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Abstract: Knowledge about the existing materials in urban areas has, in recent times, increased in
importance. With the use of imaging spectroscopy and hyperspectral remote sensing techniques,
it is possible to measure and collect the spectra of urban materials. Most spectral libraries consist
of either spectra acquired indoors in a controlled lab environment or of spectra from afar using
airborne systems accompanied with in situ measurements. Furthermore, most publicly available
spectral libraries have, so far, not focused on facade materials but on roofing materials, roads, and
pavements. In this study, we present an urban spectral library consisting of collected in situ material
spectra with imaging spectroscopy techniques in the visible and near-infrared (VNIR) and short-wave
infrared (SWIR) spectral range, with particular focus on facade materials and material variation.
The spectral library consists of building materials, such as facade and roofing materials, in addition
to surrounding ground material, but with a focus on facades. This novelty is beneficial to the
community as there is a shift to oblique-viewed Unmanned Aerial Vehicle (UAV)-based remote
sensing and thus, there is a need for new types of spectral libraries. The post-processing consists
partly of an intra-set solar irradiance correction and recalculation of reference spectra caused by signal
clipping. Furthermore, the clustering of the acquired spectra was performed and evaluated using
spectral measures, including Spectral Angle and a modified Spectral Gradient Angle. To confirm and
compare the material classes, we used samples from publicly available spectral libraries. The final
material classification scheme is based on a hierarchy with subclasses, which enables a spectral library
with a larger material variation and offers the possibility to perform a more refined material analysis.
The analysis reveals that the color and the surface structure, texture or coating of a material plays
a significantly larger role than what has been presented so far. The samples and their corresponding
detailed metadata can be found in the Karlsruhe Library of Urban Materials (KLUM) archive.
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1. Introduction

Assessment of materials in urban areas has in recent times increased in importance for several
reasons. For one, this knowledge is useful for city planners and researchers while working with city
models or simulations where the need for a high level of detail about the buildings, which can include
the materials, is important. This can include additional information for 3D building models for formats
such as CityGML and its applications [1–3] in addition to thermal city simulations [4–6]. Secondly,
as the urban heat island effect [7] is an increasing occurrence in cities [8], further knowledge about
the materials in urban areas can be an indicator on how to tackle and handle the effect [9–12]. Lastly,
with the information about the material, it can be possible to assess the heating and cooling demand in
combination with thermal infrared data [13–15].
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To assess surface materials or land cover classes in urban areas, it is a common and efficient
procedure in the remote sensing community to perform classification using hyperspectral or
multispectral imagery. To carry out a classification, it is necessary for supervised classifiers, such as
Random Forests [16] or Support Vector Machine [17], to have available data for training the classifier
and for evaluating the performance using testing data. Hyperspectral data is often used for
classification due to the broad wavelength range (e.g., 350–2500 nm). Furthermore, it is also suitable
for urban material classification [18,19] as hyperspectral data can ease the distinction of characteristic
spectral features due to the large spectral range. Another advantage of hyperspectral data as opposed
to multispectral, which consists of spaced spectral ranges, is that hyperspectral data allows the use of
gradient calculations.

Spectral libraries containing urban materials can be used as training data for material classification
in areas when no prior knowledge is available or when it is not possible to collect ground truth data.
Spectral libraries can be based on spectra acquired either in situ [20], in the laboratory [21,22] or by
a combination of airborne and in situ data [23–27]. As most material classifications using hyperspectral
imaging are acquired from airborne systems, the materials available in spectral libraries reflect those
needs, i.e., the urban materials available in spectral libraries are often materials that can be seen from
above, such as ground and roof materials. With the increased usage of Unmanned Aerial Vehicles
(UAVs), there is also a desire to classify materials on building facades [28,29] using hyperspectral
sensors on UAVs [13]. However, facade materials are often not well represented in spectral libraries
since the material assessment of facades has, until now, not been common practice. Thus, there is
an upcoming need for such spectral libraries as there is a shift to oblique UAV-based remote sensing.

Furthermore, as one material can have different surface structures and textures in addition to
various conditions and colors, the material’s characteristic spectral features can vary. This can be seen
in the study by Kotthaus et al. [25]. This variation depends on the aforementioned examples and is
often not well represented in spectral libraries. Additionally, some existing spectral libraries do not
provide a photo of the material, which can be a challenging task to either validate, compare or match
acquired samples with existing spectral libraries [30,31].

Thus, motivated by the under-representation of spectral libraries with detailed descriptions
about their spectra and metadata in addition to libraries with a focus on facade materials, we present
in this study the Karlsruhe Library of Urban Materials (KLUM) that fills those gaps. This spectral
library consists of collected in situ building material spectra in the visible and near-infrared (VNIR)
and short-wave infrared (SWIR) spectral range, specifically in the wavelength range of 350–2500 nm.
The samples were acquired in the southwestern German city of Karlsruhe, with a focus on facades
material and a large material variation. Furthermore, the material samples are labeled and clustered
into classes and subclasses for an easier access to similar material samples.

Section 2 briefly gives an overview of current urban spectral libraries. This is followed by
the methodology in Section 3 that include the measurement setup, the data processing (intra-set
solar irradiance correction and recalculation of reference spectrum) and the material categorization
(clustering and spectra validation). The results are presented and discussed in Section 4 and, finally,
the study concludes with Section 5.

2. Existing Urban Spectral Libraries

Urban spectral libraries can serve as a tool for comprehensive overview or as a database for
material labeling since they contain the characteristic spectral features of various building materials.
Such libraries are often used as training data for material classification, as they provide the important
spectral features. Furthermore, libraries that focus on urban areas, in particular urban materials,
have been compiled in several countries across the world since building materials can vary regionally
due to different available construction materials. Thus, spectral libraries are often generated to
represent a particular region and/or with a particular purpose in mind to suit the needs.
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Earlier examples of urban spectral libraries with a focus on materials have been made
by Price [32], Ben-Dor et al. [27] and Heiden et al. [33] (extended through Heiden et al. [23]).
The spectral library made by Ben-Dor et al. [27] used spectra acquired in Tel-Aviv, Israel that had been
collected by Price [32]. In their study, they acquired spectra using in situ measurements and airborne
images. The study done by Heiden et al. [33] and the extension by Heiden et al. [23], introduced
a spectral library consisting of urban materials located in Dresden and Potsdam, Germany. The spectra
were acquired and assessed by combining in situ measurements with airborne hyperspectral data.
The spectral library of Santa Barbara, US, made by Herold et al. [24], is also based on spectra from
both in situ and airborne measurements. The Santa Barbara spectral library has mainly its focus
on roads and roofs, whereas a further study regarding the effects on road material aging was later
complied by Herold and Roberts [34]. Another example of a spectral library that used the same
acquisition combination is DESIREX [26]. The work of Sobrino et al. [35] conducted a study using
ground truth data from the spectral library ASTER [21] in combination with DESIREX, and was able to
classify urban materials in the city of Madrid, Spain. On the other hand, there are spectral libraries
that are purely based on spectra acquired in the laboratories, such as ASTER [21] and the USGS
spectral library [22]. Both ASTER and USGS cover a large variation of mainly natural materials but
also construction materials. A recent follow-up to the USGS spectral library [22] is the USGS Spectral
Library Version 7 [36]. Here, the spectra have been acquired both in situ, from airborne systems and
in the laboratory and cover a large variation of mainly natural materials, but also artificial materials.
The combination of laboratory and in situ acquisitions was performed to create the spectral library of
LUMA-SLUM [25]. Here, material samples were acquired in the city of London, UK, to extend the
accessibility to material spectra in the long-wave infrared (LWIR) spectral range. They assessed spectral
features from construction materials and provided photos of each sample. Furthermore, LUMA-SLUM
contained several samples of the same material, and it could be observed that the spectral features
can vary significantly in the VNIR and SWIR spectral range. In situ-based spectral libraries are few,
such as the one produced by Nasarudin et al. [20], since the surrounding environment cannot be
controlled (e.g., the solar irradiance and the water vapor absorption). This spectral library contains
spectra acquired at a university campus in Serdang, Malaysia, and contains mainly roof and ground
materials. Most of the aforementioned urban spectral libraries cover only the VNIR and SWIR spectral
range but with some exceptions, which can be seen in Table 1.

