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Abstract: A hyperspectral image (HSI) contains a great number of spectral bands for each pixel,
which will limit the conventional image classification methods to distinguish land-cover types
of each pixel. Dimensionality reduction is an effective way to improve the performance of
classification. Linear discriminant analysis (LDA) is a popular dimensionality reduction method
for HSI classification, which assumes all the samples obey the same distribution. However,
different samples may have different contributions in the computation of scatter matrices. To address
the problem of feature redundancy, a new supervised HSI classification method based on locally
weighted discriminant analysis (LWDA) is presented. The proposed LWDA method constructs a
weighted discriminant scatter matrix model and an optimal projection matrix model for each training
sample, which is on the basis of discriminant information and spatial-spectral information. For each
test sample, LWDA searches its nearest training sample with spatial information and then uses
the corresponding projection matrix to project the test sample and all the training samples into a
low-dimensional feature space. LWDA can effectively preserve the spatial-spectral local structures
of the original HSI data and improve the discriminating power of the projected data for the final
classification. Experimental results on two real-world HSI datasets show the effectiveness of the
proposed LWDA method compared with some state-of-the-art algorithms. Especially when the data
partition factor is small, i.e., 0.05, the overall accuracy obtained by LWDA increases by about 20% for
Indian Pines and 17% for Kennedy Space Center (KSC) in comparison with the results obtained when
directly using the original high-dimensional data.

Keywords: hyperspectral image (HSI) classification; linear discriminant analysis (LDA); dimensionality
reduction; spatial-spectral information

1. Introduction

A hyperspectral image (HSI) is captured by an image spectrometer with hundreds of spectral
bands for each image pixel, which often plays an important role in the fields of urban planning,
precision agriculture, and land-cover classification [1–5]. Generally, the spectral bands of each pixel are
considered to be the features with high dimensionality. The high dimensionality of the original HSI data
significantly leads to feature redundancy problem and increases the computational complexity [6,7].
To overcome these drawbacks, it is critical to perform dimensionality reduction, which is designed to
project the original high-dimensional data into a low-dimensional feature subspace while preserving
some desirable information.

The existing dimensionality reduction approaches can be classified into two categories: feature
selection [8–11] and feature extraction. The focus of this paper is feature extraction, which is designed
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to construct a low-dimensional embedding subspace and then create meaningful information by the
projection of the original high-dimensional data. Then, the existing traditional classification methods
(e.g., support vector machine classifier) can be directly applied to the projected data. Therefore, the
HSI classification of low-dimensional data is conducive to avoiding feature redundancy and the
Hughes phenomenon [12] and to reducing the computational complexity. Consequently, lots of feature
extraction approaches have been presented [6,13–20]. Popular feature extraction methods include
principal component analysis (PCA) [21], linear discriminant analysis (LDA) [22], locality preserving
projection (LPP) [23], and modified locality preserving projection (MLPP) [24]. Compared with PCA
and LPP, LDA can learn a linear transformation by simultaneously minimizing the intraclass distances
and maximizing the interclass discrepancy. However, when directly applying LDA to process HSI data,
it still faces several problems [25]: (1) when the dimensionality of data exceeds the size of training
samples, LDA suffers from an ill-posed problem; (2) when the reduced dimensionality is less than the
number of classes, LDA has an over-reducing problem; (3) LDA neglects the spatial information in the
discriminant analysis; (4) LDA assumes that all the samples obey the Gaussian distribution, which is
difficult for constructing the local classification boundary.

Recently, there have been many variants of LDA that try to improve the classification performance
using some constraints, such as regularized local discriminant embedding (RLDE) [26], local geometric
structure Fisher analysis (LGSFA) [18], and locality adaptive discriminant analysis (LADA) [27].
RLDE employs a regularized discriminant model to preserve the local structure of the HSI data. LGSFA
retains the local structure among the within-class and between-class samples during the analysis
process. LADA constructs a scatter matrix for each pixel with its small neighborhood, which is
considered a regularization term. The above approaches can alleviate the ill-posed and over-reducing
problems of the original LDA method. However, they only represent the local structure relationship of
the HSI data as one-to-one. Moreover, the preservation of local structure still remains an open issue.
Some new methods have been developed on the basis of graph learning. Ly et al. [28] used graph
learning to construct scatter matrices, and then they conducted a discriminant analysis. Li et al. [29]
proposed a two-stage framework to learn the data graph in the low-dimensional feature subspace.
However, the above methods only consider the spectral information of the HSI data, which cannot
accurately determine the local classification boundary.

To effectively exploit the spectral information and spatial information of the high-dimensional
HSI data, a locally weighted discriminant analysis (LWDA)-based dimensionality reduction method is
proposed for HSI classification in this paper. In order to apply the spatial information to the projection
process, the proposed method learns the data structures adaptively during the transformation of subspace
projection. Furthermore, to guarantee the spatial consistency of land cover, samples within a small
neighborhood in the embedding space should be similar, which is considered a regularized constraint
term during the optimization. The main contributions of this paper can be summarized as follows:

(1) A weighted scatter matrix model is proposed by exploiting the label information and spectral
information of the samples, which is able to reduce the effect of the image difference of the
HSI data.

(2) The proposed method considers the spatial consistency and the similarity relationship among
the samples in a small spatial neighborhood, which is able to describe the local structure of
the samples.

