by adding band 11 into the cloud masking algorithm. The commission error comes from land cover
change between the target image and reference image or natural phenomena, such as dust in a dessert
environment, as described above as the issue. In the thermal band, the brightness temperature values
of the object that occurred due to land cover change and natural phenomena are almost similar on both
the reference image and target image. On the other hand, the brightness temperature value of cloud,
especially thick cloud, is usually lower than the temperature of Earth’s surface. Therefore, we used the
thermal band to minimize commission error caused by land cover change and natural phenomena.
A threshold of 28 (see Figure 4) means that the algorithm produces commission error as the Earth’s
surface temperature can reach 28 ◦C. Therefore, we selected 27 for the threshold of band 11 in detecting
thick cloud.
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Figure 4. The cloud image sample on path/row 090/079. (a) The sample of thick cloud, (b) The brightness
temperature (BT) of the image (a) in band 10 ranges from 16 to 30, and (c) Band 11 ranges from 16 to
28 (bottom).

We also improved the previous algorithm for the detection of thick cloud by adding the difference
of band two between the target image and reference image. To obtain the threshold, we observed
some cloud-contaminated pixels from the center to the edge of the region of cloud. In the center,
the difference of the TOA reflectance value between the target image and reflectance image was much
bigger than on the edge. Therefore, we chose the difference of the reflectance value on the edge to be a
threshold for thick-cloud masking, a value of around 0.04 (see Figure 5). The improved algorithm for
thick-cloud masking is shown in Equation (3):

TI(B2) − RI(B2) > 0.04 and TI(B3) − RI(B3) > 0.04 and TI(B4) − RI(B4) > 0.04 and TI(B11) < 27 (3)
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reference image and target image are is very small. To detect cloud-shadow in sea areas, we used 
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Figure 5. Band selection and obtaining the threshold for thick-cloud masking from the Top of Atmospheric
(TOA) reflectance of the selected pixel on: (a) the center of the cloud region and (b) the edge of the
cloud region.

In the previous MCM algorithm, near infrared (NIR) and short-wave infrared (SWIR) were used
to detect cloud-shadow for Landsat-8 images. In this study, we improved the previous algorithm by
adding the blue band (band two) as cloud-shadows should have band two TOA reflectance that is
smaller than 0.11. The aim of this addition was to minimize the commission error of cloud-shadow
masking caused by land cover change and natural phenomena as described above. We observed some
cloud-shadow-contaminated pixels from the center to the edge of the region of cloud-shadow to obtain
the threshold. The difference of the TOA reflectance value between the target image and reflectance
image on the center was much bigger than on the edge. Therefore, we decided to choose the difference
of the reflectance value on the edge to be a threshold for thick-cloud masking, which was around −0.04
(see Figure 6). The following equation is the improved algorithm for cloud-shadow masking:

TI(B5) − RI(B5) < − 0.04 and TI(B6) − RI(B6) < − 0.04 and TI(B2) < 0.11 (4)
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reflectance of the selected pixel on: (a) the center of the cloud region and (b) the edge of the cloud region.

In this study, we considered the detection of cloud-shadow in a sea area. By using the improved
algorithm above, the omission error was high in the sea area. To address this issue, we developed an
algorithm for detecting cloud-shadow in sea areas. This algorithm utilized 30-m DEM SRTM data
to separate land and sea. To detect cloud-shadow in the land area, we used the NIR band and SWIR
band based on band selection (see Figure 7). In contrary, they are not sensitive in in the detection of
cloud-shadow in sea areas because the TOA reflectance values of cloud-shadow in sea areas are very
small and the difference between the TOA reflectance of the NIR and SWIR band between the reference
image and target image are is very small. To detect cloud-shadow in sea areas, we used visible bands
(blue band and green band). Some clouds in the sea area may be detected as cloud-shadow using
those bands. Therefore, we also used the NIR band of the target image to minimize this error:

(abs(B2(RI) − B2(TI)) < 0.04 and abs(B3(RI) − B3(TI)) < 0.04 and B5(TI) < 0.012) or
(B3(RI) − B3(TI) > 0.04)

(5)
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3.2. Accuracy Assessment of the New MCM

Visual and statistical assessments were used to evaluate the reliability of the new MCM algorithm
for Landsat 8 images. We conducted visual assessment by showing some figures of the results from
each environment with different land covers and a variety of cloud types.

To evaluate the quality of the result, in the statistical assessment, we used a confusion matrix [31].
This assessment method can derive the commission error [32] and omission error [24,33]. By using this
assessment, we identified the failure percentage of the algorithm in detecting cloud and cloud-shadow.

We selected some samples from each environment with different land covers to evaluate the
accuracy of cloud and cloud-shadow masking. In fact, it was difficult to perform an interpretation
of the clouds and cloud-shadows, especially at the edge of cloud and cloud-shadow. Therefore,
we selected clouds and cloud-shadows that had a distinct edge. The reference data for this assessment
was generated using manual digitalization. We manually digitized the cloud and cloud-shadow on the
image samples.