The publicly available spectral library LUMA-SLUM [25] is a fine example on how material
spectra should be presented. This library contains photos of the accessible material samples which
is a helpful tool since the library also contains several examples of the same material in various
conditions but with varied characteristic spectral features. The recent USGS Spectral Library Version
7 [36] is another example on how to present a spectral library online. Here, an interactive search engine
is available for users allows searching and filtering out specific materials. However, photos of the
samples are not always provided.

Although the currently existing urban spectral libraries contain a large variation of natural and
man-made materials, the main focus has so far been on urban material visible from a nadir point
of view (horizontal surfaces facing the sky, such as asphalt, soil and grass) and this can be seen in
Table 1. The under-representation of facade material samples in existing spectral libraries can be seen
in column Content, where most contain few facade material samples. Spectral libraries often aim to
provide an overview of building materials but they do not always provide a detailed description
about the surface color nor the structure for all samples, with LUMA-SLUM [25] being one of the
few exceptions.
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Table 1. Spectral libraries that contain urban materials and have acquired spectra in the VNIR and
SWIR spectral range (sorted by the year of publication). *Libraries available online.

Spectral Library Study Area Content Spectral
Range

Data
Acquisition

Ben-Dor et al. [27] Tel-Aviv, Israel 55 samples, of which:
11 facade
16 ground
2 roof

VNIR Airborne
In situ

Heiden et al. [33] & [23] Dresden and Potsdam,
Germany

32 samples, of which:
8 ground
13 roof

VNIR
SWIR

Airborne
In situ

Herold et al. [24]
Santa Barbara spectral library*

Santa Barbara,
CA, USA

26 samples, of which:
9 ground
3 roof

VNIR
SWIR

Airborne
In situ

Baldridge et al. [21]
ASTER spectral library*

Various locations,
USA

3420 samples, of which:
28 facade
10 ground
18 roof

VNIR
SWIR
TIR

Laboratory

Sobrino et al. [26]
DESIREX

Madrid, Spain 27 samples, of which:
3 facade
18 ground
1 roof

VNIR
SWIR
MWIR
LWIR

Airborne
In situ

Nasarudin et al. [20] Serdang, Malaysia 15 samples, of which:
7 roof
3 ground

VNIR
SWIR

In situ

Kotthaus et al. [25]
LUMA-SLUM spectral library*

London, UK 74 samples, of which:
48 facade
9 ground
17 roof

VNIR
SWIR
LWIR

Laboratory
In situ

Kokaly et al. [36]
USGS Spectral Library Version 7*

Various locations,
USA

2468 samples, of which:
9 facades
15 ground
16 roof

VNIR
SWIR
LWIR
VLWIR

Airborne
Laboratory
In situ

KLUM* Karlsruhe, Germany 181 samples, of which:
97 facade
46 ground
38 roof

VNIR
SWIR

In situ

3. Methods

We first describe the measurement setup in Section 3.1, where we explain the equipment we used
and the acquisition procedure. This is followed by Section 3.2 with a focus on the post-processing.
Here, we first explain the less work-intense processing steps, such as the detection of outliers and
noise in addition to the handling of the spectral ranges where water absorption is present. Lastly,
we describe in detail the solar irradiance intra-set correction and the recalculation of the reference
spectrum due to signal clipping. We dedicate the last Section 3.3 to material categorization, where
we describe the clustering of material of the same composition and we compare those clusters with
samples from existing spectral libraries.

3.1. Measurement Setup

The in situ spectra are acquired with the high-resolution spectroradiometer ASD FieldSpec-4
Hi-Res (www.malvernpanalytical.com). The FieldSpec spectroradiometer has a spectral range of
350–2500 nm and consists of three sensors; one VNIR sensor (350–1000 nm), one SWIR1 sensor
(1001–1800 nm) and one SWIR2 sensor (1801–2500 nm). FieldSpec has a spectral sampling of 1.4 nm
and a spectral resolution of 3 nm in the spectral range of the VNIR sensor and a spectral sampling of
1.1 nm and spectral resolution of 8 nm in the spectral range of the SWIR1 and SWIR2 sensors. In total,

www.malvernpanalytical.com
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the spectroradiometer has 2151 channels and a wavelength accuracy of 0.5 nm. The optical fiber probe
has a field of view of 25◦.

We collect the spectra from a distance of 20 cm with the coverage area of around 9 cm in diameter.
By acquiring the spectra using a smaller coverage area, we reduce the chance of acquiring spectra
from different materials. The measurement setup is always the same, the reference spectrum and the
measured spectrum are acquired from the same direction by placing the spectralon reference plate on
top of the material surface. Thus, the solar incident angle is the same for the reference spectrum and the
measured spectrum. One sample consists of a set of 10 spectra, which will be referred to an intra-set,
and was acquired within 60 s. A reference spectrum is acquired before each intra-set acquisition by
using a 95% spectralon reflectance plate for correction of incoming solar irradiance. Field spectra
should be collected at cloud-free conditions to ensure the quality of the spectra. However, the solar
irradiance can alter during acquisition due to occasionally passing clouds. Thus, to account for any
potential alternations, the solar irradiance was collected throughout the acquisition by using the Qmini
spectrometer (www.rgb-photonics.com) as an upward looking spectral reference by having it faced
towards the sun. Qmini uses a Charged Couple Device (CCD) detector with a spectral resolution of
1.5 nm and a spectral range of 200–1025 nm. Hence, this spectrometer enables processing and correction
of intra-sets.

Furthermore, a photo is acquired of each material sample for usage as a visual reference and
control during the post-processing. Additionally, a Global Navigation Satellite System (GNSS) receiver
is used throughout the acquisition to record the geolocation of the material samples for possible revisits.

In total, 181 material samples (1810 spectra) are acquired in the area of Karlsruhe, Germany
between 2 July and 8 August 2018. The average effective solar incident angle for the 1810 spectra is
for the horizontal surfaces 22.91◦ and a standard deviation of 3.85◦, while for the vertical surfaces
69.81◦ and a standard deviation of 7.26◦. The field survey is carried out on days with sunny weather
and with occasionally a few passing clouds. Most of the material samples are acquired directly in
situ from buildings, roads, and pavements in the city of Karlsruhe. However, some of the material
samples are acquired outdoors at a local building supplier to increase the number of roofing samples.
All samples are acquired in the sun. As the samples are located within a city, the locations are selected
to reduce the impact from opposite facades and windows. The material samples are mainly but not
only man-made materials, such as ceramic, concrete, and plaster with additional samples from natural
material such as sandstone, limestone, and granite. Furthermore, various roofing and road materials
are additionally acquired to complete the spectral library. The acquired material samples are in various
states of weathering and range broadly in age.

3.2. Data Post-Processing

As the spectra are acquired in situ, the surrounding environment cannot be regulated in
a controlled manner, such as the solar irradiance and absorption of water vapor. Hence, to improve
and refine the spectra, we implement a post-processing routine. This routine covers removal of outliers
and noise, intra-set correction using the solar irradiance and recalculation of the reference spectrum
(due to signal clipping). The processing is done either for just one or for all three FieldSpec sensors.
The data processing is implemented in MATLAB.

The proposed processing flow can be seen in Figure 1. We will here explain each step in the
processing flow in the order of processing. Due to the spectra being acquired in situ, the first processing
step deals with the water vapor absorption. The spectral ranges of 1340–1450 nm, 1780–1970 nm, and
2300–2500 nm are therefore removed. The processing flow is followed by focusing on the measured
spectra, denoted with L. First, as an intra-set is acquired in sets of 10 spectra, any apparent outliers
caused by unexpected movement of the carrier can easily be manually detected and removed. Around
2% of the 1810 acquired spectra are deemed to be outliers as their spectral features are significantly
different than the corresponding intra-set spectra. Secondly, this is followed by the intra-set solar
irradiance correction, which is explained in detail in Section 3.2.1. Detection and removal of noise

www.rgb-photonics.com
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is the following processing step. A sample is flagged as noisy if the maximum intra-set variation is
above the threshold of 10% and this is only observed for the SWIR2 sensor. This spectral range is thus
removed for around 5% of the samples due to noise. After performing adjustments to the measured
spectra L, we can calculate the spectral reflectance R with the reference spectra E0 and the adjusted
measured spectra L.

R =
L
E0

(1)

Followed is the calculation of the average spectral reflectance R for each intra-set. An additional
processing step must be added for the reference spectrum E0 since we discovered that the signal had
been cut off for several samples due to signal clipping. This processing step is explained in Section 3.2.2.
The recalculation of the reference spectrum E0 for these samples introduces additional noise which
can be detected in the spectral range of 950–1020 nm and thus, this spectral range is excluded for all
samples. The noise is caused by the usage of Qmini since it experiences noise in this spectral range.
In total, about 20% of the spectral range is removed because of noise. This concludes the processing
flow and we receive a material sample that can be further used for sample clustering. The following
subsections will now explain in detail the two major processing steps, the intra-set solar irradiance
correction and recalculation of the reference spectrum.