(3) An optimization function is constructed on the basis of the spatial-spectral information and
label information, which is able to preserve the within-class characteristics and suppress the
between-class properties in the embedding feature subspace.

The remainder of this paper is organized as follows. Section 2 briefly introduces some related
works, including the original LDA and MFA approaches. Section 3 provides our proposed method
in detail. In Section 4.2, experimental results are presented to demonstrate the effectiveness of the
proposed method compared with several state-of-the-art dimensionality reduction algorithms. Finally,
a conclusion of this work is provided in Section 5.
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2. Related Works

Let XXX = [xxx1, xxx2, · · · , xxxn] ∈ Rd×n be the original HSI data, where d is the number of spectral bands
for each image pixel, i.e., the data dimensionality of the HSI data, and n represents the number of
the image pixels considered as samples. The label information of the ith pixel is denoted as `(xxxi),
which belongs to {1, 2, · · · , c}, and c is the number of classes. The goal of dimensionality reduction
is to construct a projection matrix PPP ∈ Rd×m, where m is the reduced dimensionality of the projected
data. For the linear mapping function, the projected data is indicted as YYY = PPPTXXX. Generally, the value
of m is considerably smaller than d.

2.1. Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a supervised method and able to compact the within-class
samples and separate the between-class samples. It defines a between-class scatter matrix SSSb and a
within-class scatter matrix SSSw as follows:

SSSb =
c

∑
k=1

nk (uuuk − ūuu) (uuuk − ūuu)T , (1)

SSSw =
c

∑
k=1

nk

∑
i=1

(
xxxi

k − uuuk

) (
xxxi

k − uuuk

)T
, (2)

where nk is the number of the kth class, and xxxi
k is the ith sample from the kth class. uuuk is the mean

of the kth class, computed by uuuk = ∑nk
i=1 xxxi

k/nk. Similarly, ūuu is the mean of all the samples, i.e.,
ūuu = ∑c

k=1 ∑nk
i=1 xxxi

k/ ∑c
k=1 nk. In addition, T represents the transpose operation.

With the above definitions, LDA tries to learn the linear transformation matrix PPP by maximizing
the ratio of the between-class scatter and the within-class scatter. The projection matrix can be obtained
by the following optimization function [22]:

max
PPP

tr
(

PPPTSSSbPPP
PPPTSSSwPPP

)
, (3)

where tr(·) represents the trace operator. The optimal projection matrix PPP? can be obtained by
analytically solving the generalized eigenvalue decomposition and then choosing the m eigenvectors
that correspond to the m largest eigenvalues. Then, the m-dimensional projected data can be computed
by YYY = (PPP?)T XXX.

Equations (1) and (2) reveal that the between-class scatter matrix is easily reflected by the
subtraction of the total mean. Moreover, it is unable to capture the local manifold structure of
the HSI data. Due to the two drawbacks, it is difficult for LDA to achieve satisfactory performance in
real-world HSI applications.

2.2. Marginal Fisher Analysis

Marginal Fisher analysis (MFA) is a supervised graph learning method, which constructs an
inherent graph and a penalty graph [18]. The inherent graph tries to obtain certain geometrical
information of the input dataset, while the penalty graph reveals the unwanted properties of the
inputs. MFA designs two weight matrices. Let WWW = {wij}n

i,j=1 and WWWp = {wp
ij}

n
i,j=1 be the similarity

matrix and the penalty matrix. wij represents the similarity relationship between the two data points
xxxi and xxxj, which are from the same class. On the other hand, wp

ij describes the similarity characteristic

between xxxi and xxxj that are from different classes. The mathematical descriptions of wij and wp
ij are

defined as follows:
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wi,j =


1, i f

(
xxxi ∈ N1(xxxj) or xxxj ∈ N1(xxxi)

)
and `(xxxi) = `(xxxj),

0, otherwise.
(4)

wp
i,j =


1, i f

(
xxxi ∈ N2(xxxj) or xxxj ∈ N2(xxxi)

)
and `(xxxi) 6= `(xxxj),

0, otherwise.
(5)

where N1(xxxi) and N1(xxxj) represent the k1 nearest neighbors of data points xxxi and xxxj that are from the
same class, and N2(xxxi) and N2(xxxj) represent the k2 nearest neighbors of data points xxxi and xxxj that are
from different classes, respectively.

With the definition of the two weight matrices, the optimization function of MFA is designed to
obtain a projection matrix PPP as follows:

min
PPP

∑n
i=1 ∑n

j=1
∥∥PPPT(xxxi − xxxj)

∥∥2
2 wij

∑n
i=1 ∑n

j=1
∥∥PPPT(xxxi − xxxj)

∥∥2
2 wp

ij

, (6)

⇒ min
PPP

tr
(

PPPTXXXLLLXXXTPPP
PPPTXXXLLLpXXXTPPP

)
, (7)

where LLL and LLLp are the Laplacian matrices, which are defined as LLL = DDD−WWW, DDD = diag({∑n
j=1 wij}n

i=1),

and LLLp = DDDp −WWWp, DDDp = diag({∑n
j=1 wp

ij}
n
i=1). diag(·) represents the matrix diagonal element

extraction operation.
Equation (7) can be solved analytically through the generalized eigenvalue decomposition

of XXXLLLXXXT and XXXLLLpXXXT . Then, the optimal projection matrix PPP? is formed by the m eigenvectors
corresponding to the m smallest eigenvalues.