3.3. Comparison Between the New MCM and L8 CCA Algorithm

We compared the new MCM and L8 CCA algorithm derived by Landsat Quality Assessment (QA)
tools to generate cloud and cloud-shadow masking for Landsat-8 images. The cloud and cloud-shadow
masking from this QA band were derived from Fmask 3.3.

4. Results and Discussion

4.1. Visual Assessments of the New MCM Results

We conducted some experiments using Landsat-8 images in a variety of environments, such as
sub-tropical south, tropical, and sub-tropical north, to prove the reliability of the new MCM algorithm
in the detection of cloud and cloud-shadow. The images also had different land covers and a variety of
cloud types. After visually evaluating the results of the new MCM with the color composite RGB 432,
it appeared to work well in the detection of cloud (red) and cloud-shadow (blue). We also compared
the new MCM algorithm and the previous MCM algorithm to show that the new MCM algorithm
improved the ability to detect cloud and cloud-shadow in various environments.

We described the results using figures from each environment with heterogeneous land cover and
a variety of cloud types. Figure 8 shows sub-tropical south images with clouds and cloud-shadows over
heterogeneous land cover, such as settlement, open land, crop land, forest, water, and mountainous areas.
It shows that the new MCM has a strong ability to detect clouds (including thin-cirrus clouds) and
cloud-shadows over these land cover types. Figure 8 shows that the algorithm works well in the
settlement area. It is difficult to distinguish between cloud and settlement because of their similar
brightness levels. This figure shows that the algorithm identified cloud as cloud and settlement
as settlement. In addition, it can be seen in Figure 8 that the algorithm can detect cloud-shadow in
mountainous areas appropriately. Thin-cirrus cloud can also be detected properly, and it is shown in
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the middle of Figure 8. In contrary, the previous MCM algorithm failed to identify thin-cirrus cloud.
It increased the amount of omission error.
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Figure 8. Cloud and cloud-shadow masking in one of the sub-tropical south images (Toowoomba,
Queensland, Australia). (a) A target image, (b) The new MCM resultant image, (c) The previous MCM
resultant image, (d) A part of the target image, (e) The new MCM resultant image of (d), and (f) The
previous MCM resultant image of (d), respectively. The red and blue color indicates cloud and the
cloud-shadow region, respectively.

Furthermore, Figure 9 shows the sub-tropical north, which has desert area in most of the image.
The new MCM algorithm works well in terms of the detection of cloud in desert areas. It can be
seen clearly that the algorithm can also detect very thin cloud in the desert area. There is no issue in
identifying cloud-shadow over the desert and mountainous areas. On the other hand, the previous
MCM algorithm detected non-cloud-shadow as cloud-shadow. This increased the commission error.

Figure 10 shows the tropical images. This image is quite difficult because it has a large amount
of haze and thin clouds over the forest and swamp. It can be seen in Figure 10 that the new MCM
algorithm can detect haze and thin cloud accurately. On the other hand, the previous MCM failed to
detect a large amount of haze and thin cloud. This increased the omission error.
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Figure 10. Cloud-shadow masking in the tropical area (Bulawayo, Zimbabwe). (a) A target image,
(b) The new MCM resultant image, (c) The previous MCM resultant image, (d) A part of the target image,
(e) The new MCM resultant image of (d), and (f) The previous MCM resultant image of (d), respectively.
The red and blue color indicates cloud and the cloud-shadow region, respectively.
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4.2. Statistical Assessments of the New MCM

In the statistical assessment, we selected some samples of different land cover types, such as
settlement, cropland, forest, and desert. The samples were also selected in different environments.
The average of the commission error (detected non-cloud as cloud) and omission error (failed to
detect cloud) of the new MCM algorithm in detecting cloud was 0.019 and 0.010, respectively,
in all scenarios. The highest commission error and omission error of cloud masking was 0.035
and 0.120, respectively, and all the errors were in the forest. It means that the MCM algorithm
detected non-cloud as cloud at 0.035 and failed to detect cloud at 0.120. Although the omission error is
small enough, it shows that the algorithm has difficulty in distinguishing between cloud and forest,
especially in the edge region of cloud. On the other hand, the highest commission error and omission
error of cloud-shadow masking was 0.058 and 0.084, respectively. The omission error of 0.084 as in the
desert area and it caused the algorithm to fail in identifying cloud-shadow in this area.

Mostly, the area of the commission error and omission error in detecting cloud and cloud-shadow
in the edge region of cloud and cloud-shadow caused the algorithm to fail in detecting cloud and
cloud-shadow in the region. However, the commission error and omission error in detecting cloud
and cloud-shadow were significantly small in all scenarios (see Tables 3 and 4). It shows that the new
MCM algorithm works well in detecting cloud and cloud-shadow.

As a result, the average of the user’s accuracy and producer’s accuracy in detecting cloud using the
new MCM algorithm was 98.03% and 98.98%, respectively. On the other hand, the algorithm achieved
a user’s accuracy and producer’s accuracy for cloud-shadow of 97.97% and 96.66% on average,
respectively. Thus, the algorithm works well in terms of detecting cloud and cloud-shadow in
all scenarios.