10 spectra samples (L) 10 spectra samples (E)

Water vapor removal

Outlier removal

Correction of L∗

Noise removal

Spectral reflectance, R = L
E0

Recalculation of E∗0

Removal of noise due to E∗0

Material sample (R)

Figure 1. Data processing flow.

3.2.1. Solar Irradiance Intra-Set Correction

A reference spectrum E0 is acquired before each acquisition of an intra-set but the measured
spectra L can alter during the acquisition time. Thus, by using the acquired solar irradiance S(λ)
which Qmini collected throughout the acquisition, we can adjust for this alternation and perform
an intra-set correction to make L more homogeneous. By appointing the first measured spectrum
in the intra-set as the initial measured spectrum, denoted Ltr , and extracting the solar irradiance
acquired at that time point Str (λ), we can examine if the solar irradiance St(λ) has altered for the other
spectra in the intra-set, Lt. First, we examine if the solar irradiance has significantly altered during
the acquisition and if such adjustment is necessary. Here, we calculate the standard deviation and
determine if the maximum standard deviation indicates an alternation of more than 2%. If so, we
extract the solar irradiance St(λ) that has been collected throughout for the acquisition by finding
the corresponding synchronized GNSS-time stamps for Qmini and FieldSpec. Thus, by using the
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initial measured spectrum and extracting the acquired solar irradiance at that time point Str (λ), we
can determine the corrected intra-set L∗t as

L∗t = Lt ·
1
n

n

∑
j=1

(
St(λj)

Str (λj)

)
(2)

The original intra-set Lt is multiplied with the calculated solar irradiance factor to receive the
corrected intra-set L∗t . We then control if the corrected intra-set L∗t is more homogeneous than the
original intra-set Lt by calculating the maximum standard deviation by using

L =

{
L∗t , if max(σL) ≥ max(σL∗t )

Lt, otherwise
(3)

If the maximum standard deviation of the corrected intra-set is more than the one of the original
intra-set, we reject the corrected intra-set and we keep the original intra-set. In short, this routine
makes it possible to correct the intra-set by adjusting it with a calculated solar irradiance factor. See
Figure 2 for a visual presentation of this processing step.

Figure 2. The workflow for correcting an intra-set using collected the solar irradiance. Subfigure (a):
The original intra-set Lt. Subfigure (b): The corresponding collected solar irradiance S(λ). Subfigure
(c): Comparison between the original intra-set and the corrected intra-set using the standard deviation.
Subfigure (d): The solar irradiance correction for the intra-set L∗t .

3.2.2. Recalculation of Reference Spectrum Due to Signal Clipping

Signal clipping occurs if an acquired signal is restricted to a certain data range and if reached, the
signal is cut off at this threshold [37]. This occurred for several samples in limited parts of the reference
spectrum and it appears to caused by a technical malfunction. The reference spectrum is cut off at
different thresholds. To recover those reference spectra and the accompanying measured spectra, we
implement a routine for signal recalculation.

We first implement a routine that detects local flat signal peaks in the reference spectra. We are
thus able to detect and determine which parts of the reference spectrum Et∗ that have been cut off.
Once detected, we determine which reference spectrum that was acquired consecutively and did not
suffer from signal clipping in the same part of the spectrum, Etr . This works under the assumption
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that the solar irradiance has not been significantly altered and that the location of the consecutive
acquisition is similar and surrounding environment has not altered much. If one of these conditions is
not satisfied, the spectrum cannot be properly recalculated. The intensity values of these corresponding
wavelengths are extracted and the part that has been cut off is ignored. The average ratio between the
two reference spectra can be determined as described in the formula

c =
1
n

n

∑
i=1

(
Enc,t∗(λi)

Enc,tr (λi)

)
(4)

Enc,t∗ and Enc,tr are the parts in the reference spectrum that were not cut off in the two
corresponding reference spectra. This ratio is then multiplied with the consecutively acquired reference
spectrum Etr , as seen in

E∗0 =

{
Etr · c · s(λ), for λ in the spectral range of sensor VNIR

Etr · c, for λ in the spectral range of sensors SWIR1 and SWIR2
(5)

However, as seen in the equation, another factor needs to be considered when recalculating the
reference spectrum E∗0 in sensor VNIR spectral range. The signal clipping in sensor VNIR covers 53%
of the spectral range and thus, just using the same formula as in the SWIR spectral range generates
reference spectra of poor quality. We can here use additional information acquired with Qmini since it
is the same spectral range and the formula can therefore consist of an additional factor. The average
wavelength solar irradiance alternation between the two acquisitions can be calculated, s(λ), as
described in

s(λ) =
1
m

m

∑
j=1

(
snc,t∗(λj)

snc,tr (λj)

)
(6)

Here, snc,t∗ represents the solar irradiance during the acquisition of the cut off reference spectrum
Enc,t∗ and snc,tr the solar irradiance during the acquisition of the consecutive non-cut off reference
spectrum Enc,tr .

To evaluate the quality of the recalculated reference spectra, E∗0 , we use the part of the reference
spectra that was not cut off to calculate a quality measure, Q. Here, we use the two vectors that
represent the part of the reference spectrum that was not cut off, Enc,tr , Enc,t∗ , in addition to the
calculated ratio c. Q is defined as

Q =

√√√√ 1
n

n

∑
i=1

(
Enc,tr (λi) · c

Enc,t∗(λi)
− 1

)2

(7)

Hence, we receive a value ranging between 0 and 1, where 0 represents a perfectly recalculated
reference spectrum. We decide to set a threshold of 0.05 to eliminate recalculated reference spectra of
poor quality. An example can be seen in Figure 3, where the recalculated reference spectrum E∗0 in the
spectral range of sensor SWIR1 passes the quality control while the recalculated reference spectrum for
sensor SWIR2 spectral range does not. In the end, the recalculated reference spectrum for 26% of the
samples that suffered from signal clipping passed the quality measure.
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Figure 3. Example of recalculated reference spectrum E∗0 . Blue shows the cut off reference spectrum Et∗ ,
green the consecutive non-cut off reference spectrum Etr and red the recalculated reference spectrum
E∗0 . The recalculated reference spectrum in the spectral range of sensor SWIR2 does not pass the quality
control since it does not surpass the quality criteria of Q < 0.05.

3.3. Material Categorization

We decide to cluster the material samples to obtain material classes and subclasses that consist of
at least one material samples each. This is done to provide several samples of similar characteristic
spectral features to be potentially used as training data for material classification. Thus, to categorize
the materials, we determine which material clusters we have and compare each material cluster with
samples from existing spectral libraries. We lastly evaluate the intra-class spectra similarity.

3.3.1. Sample Clustering Based on Spectral Features

To determine the material clusters (samples with the same material composition) and
the corresponding subclasses (samples in the same material cluster but with different surface
characteristics), we use suitable spectral measures. The most common spectral measure is Spectral
Angle (SA) [38], which is also commonly used for image classification but is then known as Spectral
Angle Mapper SAM [39]. It is suitable for continuous data such as hyperspectral spectra as SA
calculates the angle between two vectors (spectra) and determines the spectral similarity between the
two. The smaller the angle, the more similar the two spectra are. This measure is suitable for spectra
acquired during different downwelling irradiance conditions, as the measure is relatively robust for
such alternations since it accounts for the vector direction and not the vector length. 〈x, y〉 represents
the dot product of the two vectors and ||.||2 the Euclidean norm. SA can be described as

SA(x, y) = arccos

(
〈x, y〉
||x||2||y||2

)
(8)

However, in order not to rely on only one measure, we decide to use Spectral Information
Divergence (SID) [40] and Spectral Gradient Angle (SGA) [41] as well. SID determines a divergence
measure between two vectors. Again, the smaller the divergence measure, the more similar the two
spectra are. Using SID, the quality of spectral similarity has been shown to be better than with the
usage of SA [42]. Given two n-dimensional vectors x and y, SID is defined as