MFA tries to enhance the compactness of the data points from the same class and to improve the
separability of the data points from different classes in the embedding feature subspace. However,
the similarity relationship between two data points in a small neighborhood is simplified as 1,
which will limit it to learn a certain local manifold structure of the HSI data.

3. Proposed Method

To take advantage of the discriminant information and the spatial-spectral information of the
input HSI data, a new supervised dimensionality reduction method, named locally weighted discriminant
analysis (LWDA), is presented for HSI classification. LWDA constructs a weighted scatter matrix model
on the basis of the within-class and between-class scatter matrices of the traditional LDA method.
The weighted scatter matrix model defines a weighted within-class scatter matrix and a weighted
between-class scatter matrix to improve the discriminating power. Furthermore, LWDA preserves
the spatial consistency among the samples in a small spatial neighborhood. To construct the optimal
low-dimensional feature subspace, the proposed method obtains the corresponding projection matrix
by compacting the nature of the weighted within-class scatter matrix and the spatial consistency, and
suppressing the property of the weighted between-class scatter matrix.

The flowchart of the proposed method is shown in Figure 1, where the high-dimensional HSI data
are projected onto a two-dimensional subspace for visualization. Taking the classification process of the
Indian Pines dataset as an example, the steps of the proposed algorithm can be summarized as follows:
(1) on the basis of the training samples and the corresponding training labels, the weighted within-
and between-class scatter matrices are computed; (2) with the help of the training and test samples,
the spatial consistency matrix for each training sample can be computed; (3) with the foregoing
weighted scatter matrices and spatial consistency matrix, the optimal projection matrix corresponding
to each training sample is obtained; (4) for each test sample, the spatially closest training sample’s
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projection matrix can be obtained, which is used to construct the embedding features; (5) the class
estimation of each test sample is obtained by a certain classifier with the training labels and the
embedding features.

Figure 1. Flowchart of the proposed LWDA method. With a partition factor τ, the training and test
sample set (shown in two-dimensional space), as well as the training label set, are obtained. Then,
the dataset is used to construct the weighted scatter matrix model, spatial consistency matrix, and
optimal projection matrix for each training sample. The next step is to find the spatially nearest training
sample’s projection matrix, which is applied to construct the embedding features of training samples
and input test sample. Once all the predicted test labels are obtained, the classification map (including
the training labels), is generated by exploiting a fixed classifier.

3.1. Weighted Scatter Matrix Model

LDA assumes all the samples possess the same contribution, i.e., the Gaussian distribution.
In LDA, the within-class scatter matrix only considers the data variances of the within-class samples,
while the between-class scatter matrix just considers the data variance between the mean of each
individual class and the total mean. However, different within-class samples should have different
contribution rates in the within-class scatter matrix. Moreover, the properties of any two different
individual class means may be different in the between-class scatter matrix. To better represent the
similarity characteristic of the within-class samples and different individual class means, the proposed
method constructs two weighted scatter matrices, i.e., the weighted within-class scatter matrix and the
weighted between-class scatter matrix, which are defined as follows:

S̃SSw =
c

∑
k=1

nk

∑
i=1

nk

∑
j=1

(
xxxi

k − uuuk

)
gk

i,j

(
xxxj

k − uuuk

)T
, (8)

S̃SSb =
c

∑
i=1

c

∑
j=1

ni
(
uuui − uuuj

)
hi,j
(
uuui − uuuj

)T , (9)

where gk
i,j is the similarity weight between the samples xxxi

k and xxxj
k, and hi,j is the similarity weight

between the one-class means uuui and uuuj. The similarity weights are represented as

gk
i,j = exp

−
∥∥∥xxxi

k − xxxj
k

∥∥∥2

2
(
ρi

k
)2

+ ε

 , (10)
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hi,j = exp

(
−
∥∥uuui − uuuj

∥∥2

2σ2
i + ε

)
, (11)

where ρi
k = ∑nk

j=1

∥∥∥xxxi
k − xxxj

k

∥∥∥ /nk, σi = ∑c
j=1
∥∥uuui − uuuj

∥∥ /c, and ε is a small value for avoiding zero in
the denominator.

Similar to LDA, the optimization function is designed to improve the aggregation of the
within-class samples and enhance the diversity of the between-class samples in a low-dimensional
feature subspace. So, the optimal projection matrix can be obtained by the following formula:

min
PPP

tr

(
PPPTS̃SSwPPP
PPPTS̃SSbPPP

)
. (12)

Supposing the minimum value of the above function is α, the optimal PPP should make the value of
tr
(

PPPTS̃SSwPPP
)
− αtr

(
PPPTS̃SSbPPP

)
close to 0. Thus, Equation (12) is equivalent to

min
PPP

tr
(

PPPTS̃SSwPPP
)
− αtr

(
PPPTS̃SSbPPP

)
. (13)

3.2. Spatial Consistency Matrix

For real-world HSI data, the data points within a small spatial region are often highly correlated
and are classified as the same class [25]. Hence, spatial consistency is essential for an accurate
classification. Given a data point xxxi ∈ Rd×1(i = 1, · · · , n), the spatial surroundings are found within a
search region with a size of r× r, where r must be odd. Therefore, the r2 − 1 neighbors are selected for
each sample, which are denoted as ZZZi =