4.3. Comparison Between the New MCM and L8 CCA Algorithm

We compared the results of cloud and cloud-shadow masking between the new MCM and L8 CCA.
We selected high confidence cloud and cloud-shadow detection of L8 CCA in this process to avoid high
commission error in the results. In the visual assessment (see Figures 11 and 12), we can see from the
yellow circles on Figure 11 that the new MCM identified cloud and cloud-shadow accurately, but L8
CCA overestimated in identifying cloud-shadow. Moreover, L8 CCA detected non-cloud as a cloud
in the settlement area in the green circle. In addition, the yellow ellipse indicates thin-cirrus clouds
inside this ellipse and the new MCM can identify the thin-cirrus clouds accurately. On the contrary,
the L8 CCA failed to detect most of the thin-cirrus clouds and only detected a few of them. The results
showed that the new MCM was better than the L8 ACCA algorithm in cloud detection, especially in
the detection of thin-cirrus cloud. In the detection of cloud-shadow, it can be seen clearly in the
figures that the L8 CCA algorithm is overly confident. Therefore, the commission error in the detection
of cloud-shadow using L8 CCA is higher than the commission error of the new MCM. In addition,
the omission error of L8 CCA is also higher than the omission error of the new MCM. Overall, most of
the accuracies of the new MCM in the detection of cloud and cloud-shadow are higher than L8 CCA in
all scenarios.

Table 3. The results of commission error and omission error of cloud masking using the new
MCM algorithm.

Settlement Cropland Forest Desert Average

Commission Error of New MCM 0.024 0.018 0.035 0.001 0.019
Commission Error of L8 CCA 0.013 0.004 0.006 0.003 0.007
Omission Error of New MCM 0.009 0.039 0.120 0.009 0.010

Omission Error of L8 CCA 0.220 0.212 0.126 0.500 0.264
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Figure 12. The results of the new MCM and L8 CCA in the detection of cloud and cloud-shadow in
(a) settlement, (b) cropland, (c) forest, and (d) desert for statistical assessments.

Compared to L8 CCA, most of the user’s accuracy and producer’s accuracy of the new MCM had
a higher accuracy in detecting cloud, especially in the desert area (see Figure 13). In addition, most of
the user’s accuracy and producer’s accuracy of the new MCM was also higher than L8 CCA in the
detection of cloud-shadow, especially in the settlement area (see Figure 14).
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5. Conclusions and Future Work

This study improved the previous MCM algorithm to detect cloud and cloud-shadow for Landsat
8 in a variety of environments. The new MCM was tested in a variety of environments, such as
sub-tropical south, tropical, and sub-tropical north (see Figure 1). Most improvements were found
in the detection of clouds. Utilization of the HOT test and thermal band minimized omission error,
which caused the failure of the detection of haze and thin-cirrus cloud. They also decreased commission
error in the detection of cloud, especially that caused by land cover change and natural phenomena,
such as dust in desert areas. By adding band two into the previous algorithm for the detection
of cloud masking, the commission error was also decreased, especially in areas that changed to
being brighter. From the visual assessment, the resultant images of cloud and cloud-shadow showed
that the algorithm detected cloud and cloud-shadow accurately in those environments. Compared to
the previous MCM algorithm, the new MCM algorithm was shown to have higher accuracy and it
improved the ability to detect cloud and cloud-shadow in various environments (see Figures 8–10).
The new MCM algorithm was also effective in identifying cloud and cloud-shadow in heterogeneous
land and various cloud types. Compared to the L8 CCA, the new MCM can detect cloud and
cloud-shadow more accurately during visual inspection, especially in the detection of cirrus cloud and
identification of cloud over settlement and desert areas and cloud-shadow over settlement, cropland,
forest, and desert areas (see Figures 11 and 12). From the statistical evaluation, the average of the user’s
accuracy and the producer’s accuracy of cloud masking using the new-MCM algorithm was 98.03%
and 98.98% (see Figure 13). On the other hand, the algorithm’s user’s accuracy and producer’s accuracy
in detecting cloud-shadow was 97.97% and 96.66% on average, respectively (see Figure 14). Moreover,
compared to L8 CCA, most of the user accuracy’s and producer’s accuracy in screening cloud and
cloud-shadow of the new MCM had greater accuracy (see Figures 13 and 14). Therefore, we can
conclude that the new MCM can be used to detect cloud and its shadow in a variety of environments
with significantly high accuracy. In this study, we tested Landsat 8 images from different parts of the
world with a variety of environments, such as settlement, cropland, open land, forest, mountain, water,
and desert, to prove the reliability of the algorithm. However, there are still many more places in the
world with many kinds of environments that need to be tested. In future research, we would like to
test more areas with many kinds of environments to evaluate cloud and cloud-shadow masking ability.
The approach also needs automatic optimization of threshold values to handle other images that have
a different object spectrum. Therefore, in future research, we will improve the approach to address
this issue.
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