SID(x, y) =
n

∑
i=1

(
xi

∑n
j=1 xj

− yi

∑n
j=1 yj

)(
log

xi

∑n
j=1 xj

− log
yi

∑n
j=1 yj

)
(9)
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SGA calculates the angle between two spectral gradients by using SA. SGA uses, in comparison to
SA, the vector gradient instead of the vector direction. The slope change is thus considered to increase
robustness against static offsets and is therefore invariant to geometry and incident illumination. We
first determine the gradient of two n-dimensional vectors x and y. This is then followed by using SA,
as defined in Equation (8). SGA is thus defined by

SG(x) = (x2 − x1, x3 − x2, x4 − x3, ..., xn − xn−1) (10)

SGA(x, y) = SA(abs(SG(x)), abs(SG(y))) (11)

However, as SGA is calculated using the absolute gradient, two spectral gradients will be the
same even if one has a negative and the other a positive slope as the absolute derivative will be the
same. Thus, we propose a modified version of SGA, denoted as SGA*, which does not calculate the
absolute gradient but adds 1 instead. This allows us to distinguish spectra with the same absolute
negative and positive derivative, as seen in

SGA∗(x, y) = SA(SG(x) + 1, SG(y) + 1) (12)

The samples can be now assigned into clusters in an iterative procedure using these measures.
We initiate the iteration with a first guess based on the observations made in the field. By iterating the
sample clustering, we can split the larger material classes into more refined subclasses and generate,
if appropriate, new material classes. The three spectral measures SA, SID and modified SGA* are
calculated using the full spectral range and for each of the three FieldSpec sensors for every sample
pair. This allows us to study the spectrum in detail at the different spectral ranges. Furthermore, if one
part of the spectrum has been removed during the post-processing, the corresponding sample pair
will also have this part of the spectrum removed. We set different threshold values for three spectral
measures to determine suitable pairings. Thus, we can generate 12 matrices, three for the full spectral
range and nine for each of individual FieldSpec sensor, that display the calculated spectral similarity
between each sample pair. An example can be seen in Figure 4, where the 12 matrices are displayed
and visualized for the subclass Dark reflective ceramic.

Figure 4. Cont.
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Figure 4. Subfigures (a–l): Example of calculated SA, SID and modified SGA* made for the subclass
Dark reflective ceramic. Subfigures (a–d): SA. Subfigures (e–h): SID. Subfigures (i–l): The modified SGA*.
The columns correspond to the spectral range of interest. The colors represent the similarity between
each pair of material spectra by using the different thresholds (scales located to the far right). Yellow
indicates that the two spectra are not similar, bright blue rather similar, and dark blue very similar.
Subfigure (m): The corresponding spectral reflectance.

The example in Figure 4 visualizes how the three measures determines the spectral similarity
between the four samples. As we receive three calculated values from the measures, we use different
thresholds that represents three levels of similarity (very, rather, and not similar). These thresholds
resemble those used by Robila [42]. We reject pairings if all three measures indicate a poor similarity
in several matrices. However, an indication of a poor similarity in the spectral range of sensor VNIR is
often ignored since that only represents the material color. Each material cluster consists of at least
two samples.

3.3.2. Comparison of Spectra

To determine and assign suitable labels to the different material clusters, we use two publicly
available spectral libraries that contain similar samples as KLUM; ASTER [21] and LUMA-SLUM [25].
The ASTER spectral library contains 3420 samples while the LUMA-SLUM library contains 72 samples.
We reduce and extract material samples from those libraries which we believe were likely to exist in
our library, namely construction material, to reduce the processing time. Thus, we used 61 samples
from LUMA-SLUM samples (82%) and only 134 samples ASTER (4%) as it contains few construction
material samples. Additionally, ASTER’s samples do not cover the same spectral range as KLUM and
sometimes only a limited part of the spectral range. Furthermore, we also extracted samples from
ASTER’s class Rock as it contained natural materials that are often used for constructions, such as
sandstone. Other publicly available spectral libraries, such as Santa Barbara [24] and DESIREX [26],
contain mainly ground material samples and thus, we did not use them for validation. In general,
the under-representation of facade material samples in publicly available spectral libraries makes it
challenging to determine and compare the material samples and the corresponding labels.

We compare our clustered material samples by using the same spectral measures we use for the
spectral clustering; SA, SID and the modified version of SGA*. We determine the average spectral
reflectance for each subclass cluster and calculate the three spectral measures using material samples
from ASTER and LUMA-SLUM as reference spectra. We then extract the 10 samples from ASTER and
LUMA-SLUM that resemble the KLUM subclass the most according to the three measures. This is
exclusively done in the spectral range of SWIR1 and SWIR2 since we want to ignore the material color.
Thus, we can determine the best sample matches based on the spectral similarity. Furthermore, as
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some samples are not present in neither ASTER nor LUMA-SLUM (e.g., neither contains a class named
Plaster), we also must rely on our field observations and the photos we had taken.

3.3.3. Intra-Class Evaluation

Finally, the assessment and evaluation of the quality of the sample clustering, both on class
and subclass level. This is done by first comparing KLUM’s material classes and subclasses with
clusters generated from unsupervised algorithms. Thus, we use the unsupervised clustering algorithm
k-means [43] since we then can compare the same number of generated clusters and the sample
distributions with KLUM’s material classes and subclasses. Thus, we set k to 12 and 33 respectively.
Additionally, as we are working with high-dimensional data, we employ Principal Component Analysis
(PCA) [44] for dimensionality reduction. Here, we use the first few principal components that cover
99.9% of the variability of the data. We decide to also employ t-distributed stochastic neighbor
embedding (t-SNE) [45] as it is suitable for visualizing high-dimensional data. We assess the clusters
in different spectral ranges; the full spectral range, the spectral range of the sensors SWIR1 and SWIR2
and the spectral range of sensor SWIR2. The last assessment of the sample clustering consists of
analyzing and visualizing the intra-class standard deviation of each class and subclass.

4. Results and Discussion

First, we present the material classification scheme that we created to suit a more refined
categorization and an overview of the material classes and subclasses that are available in our spectral
library, KLUM (Section 4.1). Then, we discuss the spectral comparison made between KLUM samples
and samples from ASTER and LUMA-SLUM (Section 4.2). This is followed by the intra-class evaluation
(Section 4.3). Lastly, the signal clipping, the used spectral range and the used spectral measures are
discussed (Section 4.4).

4.1. Material Samples

181 material samples were successfully processed and clustered into classes and subclasses, thus
creating KLUM. We were able to distinguish and cluster 12 common urban materials and 33 subclasses
from the 181 material samples, presented in Table 2. KLUM consists of 97 facade, 46 ground, and 38
roof material samples. Some of the collected material classes had enough samples to generate several
subclasses. 23% of the samples suffered from signal clipping in one or two FieldSpec sensors. In the
end, 17% of the samples had parts of the spectrum removed due to not passing the quality measure.
Furthermore, 5% of the samples had their spectra removed in the spectral range of sensor SWIR2 due
to noise.

As seen in Table 2, most of the material classes consist of several subclasses. The three largest
material classes with the most samples are Ceramic with 45, followed by Concrete with 38 and Granite
with 16. We chose descriptive subclass names based on the hierarchical material classification scheme,
as seen in Table 3. The scheme we chose is based on the schemes of Kotthaus et al. [25] and Herold et al.
[24], where the scheme consists of several levels of descriptive information. This material classification
scheme offers a more refined and detailed description of each material class as it defines the usage
(facade, ground or roof), the color, the surface structure, texture and coating (e.g., reflective or matte) in
addition to the status of the material (new or weathered). This enables the possibility to split and select
a refined material subclass, such as Painted concrete, and the option to perform material classification for
specific cases, which was the main purpose of the clustering. To keep the color description simple, we
decided to exclude the the description of hue, saturation and brightness in addition to only assigning
one color per material sample (the most dominant color).

A brief explanation about the materials in Table 2 is presented in the following subsections
to provide essential context. The material classes Ceramic, Concrete and Wood are presented with
some examples from their corresponding subclasses. The remaining material classes and the detailed
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descriptions are provided in Appendix A and the full list of all material samples and the metadata are
given in Appendix B.

Table 2. Detailed table about the clustered classes and subclasses in addition to their samples.