[
zzz1

i , zzz2
i , · · · , zzzr2−1

i

]
and zzzj

i ∈ XXX(j = 1, · · · , r2− 1). For different
samples xxxi and xxxj, the subsets ZZZi and ZZZj may partially overlap. In a desired feature subspace, these
neighbors are encouraged to be close to each other. The problem of spatial consistency can be defined as

min
PPP

r2−1

∑
j,k=1

∥∥∥PPPT
(

zzzj
i − zzzk

i

)∥∥∥2

2
, ∀ xxxi, i = 1, 2, · · · , n. (14)

The spatial consistency matrix is defined as

S̃SSz =
r2−1

∑
j,k=1

(
zzzj

i − zzzk
i

) (
zzzj

i − zzzk
i

)T
. (15)

Then, Equation (14) can be further reduced to

min
PPP

tr
(

PPPTS̃SSzPPP
)

. (16)

3.3. Optimization Algorithm

Integrating Equations (13) and (16) together, the objective function of the proposed LWDA method
is summarized as

min
PPPi

tr
(

PPPT
i S̃SSwPPPi

)
− αtr

(
PPPT

i S̃SSbPPPi

)
+ βtr

(
PPPT

i S̃SSzPPPi

)
, (17)

⇒ min
PPPi

tr
(

PPPT
i

(
S̃SSw − αS̃SSb + βS̃SSz

)
PPPi

)
, (18)

where α and β are parameters, and PPPi is the desired projection matrix for the sample xxxi (i = 1, 2, · · · , n).
With the proposed objective function, the spatial consistency between the data points is captured,
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and the local data relationship is also investigated during the discriminant analysis. The optimal PPPi for
Equation (18) can be obtained by the m (m� d) eigenvectors of the critical matrix

(
S̃SSw − αS̃SSb + βS̃SSz

)
corresponding to the m smallest eigenvalues.

With a certain dataset partition factor τ (0 < τ < 1), the input HSI dataset can be divided into
the training subset XXXs and the test subset XXXt. That is to say, for the kth class, the number of the
randomly selected samples for the training subset is ns,k = dnk ∗ τe, while the number of the samples
chosen for the test subset is nt,k = nk − ns,k, where nk is the total number of samples belonging to
the kth class. For simplicity, the training and test subsets are denoted as XXXs =

[
xxx1

s , xxx2
s , · · · , xxxns

s
]

and
XXXt =

[
xxx1

t , xxx2
t , · · · , xxxnt

t
]
. The label information of the training subset is marked as YYYs =

[
y1

s , y2
s , · · · , yns

s
]
,

where yi
s ∈ [1, 2, · · · , c], i = 1, 2, · · · , ns. The details of the whole framework are described in

Algorithm 1.

Algorithm 1: Locally weighted discriminant analysis (LWDA).
Input: Training dataset XXXs, training class information set YYYs, test dataset XXXt, parameters α and

β, dimensionality of desired projection matrix m.
Output: Estimate the test class information set YYYt.
Training:

1. Compute the weighted within-class scatter matrix S̃SSw according to Equation (8);
2. Compute the weighted between-class scatter matrix S̃SSb according to Equation (9);

for i = 1, 2, · · · , ns do

3. Construct the neighbor set ZZZi and then compute the spatial consistency matrix S̃SSz

according to Equation (15);
4. Compute the total matrix S̃SS = S̃SSw − αS̃SSb + βS̃SSz;
5. Obtain the optimal projection matrix PPPi by choosing the m eigenvectors of S̃SS

corresponding to the m smallest eigenvalues; then, set i = i + 1;

end
Testing:
for i = 1, 2, · · · , nt do

6. For each test sample xxxi
t, find the spatially nearest training sample xi?

s and the
corresponding optimal projection matrix, denoted as P̃PPi = PPPi? , where i? = 1, · · · , ns;

7. Low-dimensional embedding features are computed as XXXs,m = P̃PP
T
i XXXs, and

xxxi
t,m = P̃PP

T
i xxxi

t.
8. Using the nearest-neighbor classifier, find the serial number of the nearest training

sample in the low-dimensional feature subspace, computed as

j? = arg minj

∥∥∥xxxi
t,m − xxxj

s,m

∥∥∥2

2
, where j = 1, · · · , ns;

9. Obtain the corresponding class information, i.e., yi
t = yj?

s ; then, set i = i + 1.

end

4. Experimental Results

4.1. Experimental Setting

In the experiments, two real-world hyperspectral image datasets were employed, i.e., Indian Pines
and Kennedy Space Center (KSC) datasets [30]. The Indian Pines dataset contains 10,249 data points
from 16 classes. Each data point (pixel) has 200 spectral bands. The KSC dataset annotates 5211 valid
pixels (excluding the background pixels with the class information of 0) from 13 classes. Each pixel has
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176 spectral bands. The two HSI datasets were both captured by an Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) sensor. Table 1 shows various land-cover types and the corresponding number
of samples for the two aforementioned HSI datasets.

Table 1. Number of total, training, and test samples, with a partition factor τ = 0.05 of each land-cover
class for the Indian Pines and Kennedy Space Center (KSC) datasets.

Indian Pines KSC

Class No. Land Cover Samples Training Test Class No. Land Cover Samples Training Test

1 Alfalfa 46 3 43 1 Scurb 761 39 722
2 Corn-notill 1428 72 1356 2 Willow-swamp 243 13 230
3 Corn-mintill 830 42 788 3 Cabbage-palm-hammock 256 13 243
4 Corn 237 12 225 4 Cabbage-palm/oak-hammock 252 13 239
5 Grass-pasture 483 25 458 5 Slash-pine 161 9 152
6 Grass-tree 730 37 693 6 Oak/broadleaf-hammock 229 12 217
7 Grass-pasture-mowed 28 2 26 7 Hardwood-swamp 105 6 99
8 Hay-windrowed 478 24 454 8 Graminoid-marsh 431 22 409
9 Oats 20 1 19 9 Spartina-marsh 520 26 494
10 Soybeans-notill 972 49 923 10 Cattail-marsh 404 21 383
11 Soybeans-mintill 2455 123 2332 11 Salt-marsh 419 21 398
12 Soybeans-clean 593 30 563 12 Mud-flats 503 26 477
13 Wheat 205 11 194 13 Water 927 47 880
14 Woods 1265 64 1201
15 Bldg-grass-tree-drives 386 20 366
16 Stone-steel-towers 93 5 88

To investigate the classification performance, each dataset was randomly divided into the training
and test samples with a data partition factor τ. For instance, the total number of samples for the
“Corn-notill” land-cover type is 1428, shown in Table 1. Setting τ to 0.05, the number of samples chosen
for training is d1428× 0.05e = 72, while the remaining 1356 samples were used for testing.

For a quantitative comparison, seven dimensionality reduction algorithms were taken as
competitors, including the original raw spectral feature (RAW), principal component analysis
(PCA) [21], linear discriminant analysis (LDA) [22], discrimination-information-based locality
preserving projection (DLPP) [24], marginal Fisher analysis (MFA) and local geometric structure
Fisher analysis (LGSFA) [18], two-stage subspace projection (TwoSP) [29], as well as discriminant
analysis with graph learning (DAGL) [25]. In LWDA, the value of parameter α is set to 10−3.

According to different dimensionality reduction algorithms, the projection matrix can be obtained
to achieve the low-dimensional embedding features of training and test samples. After that, a certain
classifier, e.g., nearest neighbor (NN) and support vector machine (SVM) [31], is exploited to
discriminate the land-cover types of the test samples with the help of the class information of training
samples. In this study, three widely used classification measurements, i.e., average classification
accuracy of all the classes (AA), overall classification accuracy (OA), and kappa coefficient (KC),
were used to evaluate the objective results of each method. To alleviate the random error caused by
the partition of training and test samples, each experiment was repeated five times in each condition;
reported are the average AAs, the average OAs, the average KCs, and their standard deviations
(STDs). All the experiments were performed on a personal computer with Intel Xeon CPU E5-2643 v3,
3.40 GHz, 64 GB memory, and 64-bit Windows 7 using Matlab R2017b.

4.2. Performance on Hyperspectral Image Datasets

The quantitative results of the proposed method and the baselines are given in Tables 2 and 3 for
the Indian Pines dataset and KSC dataset, respectively. The two tables show the average classification
accuracy of each class, the AAs, OAs, and KCs, as well as their STDs, which were obtained by repeating
each experiment five times. All the values are represented in terms of percentage.
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Table 2. Classification results (%) of each class (τ = 0.05) with nearest-neighbor (NN) classifier on the
Indian Pines dataset.