Material Class ID Subclass Count

Asphalt A Grey asphalt 4
Brick (clay) B Red brick 8

Beige brick 4
Painted brick 2

Mortar C Grey mortar 3
Ceramic D Glazed ceramic (bricks) 4

Dark reflective ceramic 5
Glazed ceramic (roof tiles) 12
Red matte ceramic 8
Dark matte ceramic 7
Black glazed ceramic 4
Grey ceramic 5

Concrete E Bright concrete (ground bricks) 7
Grey concrete (blocks) 5
Weathered porous concrete 4
Bright concrete 5
Grey concrete 9
Painted concrete 8

Granite F Biotite granite 8
Muscovite granite 8

Limestone G White limestone 4
Colored limestone 5

Metal H Paint-sprayed metal 7
Painted metal 3

Plaster I Weathered bright plaster 3
Colored plaster 4
Bright plaster 5

Sandstone J Red sandstone 4
Weathered sandstone 6
White sandstone 2

Conglomerate K Conglomerate 11
Wood L Varnished wood 2

Painted wood 5

Table 3. The hierarchical categorizations applied to the collected samples.

1. Material 2. Usage 3. Color 4. Surface Structure/Texture/Coating 5. Status

Asphalt Facade Beige Bare New
Brick (clay) Ground Black Burnt Weathered
Ceramic Roof Blue Corrugated
Concrete Brown Cracked
Conglomerate Green Fine roughness
Granite Grey Glazed
Limestone Pink Matte
Metal Red Mossy
Mortar White Natural
Plaster Yellow Painted
Sandstone Paint-sprayed
Wood Popcorn

Porous
Reflective
Smooth
Uneven
Varnished
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4.1.1. Ceramic

Ceramic is the material class with the most subclasses and samples; seven subclasses and 45
samples. The majority of these samples were acquired at a local building supplier which enabled
the possibility to study the impact the material color and surface structure/texture/coating has. This
can be seen in Figure 5, where four samples with different colors from three subclasses are displayed
and visualized; Dark reflective ceramic (sample D104), Glazed ceramic (roof tiles) (samples D211 and
D212) and Grey ceramic (sample D604). By analyzing the visualized spectral reflectance, it is noticeable
that the color difference can be seen not only in the spectral range of sensor VNIR, but also in the
spectral range of sensor SWIR1. The spectral reflectance of the same material differs here significantly
in the studied spectral range but displays a spectral similarity in the spectral range of sensor SWIR2.
Thus, this example showcases the importance of proper metadata descriptions in spectral libraries by
describing the material surface by color. Furthermore, this demonstrates that it is crucial to be cautious
while using spectral libraries as there can be a significant spectral difference for one material in this
spectral range.

(a) D104 (b) D211 (c) D212 (d) D604

Figure 5. Visualization of the impact the color of the material has. Subfigures (a–d): Four samples
with different colors from the material class Ceramic from three different subclasses. Subfigure (e): The
spectral reflectance for those samples. The color difference is not only noticeable in spectral range of
sensor VNIR, but also in the spectral range of sensor SWIR1.

4.1.2. Concrete

The class material Concrete is the second largest class with six subclasses consisting of 38 samples.
We present three subclasses in Figure 6; Bright concrete (sample E301), Grey concrete (sample E407) and
Painted concrete (sample E508). The two samples E301 and E407 do have similar characteristics features
but with a slightly different spectral feature in the spectral range of 1400 nm and onward. Sample
E508 from the subclass Painted concrete does have a distinguishing feature which can be seen in the
spectral range of sensors SWIR1 and SWIR2 as it decreases here. This phenomenon is also noticeable
for the subclasses with the same surface structure/texture/coating (e.g., Painted metal and Painted
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wood). This highlights the fact that painted surfaces can be distinguished due to their spectral features
in this spectral range.

(a) E301 (b) E407 (c) E508

Figure 6. Examples of the various forms of the material Concrete; Painted concrete, Grey concrete and
Bright concrete. Subfigures (a–c): Samples from three different subclasses of Concrete. Subfigure (d):
Spectral reflectance for these samples.

4.1.3. Wood

We have categorized the material class Wood into two subclasses; Varnished wood and Painted wood.
The material class consists of seven samples. One sample from each subclass and the corresponding
spectral reflectance can be seen in Figure 7. As one sample has been painted (sample L102) and one
has been varnished (sample L002), the spectral reflectance is noticeable different due to the surface
coatings. As discussed, the distinguished features that appear for painted surfaces can once again
be seen here, a decreasing reflectance in the spectral range of sensors SWIR1 and SWIR2. Since these
two subclasses have completely different characteristic features in this spectral range, it would be
impossible to classify them both as Wood. However, as the material composition is the same, they are
categorized as the same material since the surface coating is the only difference.

(a) L002 (b) L102

Figure 7. Cont.
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Figure 7. Visualization of the spectral reflectance difference for the two subclasses of Wood. Subfigures
(a,b): Photos of the subclasses Painted wood and Varnished wood. Subfigure (c): The spectral reflectance
of these samples. Green being Varnished wood and red Painted wood.

4.2. Spectral Similarity with Existing Spectral Libraries

With the use of the two spectral libraries, ASTER, and LUMA-SLUM, we could in some cases
confirm our sample label assignments and in some other cases receive a hint that could guide us.
However, one material can have different colors and different surface structures, coatings, and textures.
Thus, this proved a challenge since some of samples could not be successfully matched with a material
label from the two spectral libraries because those samples did not fit the description of the color nor
the structure description. Thus, this makes it clear that spectral libraries in this spectral range should
include additional information in the metadata files. Furthermore, some labels assignments could not
be confirmed as ASTER nor LUMA-SLUM contained similar samples (such as Plaster). For those cases,
we had to rely on our field observations and the photos.

As we calculated the spectral measures for our material spectra using samples from ASTER and
LUMA-SLUM as reference spectra, we noticed that the spectra from various materials are often very
similar in the studied spectral range. This can be seen in Figure 8 where we visualize the five samples
from ASTER and LUMA-SLUM that are the most similar to our class Grey asphalt according to the
modified SGA* measure in the spectral range of sensors SWIR1 and SWIR2.

Figure 8. The five samples from ASTER and LUMA-SLUM that are most similar to our class Grey
asphalt (black line) according to the modified SGA* measure.
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Here, we received a similar modified SGA* score for four different materials; Limestone, Ceramic,
Asphalt and Cement. Thus, as the measures give us similar values, it complicates the procedure to
compare and assign proper material labels to KLUM’s samples. This indicates different materials
have similar characteristic features in this spectral range. Thus, longer wavelengths should preferable
be use for material classification as it would be possible to determine the material with specific
surface coatings (e.g., paint). However, it is not always possible to excess such equipment and it is,
therefore, important that spectral libraries, which contain samples in this spectral range, should to be
handled with some awareness and consciousness for applications such as material classification and
label assignment.

4.3. Intra-Class Assessment

To evaluate the spectral intra-class similarity on both material class and subclass level, we
employed k -means and t-SNE. For each assessment, we evaluated it with and without PCA for the
different spectral ranges. To determine the intra-class similarity, the final assessment consisted of
determining the intra-class average standard deviation between each class and subclass.

By first analyzing the spectral similarity between the 12 generated clusters using k-means and
t-SNE, neither can completely distinguish and separate the classes in the same clustering formation as
KLUM. Figure 9 displays the k-means clusters for the different spectral ranges. The color displays the
percentage frequency distribution of the assigned material labels for the k-means clusters. It is apparent
that there are two clusters that contain samples from almost every class. Furthermore, it appears
that the spectral range of sensor SWIR2 can distinguish unique material clusters (the material classes
Plaster and Granite). This highlights that sensor SWIR2 spectral range does provide unique spectral
features. The spectral similarity between the classes is also supported by the t-SNE distribution, as
seen in Figure 10 that displays the distribution in the spectral range of sensor SWIR2 using PCA. Once
again, there are few clearly distinguishable clusters. On the contrary, most of the samples are clustered
together.

Figure 9. Visualization of k-means clustering and its distribution among the 12 material classes without
using PCA. X-axis represents our assigned material labels and y-axis the generated k-means clusters.
The color displays the distribution of the assigned material labels in the k-means clusters. Subfigure (a):
Full spectral range. Subfigure (b): The spectral range of sensors SWIR1 and SWIR2. Subfigure (c): The
spectral range of sensor SWIR2. It is here possible to observe that we do not have 12 distinguishable
material clusters since the k-mean clusters consist of samples from several classes. We can receive more
material specific clusters using the spectral range of sensor SWIR2.
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Figure 10. Visualization of the t-SNE distribution in the spectral range of sensor SWIR2 among the 12
material classes using PCA. The material classes are not easily distinguishable as we do not receive any
prominent clusters. There are a few smaller clusters within some of the classes, such as the small cluster
to the right (the material class Ceramic), which can indicate that there are distinguishable subclasses.