Class No. RAW PCA LDA DLPP MFA LGSFA TwoSP DAGL LWDA

1 40.0 ± 12.6 42.3 ± 20.6 42.8 ± 17.8 49.3 ± 15.7 50.2 ± 11.7 32.1 ± 12.8 31.6 ± 12.2 88.4 ± 10.5 90.7 ± 8.4
2 48.1 ± 1.2 49.3 ± 2.0 57.0 ± 2.1 59.8 ± 3.1 59.1 ± 2.6 61.3 ± 2.4 67.0 ± 1.7 75.2 ± 2.6 81.2 ± 2.8
3 44.2 ± 2.4 44.0 ± 2.3 42.6 ± 6.6 48.6 ± 5.4 44.8 ± 3.5 49.4 ± 3.7 56.1 ± 3.2 73.2 ± 5.9 77.2 ± 7.8
4 30.2 ± 6.3 28.2 ± 6.9 27.9 ± 3.2 31.8 ± 5.3 29.6 ± 4.1 29.3 ± 4.9 40.1 ± 4.8 75.1 ± 6.2 76.6 ± 10.2
5 76.3 ± 5.1 75.9 ± 3.6 83.6 ± 5.5 83.4 ± 3.3 83.6 ± 3.2 84.5 ± 2.6 84.1 ± 4.4 84.5 ± 2.3 86.7 ± 1.2
6 92.2 ± 1.9 92.4 ± 2.2 91.2 ± 2.1 90.1 ± 2.5 92.9 ± 0.9 91.2 ± 2.3 92.3 ± 1.7 84.6 ± 2.2 87.0 ± 2.6
7 80.0 ± 10.0 79.2 ± 10.4 76.2 ± 14.7 85.4 ± 9.2 85.4 ± 5.0 53.8 ± 28.4 82.3 ± 6.4 3.8 ± 15.9 24.4 ± 17.8
8 94.5 ± 2.3 94.9 ± 2.5 96.0 ± 1.4 93.7 ± 2.8 93.9 ± 3.2 96.7 ± 1.7 89.3 ± 5.8 98.5 ± 1.3 99.0 ± 0.6
9 14.7 ± 10.8 14.7 ± 10.8 12.6 ± 9.6 24.2 ± 13.2 20.0 ± 11.4 17.9 ± 11.5 30.5 ± 9.4 1.5 ± 9.8 5.3 ± 9.1
10 61.3 ± 6.5 62.2 ± 6.7 46.8 ± 3.8 57.4 ± 2.9 54.7 ± 6.3 52.9 ± 3.1 69.1 ± 1.4 65.0 ± 8.1 74.8 ± 7.7
11 67.4 ± 3.4 67.4 ± 2.1 64.8 ± 1.7 63.1 ± 1.1 71.1 ± 4.9 69.2 ± 1.8 74.8 ± 2.0 85.9 ± 1.7 88.4 ± 1.4
12 35.0 ± 2.6 34.6 ± 3.7 46.8 ± 3.9 48.4 ± 4.9 43.9 ± 4.8 49.8 ± 4.6 56.0 ± 6.3 76.2 ± 5.5 76.0 ± 6.8
13 93.3 ± 1.5 93.2 ± 1.7 92.6 ± 3.7 93.7 ± 5.0 95.2 ± 3.5 97.3 ± 1.3 96.4 ± 1.3 93.3 ± 2.0 81.3 ± 11.9
14 90.3 ± 2.9 89.3 ± 3.8 93.4 ± 1.6 94.0 ± 2.0 94.0 ± 1.9 95.0 ± 1.2 95.2 ± 2.1 96.2 ± 1.3 97.7 ± 0.7
15 27.2 ± 2.0 27.3 ± 2.3 44.6 ± 8.1 44.5 ± 7.7 43.3 ± 6.9 48.4 ± 8.0 46.7 ± 6.1 86.9 ± 7.3 92.7 ± 1.1
16 86.4 ± 3.0 86.4 ± 3.1 79.8 ± 8.3 82.1 ± 6.0 81.1 ± 4.4 84.3 ± 4.9 86.4 ± 3.2 45.5 ± 25.1 59.8 ± 22.0

AA 61.3 ± 1.4 61.3 ± 2.0 62.4 ± 2.7 65.6 ± 0.8 65.2 ± 1.0 63.3 ± 2.9 68.6 ± 0.9 70.9 ± 2.9 74.9 ± 1.8
OA 64.8 ± 1.0 64.9 ± 0.8 65.8 ± 1.7 67.5 ± 0.9 68.6 ± 1.4 69.3 ± 1.1 73.9 ± 1.2 81.7 ± 1.2 85.1 ± 1.0
KC 59.7 ± 1.1 59.8 ± 0.8 60.8 ± 2.1 62.9 ± 1.0 63.9 ± 1.5 64.7 ± 1.3 70.1 ± 1.4 79.2 ± 1.5 83.0 ± 1.1

Table 3. Classification results (%) of each class (τ = 0.05) with NN classifier on the KSC dataset.

Class No. RAW PCA LDA DLPP MFA LGSFA TwoSP DAGL LWDA

1 87.7 ± 3.2 87.6 ± 3.2 86.1 ± 4.2 82.4 ± 1.8 91.3 ± 2.0 85.7 ± 2.3 90.6 ± 2.3 94.3 ± 1.1 98.6 ± 1.3
2 75.7 ± 13.3 75.7 ± 13.2 86.4 ± 1.9 87.8 ± 2.4 88.7 ± 2.8 90.0 ± 3.1 77.4 ± 2.0 85.2 ± 5.8 84.0 ± 12.7
3 66.7 ± 3.7 66.8 ± 3.8 53.4 ± 7.1 55.3 ± 7.7 60.2 ± 6.1 58.4 ± 4.7 77.4 ± 3.5 78.2 ± 4.2 93.2 ± 5.1
4 50.0 ± 3.3 49.9 ± 3.0 39.9 ± 4.5 39.3 ± 5.1 45.0 ± 9.5 47.0 ± 4.6 64.0 ± 4.2 76.6 ± 5.1 85.1 ± 7.0
5 45.8 ± 13.1 45.4 ± 12.9 50.4 ± 4.7 51.3 ± 1.9 48.2 ± 4.2 46.2 ± 5.0 73.0 ± 1.8 88.8 ± 3.2 88.9 ± 8.2
6 34.2 ± 5.2 34.5 ± 5.1 50.6 ± 8.2 52.9 ± 8.8 34.6 ± 7.1 43.3 ± 8.7 59.0 ± 7.5 75.1 ± 8.4 100.0 ± 0.0
7 64.0 ± 11.2 63.0 ± 10.3 53.7 ± 13.0 47.3 ± 9.2 52.7 ± 11.5 44.2 ± 15.2 78.8 ± 9.5 98.0 ± 2.9 100.0 ± 0.0
8 69.4 ± 6.8 69.0 ± 7.4 78.4 ± 4.4 77.7 ± 3.8 81.6 ± 6.2 82.7 ± 5.1 83.1 ± 3.5 91.7 ± 5.8 93.3 ± 6.4
9 88.5 ± 4.0 88.5 ± 4.0 82.3 ± 3.2 80.7 ± 2.3 87.7 ± 5.1 84.3 ± 4.4 93.5 ± 2.6 97.8 ± 3.2 99.1 ± 1.9