Secondly, by analyzing the spectral similarity between the 33 subclasses, it appears that the 33
generated k-means clusters could generate clusters more similar to KLUM’s subclass formation than the
12 main classes. The visualizations in Figure 11 display the 33 k-means clusters with and without PCA in
the spectral range of sensor SWIR2 and the color represents the percentage frequency distribution of the
assigned material labels in the k-means clusters, as in Figure 9. We can here observe that the subclasses
are more distinct as we receive several clusters representing only one subclass. By comparing the two
figures, it appears that there is not a significant difference between using PCA or not. We receive in both
cases some larger k-means clusters that include samples from several subclasses.

Figure 11. Visualization of k-means clustering and its distribution among the 33 material subclasses
with and without PCA in the spectral range of sensor SWIR2. The x-axis represents our assigned
material labels and the y-axis the generated k-means clusters. The color represents the distribution of the
assigned material labels in the k-means clusters. Subfigure (a): Without PCA. Subfigure (b): With PCA.

The final assessment that consisted of determining the intra-class and intra-subclass similarity
by using the average standard deviation can be seen in Figure 12. We can here observe that most
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classes and subclasses have similar spectral features since the spectral variation is, for most classes
and subclasses, less than 5%. The main classes Plaster and Wood appear to have the largest spectral
variation which is also observed in the corresponding subclasses. Bright plaster contains five samples
with various colors and the difference can be observed here (larger spectral variation). Varnished wood
on the other hand does only contain two samples and even if they do have similar spectral features,
the color difference is apparent. Overall, this assessment can conclude that the spectral features within
the classes and subclasses are similar.

Figure 12. Visualization of the average standard deviation in the full spectral range in percentage.
Subfigure (a): For each main class. Subfigure (b): For each subclass. The material classes Plaster, Ceramic
and Wood appear to have the largest spectral variation which can be observed in the corresponding
subclasses as well.

4.4. Discussion

The reference spectrum was for around 23% of the samples cut off. While analyzing the data,
we discovered that the most common reason for the signal clipping was due to the surrounding
environment being bright, e.g., the color of the material sample was white. The cause appears to be an
instrumental malfunction of FieldSpec. As the signal clipping appeared at different data ranges for the
three sensors, it is challenging to regulate this malfunction during acquisition. Signal clipping occurred
mostly in the spectral range of sensor SWIR2. Furthermore, the consecutively acquired samples that
were used for recalculating the reference spectra were often acquired at locations with surroundings
that were not similar enough as the original location and thus, only 26% of the recalculated reference
spectra were able to pass the quality assessment.

As we analyzed and clustered the material samples, it became clear that the material color
impacts the clustering outcome when we relied on the full spectral range. The material color impacts
the clustering since the spectral range of 350–1400 nm is covering about 48% of the total observed
wavelength. We decided therefore to ignore this spectral range and to rely more on the spectral range
of sensor SWIR2. This was also used when we compared and matched our material samples with the
spectral libraries ASTER and LUMA-SLUM. There are studies that suggest that it is more suitable to
work with the SWIR spectral range for material classification [30,46]. However, our analysis suggests
that it is more feasible to exclude the spectral range corresponding to sensor SWIR1.

For our dataset, we preferred the modified SGA* measure as it provided us with the most reliable
label assessments which we discovered while comparing KLUM’s spectra with spectra from ASTER
and LUMA-SLUM. The modified SGA* considers the spectral gradient which distinguishes positive
and negative derivatives, and thus, SGA* is suitable for identifying spectra with similar spectral
features. SA and SID focus on the other hand on the angular difference, which from our experience
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contribute with worse material labeling assignments since the angular difference does not differ
significantly for building materials consisting of similar composition (such as asphalt and concrete).
Therefore, spectral measures should be carefully chosen and base it on the type of hyperspectral data
that will be classified to suit the needs.

5. Conclusions

This work presents a spectral library of building materials with a focus on facade materials,
covering the VNIR-SWIR spectral range. The spectral library contains spectra from 181 samples
consisting of 12 clustered material classes and 33 clustered material subclasses that were collected
in situ in the southwestern German city of Karlsruhe. KLUM consists of 97 facade, 46 ground and
38 roof material samples. KLUM is, at the time of its publication, the publicly available spectral
library with the most facade material samples. The samples, their metadata (based on hierarchically
classification scheme), and photos are all available in the publicly available spectral library KLUM
(https://github.com/rebeccailehag/KLUM_library).

A processing flow for the acquired samples was developed which included intra-set solar
irradiance correction and recalculation of clipped reference spectrum. The material samples were
clustered using the spectral measures SA, SID and the modified version of SGA* to provide classes and
subclasses with more than one material sample. The material clusters were then labeled and compared
to samples from the spectral libraries LUMA-SLUM and ASTER, using the same measures in addition
to our expert knowledge and photos. However, as spectral libraries have not, until now, had a focus
on building facades there is an under-representation of facade samples.

Our spectral library is one of the first that has clustered material samples into subclasses with
different surface conditions (e.g., color and coating) and studied its impact. As discussed and seen
in some examples (e.g., Figures 5 and 7), the spectral characteristic features for one material can
differ significantly in this spectral range due to color or surface structure/texture/coating. Because
of the varied spectral reflectance, it can be challenging to classify the samples into the same material
class. Thus, we can conclude that spectral libraries with building materials should provide additional
metadata about the acquired samples to address this challenge properly. Additionally, this also implies
that this spectral range is limited for urban material classification while dealing with different material
colors and surface structure/texture/coating and longer wavelengths should be preferable.

Since urban materials are diverse and come in different colors and surface conditions, it is
not possible to cover the wide range of material samples in this spectral library. Furthermore, our
spectral library only covers commonly used building materials found in southern Germany (central
Europe) which is just a small fraction of all existing urban materials. Thus, more studies are needed
to comprehend the complex diversity of building materials. This could include studies with either
focus on how the characteristic features alter throughout a day depending on the solar angular or the
different features of one particular material and its various surface coatings and colors. Furthermore,
a study focusing on using the surface texture analysis (generated from a high-resolution photo) to
distinguish the material classes could be of interest since it is not always possible to have access to
hyperspectral data.
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Appendix A. Further Material Samples

The remaining nine material classes are here explained in further detail, using the same format as
in Section 4.1.

Appendix A.1. Asphalt

The material class Asphalt contains only the subclass Grey asphalt and consists of four samples. We
include Asphalt since it often exists in other spectral libraries with a focus on urban materials (such as
ASTER, LUMA-SLUM, and Santa Barbara). Thus, we could assess our method for material labeling (as
discussed in Section 4.2). The average spectrum can be seen in Figure A1a.

Figure A1. Visualization of the average subclass spectra of material classes; Asphalt (Subfigure (a)),
Brick (clay) (Subfigure (b)), Mortar (Subfigure (c)) and Granite (Subfigure (d)).

Appendix A.2. Brick (Clay)

The material class Brick (clay) consists of three subclasses with a total of 14 samples; Red brick,
Beige brick and Painted brick. The spectral reflectance differs between the three subclasses, as seen in
Figure A1b. We have some samples that is not covering the full spectral range due to either signal
clipping or noise, which can be seen for the subclass Beige brick.

Appendix A.3. Mortar

The material class Mortar consists of only one subclass, namely Grey mortar with three samples.
Mortar is used as a paste that can be used to fill and seal gaps between bricks. The average spectral
reflectance can be seen in Figure A1c. This material cannot be easily distinguished on a facade if the
distance is too far since it only fulfills the role as filler, but it may be a suitable input as endmember.

Appendix A.4. Granite

Granite consists of two subclasses that have been clustered from 16 samples; Biotite granite and
Muscovite granite. The average spectral reflectance can be seen in Figure A1d, where distinguishing
feature is noticeable in the spectral range of sensor SWIR2 due to the two subclasses consisting of two
types of Granite.
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Appendix A.5. Limestone

The average spectra of the two subclasses of the material class Limestone; White limestone and
Colored limestone, can be seen in Figure A2a. The material class Limestone consists of nine samples.
Here, the two subclasses of Limestone have rather unique characteristic features in the spectral range of
sensor SWIR2 which made the clustering and labeling an effortless task.

Figure A2. Visualization of the average subclass spectra of material classes; Limestone (Subfigure (a)),
Metal (Subfigure (b)), Plaster (Subfigure (c)) and Sandstone (Subfigure (d)).