10 81.1 ± 2.4 81.2 ± 2.5 94.8 ± 0.8 91.6 ± 1.6 94.2 ± 2.5 94.9 ± 1.6 82.5 ± 1.7 96.9 ± 0.5 100.0 ± 0.0
11 92.8 ± 1.6 92.8 ± 1.6 87.6 ± 2.6 87.5 ± 3.1 88.7 ± 4.6 84.9 ± 5.5 85.2 ± 3.0 96.2 ± 1.3 99.6 ± 0.5
12 78.3 ± 4.7 78.2 ± 4.6 89.1 ± 2.6 88.3 ± 4.1 82.2 ± 3.9 83.7 ± 2.7 80.9 ± 4.2 92.7 ± 2.7 98.0 ± 1.5
13 98.4 ± 0.9 98.4 ± 0.9 99.6 ± 0.4 98.5 ± 0.9 98.2 ± 0.5 98.8 ± 0.7 98.5 ± 0.9 98.1 ± 0.2 100.0 ± 0.0

AA 71.7 ± 1.8 71.6 ± 1.8 73.3 ± 1.1 72.4 ± 1.3 73.3 ± 1.0 72.6 ± 1.6 80.3 ± 0.9 90.0 ± 0.7 95.4 ± 0.8
OA 79.6 ± 0.6 79.5 ± 0.6 81.4 ± 0.6 80.3 ± 0.6 82.0 ± 0.9 81.2 ± 1.5 85.0 ± 0.6 92.3 ± 0.8 96.8 ± 0.7
KC 77.3 ± 0.6 77.2 ± 0.6 79.3 ± 0.7 78.1 ± 0.7 80.0 ± 1.0 79.0 ± 1.7 83.3 ± 0.8 91.4 ± 0.7 96.4 ± 0.8

Tables 2 and 3 demonstrate that the proposed LWDA method achieves better classification results
in most classes compared with other methods, and it outperforms all the competitors in terms of AAs,
OAs, and KCs. PCA neglects the nonlinear relationship from the original high-dimensional feature
data, although it achieves dimensionality reduction. LDA and DLPP preserve the local manifold
structure by exploiting the discrimination information of the training samples. However, they neglect
the global structure in the dimensionality reduction. Since MFA simply considers the similarity
relationship between two samples in a small neighborhood as one, it is difficult to learn an accurate
local manifold structure. LGSFA can retain the local structure among the within- and between-class
samples during the discriminant analysis. TwoSP preserves the global structure in the first-stage
subspace projection, and it investigates the local structure of the HSI data adaptively. DAGL combines
the spatial neighborhood information and data graph in the discriminant analysis process. However,
the data graph is constructed in the original high-dimensional space, which still introduces data
noise into the final projection process. The proposed LWDA method exploits the spectral and spatial
information of the HSI data, and it then enhances the spatial consistency during the discriminant
analysis. Therefore, LWDA produces the best classification performance on the two HSI datasets.

Moreover, the classification maps of the aforementioned methods on the Indian Pines and KSC
datasets are shown in Figures 2 and 4. For better visualization, the local magnifications with a certain
magnification factor are displayed in Figures 3 and 5. From Figures 2–5, the proposed LWDA method
generates smoother classification maps and poses more homogeneous areas. LWDA enforces the
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spectral-spatial information during the discriminant analysis. It not only preserves the global structure
but also the local manifold structure with the help of the proposed weighted scatter matrix model and
the construction of spatial consistency.

Figure 2. Classification maps of different dimensionality reduction methods with NN classifier
on the Indian Pines dataset (τ = 0.05). (a) Ground truth; (b) original raw spectral feature (RAW);
(c) principal component analysis (PCA); (d) linear discriminant analysis (LDA); (e) discrimination-
information-based locality preserving projection (DLPP); (f) marginal Fisher analysis (MFA); (g) local
geometric structure Fisher analysis (LGSFA); (h) two-stage subspace projection (TwoSP); (i) discriminant
analysis with graph learning (DAGL); (j) proposed locally weighted discriminant analysis (LWDA).

Figure 3. Local magnification (with a magnification factor of 3) of the output classification maps shown
in Figure 2. (a) Selected local region; (b) magnified local region; (c) PCA; (d) LDA; (e) DLPP; (f) MFA;
(g) LGSFA; (h) TwoSP; (i) DAGL; (j) proposed LWDA.
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Figure 4. Classification maps of different dimensionality reduction methods with NN classifier on the
KSC dataset (τ = 0.05). (a) Ground truth; (b) PCA; (c) LDA; (d) DLPP; (e) MFA; (f) LGSFA; (g) TwoSP;
(h) DAGL; (i) proposed LWDA.

Furthermore, a McNemar test [32,33] was conducted by pairwise comparison to validate the
effectiveness of different methods. In the McNemar test, the threshold of significance is set to 0.05.
The results of the McNemar test are shown in Table 4, where the methods in the horizontal direction
are denoted as the test methods while those in the vertical direction are marked as the reference
methods. When the value is smaller than zero, it indicates that the classification performance of the
test method is better than that of the reference method; otherwise, the reference method outperforms
the test method. Moreover, when the absolute value is larger than 1.96, the two methods have obvious
differences. Compared with all the competitors, the absolute values in the LWDA column are larger
than 10, which demonstrates that LWDA has a distinct advantage.