Appendix A.6. Metal

The material class Metal is categorized into two subclasses; Paint-sprayed and Painted metal, and
consists of 10 samples. Here, it is possible to distinguish the two subclasses due to the different
surface coating, as seen in Figure A2b. As also seen for the subclass Painted concrete, we have the same
characteristic spectral feature, namely a decreased reflectance.

Appendix A.7. Plaster

12 samples could be clustered into three subclasses from the material class Plaster; Weathered bright
plaster, Colored plaster and Bright plaster. Plaster is a common material used for either protecting or
decorating the coating of walls and can consist of various binder agents (e.g., cement or lime). As seen
in Figure A2c, we can notice that the spectral features all are rather distinguishable in the spectral
range of SWIR2 sensor.

Appendix A.8. Sandstone

The average spectra for the three subclasses of the material class Sandstone can be seen in
Figure A2d; Red sandstone, Weathered sandstone and White sandstone. The surface texture does vary rather
significantly for the collected samples and most of the samples are weathered. This material class was
included in spectral libraries ASTER and LUMA-SLUM which made it easier for us to compare the
labeling assignments.

Appendix A.9. Conglomerate

We have here one subclass, namely Conglomerate, that consists of 11 samples (see Figure A3). Since
Conglomerate can vary by a higher degree due to the usage of different types of stones in addition
to different stone sediment ratios, the samples do not have one distinguished feature that can be
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exemplified throughout all samples. Here, we had to rely more on the photos we had taken since the
spectral features often resembled the material classes Asphalt and Concrete (due to the sediment).

Figure A3. Visualization of the average subclass spectrum of the main class Conglomerate.

Appendix B. KLUM Material Samples

The 181 material samples and their metadata that are included in the spectral library KLUM are
here presented in Tables A1, A2 and A3. There are 12 common urban materials and 33 subclasses.

Table A1. Metadata for the Karlsruhe Library of Urban Materials, first part.

Index Class Subclass Usage Color Surface Structure/Texture/Coating Status

A001 Asphalt Grey asphalt Ground Grey Fine roughness Weathered
A002 Asphalt Grey asphalt Ground Grey Fine roughness Weathered
A003 Asphalt Grey asphalt Ground Grey Fine roughness Weathered
A004 Asphalt Grey asphalt Ground Grey Fine roughness Weathered
B001 Brick (clay) Red brick Facade Red Fine roughness New
B002 Brick (clay) Red brick Facade Red Fine roughness New
B003 Brick (clay) Red brick Facade Red Fine roughness New
B004 Brick (clay) Red brick Ground Red Fine roughness Weathered
B005 Brick (clay) Red brick Facade Red Smooth New
B006 Brick (clay) Red brick Facade Red Bare; smooth New
B007 Brick (clay) Red brick Facade Red Bare; smooth New
B008 Brick (clay) Red brick Facade Red Bare; smooth New
B101 Brick (clay) Beige brick Facade Beige Smooth Weathered
B102 Brick (clay) Beige brick Facade Beige Smooth Weathered
B103 Brick (clay) Beige brick Facade Beige Smooth Weathered
B104 Brick (clay) Beige brick Facade Beige Fine roughness Weathered
B201 Brick (clay) Painted brick Facade Grey Fine roughness; painted Weathered
B202 Brick (clay) Painted brick Facade Beige Smooth; painted New
C001 Mortar Grey mortar Facade Grey Fine roughness New
C002 Mortar Grey mortar Facade Grey Fine roughness New
C003 Mortar Grey mortar Facade Grey Fine roughness New
D001 Ceramic Glazed ceramic (bricks) Facade Red Glazed; smooth; reflective New
D002 Ceramic Glazed ceramic (bricks) Facade Red Glazed; smooth; reflective New
D003 Ceramic Glazed ceramic (bricks) Facade Red Glazed; smooth; reflective New
D004 Ceramic Glazed ceramic (bricks) Facade Red Glazed; smooth; reflective Weathered
D101 Ceramic Dark reflective ceramic Facade Black Smooth; reflective New
D102 Ceramic Dark reflective ceramic Facade Black Smooth; reflective New
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Table A1. Cont.

Index Class Subclass Usage Color Surface Structure/Texture/Coating Status

D103 Ceramic Dark reflective ceramic Roof Grey Smooth; reflective New
D104 Ceramic Dark reflective ceramic Roof Grey Smooth; reflective New
D105 Ceramic Dark reflective ceramic Roof Grey Smooth; reflective New
D201 Ceramic Glazed ceramic (roof tiles) Roof Red Glazed; smooth; reflective New
D202 Ceramic Glazed ceramic (roof tiles) Roof Red Glazed; smooth; reflective New
D203 Ceramic Glazed ceramic (roof tiles) Roof Red Glazed; smooth; reflective New
D204 Ceramic Glazed ceramic (roof tiles) Roof Red Glazed; smooth; reflective New
D205 Ceramic Glazed ceramic (roof tiles) Roof Red Glazed; smooth; reflective New
D206 Ceramic Glazed ceramic (roof tiles) Roof Red Glazed; smooth; reflective New
D207 Ceramic Glazed ceramic (roof tiles) Roof Brown Glazed; smooth; reflective New
D208 Ceramic Glazed ceramic (roof tiles) Roof Red Glazed; smooth; reflective New
D209 Ceramic Glazed ceramic (roof tiles) Roof Red Glazed; smooth; reflective New
D210 Ceramic Glazed ceramic (roof tiles) Roof Red Glazed; smooth; reflective New
D211 Ceramic Glazed ceramic (roof tiles) Roof Red Glazed; smooth; reflective New
D212 Ceramic Glazed ceramic (roof tiles) Roof Beige Glazed; smooth; reflective New
D301 Ceramic Red matte ceramic Roof Red Smooth; matte New
D302 Ceramic Red matte ceramic Roof Red Smooth; matte New
D303 Ceramic Red matte ceramic Roof Red Smooth; matte New
D304 Ceramic Red matte ceramic Roof Red Smooth; matte New
D305 Ceramic Red matte ceramic Roof Red Smooth; matte New
D306 Ceramic Red matte ceramic Roof Red Fine roughness; matte New
D307 Ceramic Red matte ceramic Roof Red Fine roughness; matte New
D308 Ceramic Red matte ceramic Roof Red Fine roughness; matte New
D401 Ceramic Dark matte ceramic Ground Grey Smooth; matte New
D402 Ceramic Dark matte ceramic Roof Black Smooth; matte New
D403 Ceramic Dark matte ceramic Roof Black Fine roughness; matte New
D404 Ceramic Dark matte ceramic Roof Grey Fine roughness; matte New
D405 Ceramic Dark matte ceramic Roof Grey Fine roughness; matte New
D406 Ceramic Dark matte ceramic Roof Brown Fine roughness; matte New
D407 Ceramic Dark matte ceramic Roof Brown Fine roughness; matte New
D501 Ceramic Black glazed ceramic Roof Black Glazed; smooth New
D502 Ceramic Black glazed ceramic Roof Black Glazed; smooth; reflective New
D503 Ceramic Black glazed ceramic Roof Black Glazed; smooth; reflective New
D504 Ceramic Black glazed ceramic Roof Black Glazed; smooth; reflective New
D601 Ceramic Grey ceramic Facade Grey Uneven New
D602 Ceramic Grey ceramic Roof Grey Smooth; reflective New
D603 Ceramic Grey ceramic Roof Grey Smooth; reflective New
D604 Ceramic Grey ceramic Roof Grey Smooth; reflective New
D605 Ceramic Grey ceramic Ground Grey Smooth Weathered
E001 Concrete Bright concrete (ground bricks) Ground Grey Fine roughness Weathered
E002 Concrete Bright concrete (ground bricks) Ground Brown Fine roughness Weathered
E003 Concrete Bright concrete (ground bricks) Ground Grey Fine roughness Weathered
E004 Concrete Bright concrete (ground bricks) Ground Grey Fine roughness Weathered
E005 Concrete Bright concrete (ground bricks) Ground Brown Fine roughness Weathered
E006 Concrete Bright concrete (ground bricks) Ground Grey Fine roughness; cracked Weathered
E007 Concrete Bright concrete (ground bricks) Ground Brown Mossy; smooth Weathered

Table A2. Metadata for the Karlsruhe Library of Urban Materials, second part.

Index Material Subclass Usage Color Surface Structure/Texture/Coating Status

E101 Concrete Grey concrete (blocks) Ground Grey Bare; porous New
E102 Concrete Grey concrete (blocks) Ground Grey Bare; porous New
E103 Concrete Grey concrete (blocks) Ground Grey Bare; porous New
E104 Concrete Grey concrete (blocks) Ground Grey Bare; porous New
E105 Concrete Grey concrete (blocks) Ground Grey Smooth; uneven New
E201 Concrete Weathered porous concrete Facade Grey Porous; uneven Weathered
E202 Concrete Weathered porous concrete Facade Grey Porous; uneven Weathered
E203 Concrete Weathered porous concrete Facade Beige Fine roughness; porous Weathered
E204 Concrete Weathered porous concrete Facade Grey Burnt; porous; uneven Weathered
E301 Concrete Bright concrete Facade Grey Bare; porous Weathered
E302 Concrete Bright concrete Facade Grey Bare; porous Weathered
E303 Concrete Bright concrete Facade Beige Bare; porous Weathered
E304 Concrete Bright concrete Ground Grey Fine roughness; uneven New
E305 Concrete Bright concrete Ground Grey Fine roughness; uneven New
E401 Concrete Grey concrete Ground Grey Fine roughness Weathered
E402 Concrete Grey concrete Facade Grey Fine roughness; porous Weathered
E403 Concrete Grey concrete Facade Grey Bare; smooth Weathered
E404 Concrete Grey concrete Ground Grey Bare; fine roughness Weathered
E405 Concrete Grey concrete Ground Grey Bare; porous New
E406 Concrete Grey concrete Ground Grey Bare; porous New
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Table A2. Cont.

Index Material Subclass Usage Color Surface structure/texture/coating Status

E407 Concrete Grey concrete Ground Grey Bare; porous New
E408 Concrete Grey concrete Ground Grey Smooth New
E409 Concrete Grey concrete Ground Grey Fine roughness New
E501 Concrete Painted concrete Facade Grey Painted; fine roughness Weathered
E502 Concrete Painted concrete Facade White Painted; fine roughness Weathered
E503 Concrete Painted concrete Facade Grey Painted; smooth Weathered
E504 Concrete Painted concrete Facade Grey Painted; popcorn New
E505 Concrete Painted concrete Facade Grey Painted; smooth New
E506 Concrete Painted concrete Facade Blue Painted; popcorn New
E507 Concrete Painted concrete Facade Grey Painted; popcorn New
E508 Concrete Painted concrete Facade White Painted; smooth Weathered
F001 Granite Biotite granite Facade Blue Glazed; smooth; reflective New
F002 Granite Biotite granite Ground Brown Glazed; smooth New
F003 Granite Biotite granite Facade Grey Smooth Weathered
F004 Granite Biotite granite Facade Grey Fine roughness Weathered
F005 Granite Biotite granite Facade Red Glazed; smooth; reflective New
F006 Granite Biotite granite Facade Grey Glazed; smooth New
F007 Granite Biotite granite Ground Red Glazed; smooth; reflective Weathered
F008 Granite Biotite granite Facade Grey Smooth New
F101 Granite Muscovite granite Facade Grey Glazed; reflective; smooth Weathered
F102 Granite Muscovite granite Facade Red Glazed; reflective; smooth New
F103 Granite Muscovite granite Facade Red Glazed; smooth Weathered
F104 Granite Muscovite granite Ground Red Smooth Weathered
F105 Granite Muscovite granite Ground Red Glazed; smooth Weathered
F106 Granite Muscovite granite Facade Grey Fine roughness; uneven Weathered
F107 Granite Muscovite granite Facade Red Glazed; smooth New
F108 Granite Muscovite granite Ground Grey Uneven Weathered
G001 Limestone White limestone Facade White Uneven Weathered
G002 Limestone White limestone Ground White Smooth Weathered
G003 Limestone White limestone Ground White Smooth Weathered
G004 Limestone White limestone Ground White Smooth Weathered
G101 Limestone Colored limestone Ground Red Fine roughness Weathered
G102 Limestone Colored limestone Ground Red Fine roughness Weathered
G103 Limestone Colored limestone Ground Red Fine roughness Weathered
G104 Limestone Colored limestone Ground Grey Smooth New
G105 Limestone Colored limestone Ground Grey Smooth New
H001 Metal Paint-sprayed metal Facade Black Paint-sprayed; smooth; reflective New
H002 Metal Paint-sprayed metal Facade Grey Paint-sprayed; reflective; uneven New
H003 Metal Paint-sprayed metal Facade Grey Paint-sprayed; reflective; fine roughness New
H004 Metal Paint-sprayed metal Facade Grey Paint-sprayed; smooth; reflective Weathered
H005 Metal Paint-sprayed metal Facade Grey Paint-sprayed; smooth; reflective Weathered
H006 Metal Paint-sprayed metal Roof Grey Paint-sprayed; smooth; reflective New
H007 Metal Paint-sprayed metal Roof Red Paint-sprayed; smooth; reflective New
H101 Metal Painted metal Facade Blue Painted; smooth Weathered
H102 Metal Painted metal Facade Green Painted; smooth Weathered
H103 Metal Painted metal Facade Blue Painted; corrugated; fine roughness Weathered
I001 Plaster Weathered bright plaster Facade White Fine roughness Weathered
I002 Plaster Weathered bright plaster Facade White Popcorn Weathered
I003 Plaster Weathered bright plaster Facade Grey Fine roughness Weathered
I101 Plaster Colored plaster Facade Pink Smooth Weathered
I102 Plaster Colored plaster Facade Green Smooth Weathered
I103 Plaster Colored plaster Facade Red Smooth Weathered
I104 Plaster Colored plaster Facade White Fine roughness Weathered

Table A3. Metadata for the Karlsruhe Library of Urban Materials, third part.

Index Material Subclass Usage Color Surface structure/texture/coating Status

I201 Plaster Bright plaster Facade White Fine roughness New
I202 Plaster Bright plaster Facade Yellow Popcorn New
I203 Plaster Bright plaster Facade Beige Corrugated; uneven New
I204 Plaster Bright plaster Facade Beige Smooth Weathered
I205 Plaster Bright plaster Facade White Smooth Weathered
J001 Sandstone Red sandstone Facade Red Fine roughness New
J002 Sandstone Red sandstone Facade Red Uneven Weathered
J003 Sandstone Red sandstone Facade Red Uneven Weathered
J004 Sandstone Red sandstone Facade Red Fine roughness Weathered
J101 Sandstone Weathered sandstone Facade Red Natural; uneven Weathered
J102 Sandstone Weathered sandstone Facade Red Natural; uneven Weathered
J103 Sandstone Weathered sandstone Facade Red Uneven Weathered
J104 Sandstone Weathered sandstone Facade Red Natural; smooth Weathered
J105 Sandstone Weathered sandstone Facade Red Natural; uneven Weathered
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Table A3. Cont.

Index Material Subclass Usage Color Surface structure/texture/coating Status

J106 Sandstone Weathered sandstone Facade Yellow Fine roughness Weathered
J201 Sandstone Beige sandstone Facade Beige Smooth New
J202 Sandstone Beige sandstone Facade Beige Smooth New
K001 Conglomerate Conglomerate Ground Brown Bare; fine roughness Weathered
K002 Conglomerate Conglomerate Facade Grey Uneven Weathered
K003 Conglomerate Conglomerate Facade Grey Uneven Weathered
K004 Conglomerate Conglomerate Facade Grey Uneven Weathered
K005 Conglomerate Conglomerate Facade Grey Bare; uneven Weathered
K006 Conglomerate Conglomerate Ground Brown Uneven Weathered
K007 Conglomerate Conglomerate Ground Brown Uneven Weathered
K008 Conglomerate Conglomerate Ground Brown Bare; uneven Weathered
K009 Conglomerate Conglomerate Facade Brown Smooth Weathered
K010 Conglomerate Conglomerate Facade Brown Uneven Weathered
K011 Conglomerate Conglomerate Ground Brown Fine roughness Weathered
L001 Wood Varnished wood Facade Brown Varnished; smooth Weathered
L002 Wood Varnished wood Facade Brown Varnished; smooth New
L101 Wood Painted wood Facade White Painted; smooth New
L102 Wood Painted wood Facade Green Painted; smooth Weathered
L103 Wood Painted wood Facade White Painted; smooth Weathered
L104 Wood Painted wood Facade Green Painted; smooth New
L105 Wood Painted wood Facade Blue Painted; smooth Weathered
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