Table 4. McNemar test of different methods on the Indian Pines and KSC datasets.

Methods
Indian Pines KSC

PCA LDA DLPP MFA LGSFA TwoSP DAGL LWDA PCA LDA DLPP MFA LGSFA TwoSP DAGL LWDA

RAW −0.3 −1.9 −4.9 −7.6 −8.5 −18.9 −28.0 −34.9 1.3 −4.5 −2.7 −5.5 −3.9 −6.4 −21.5 −27.6
PCA - −1.7 −4.7 −7.3 −8.2 −18.4 −28.6 −34.8 - −4.7 −2.9 −5.7 −4.1 −6.5 −21.5 −27.7
LDA - - −3.6 −5.6 −7.5 −15.9 −31.1 −33.4 - - 2.6 −1.0 0.9 −5.3 −19.3 −24.8
DLPP - - - −2.4 −4.1 −13.3 −26.1 −31.0 - - - −3.4 −1.7 −6.4 −20.2 −25.7
MFA - - - - −1.5 −11.7 −24.0 −29.6 - - - - 1.8 −5.1 −19.8 −24.2

LGSFA - - - - - −10.0 −23.7 −28.7 - - - - - −7.4 −21.3 −25.0
TwoSP - - - - - - −15.5 −21.4 - - - - - - −12.5 −21.0
DAGL - - - - - - - −17.7 - - - - - - - −10.9
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Figure 5. Local magnification (with a magnification factor of 4) of the output classification maps shown
in Figure 4. (a) Selected local region; (b) magnified local region; (c) LDA; (d) DLPP; (e) MFA; (f) LGSFA;
(g) TwoSP; (h) DAGL; (i) proposed LWDA.

4.3. Analysis of Computational Cost

T1 is denoted as the running time of the construction of projection matrix. T2 and T3 are defined
as the classification times obtained by the NN and SVM classifiers in the testing process.

Table 5 shows T1, T2, and T3 in terms of seconds of the different methods. The low dimensionality
of the embedding features can reduce the running time in the classification process. To obtain the
optimal projection matrix, the proposed LWDA method estimates the class information for each test
sample. In addition, LWDA takes the most running time to extract the spectral-spatial information in
the discriminant analysis for each training sample. So, the computation of dimensionality reduction in
LWDA is larger than the others, excluding TwoSP because it involves a large kernel matrix computation.
Compared with T3, the running time using the NN classifier is smaller, which also illustrates that the
NN classifier for the classification process has a better advantage. LWDA with the SVM classifier needs
to construct an SVM model for each test sample, so T3 of LWDA is much larger than the baselines.
Therefore, the NN classifier was applied in the experiments.
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Table 5. Average computational time (unit: second) of different methods with NN classifier on the
Indian Pines and KSC datasets using τ = 0.05.

Time
Methods RAW PCA LDA DLPP MFA LGSFA TwoSP DAGL LWDA

Indian Pines
T1 - 0.7 0.2 0.6 1.3 1.3 428.3 588.1 229.3
T2 1.7 0.7 0.6 0.7 0.6 0.7 0.7 38.1 36.9
T3 112.8 22.2 20.1 21.7 23.3 25.8 27.9 7145.3 48,347.3

KSC
T1 - 0.3 0.1 0.2 0.5 0.4 89.4 218.7 157.5
T2 0.4 0.2 0.2 0.2 0.2 0.2 0.2 16.0 14.0
T3 28.4 7.0 6.2 7.5 10.1 8.4 8.3 3598.6 19,316.0

4.4. Analysis of Reduced Dimensionality

The optimal reduced dimensionality of each method is discussed in this section. Figure 6 shows
the curves of OAs varying with different dimensionalities of the projection matrix, from 2 to 50, for the
Indian Pines and KSC datasets.

Figure 6 demonstrates that the proposed LWDA method achieves the highest OAs constantly.
In particular, LWDA exceeds the baselines to a large extent when the dimensionality is less than 5.
Furthermore, the classification performance of all the methods becomes stable or decreases when
the dimensionality increases to a certain value, which also indicates that a low-dimensional feature
subspace is sufficient for preserving the valuable information of HSI data.

Figure 6. Overall classification accuracy (OA) versus the reduced dimensionality of different methods
with NN classifier on the (a) Indian Pines and (b) KSC datasets using τ = 0.05.

4.5. Analysis of Classifier

To evaluate the classification performance of each method with two different classifiers, i.e.,
NN and SVM, the experiments were repeated five times. For SVM, the LibSVM Toolbox in a MATLAB
version was applied with a radial basis function (RBF) kernel [34]. Once the projected features were
obtained by each method, the NN and SVM classifiers were applied for the classification process,
respectively. Figure 7 shows the classification results obtained by different methods with NN and SVM
classifiers on two HSI datasets.
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Figure 7. OAs obtained by different methods with the NN and support vector machine (SVM) classifiers
on the (a) Indian Pines and (b) KSC datasets using τ = 0.05.

Figure 7 illustrates that the proposed LWDA method with the NN classifier presents the best
classification performance compared with the other dimensionality reduction methods. For most cases
on the two dataset, the results with the NN classifier are superior to those with SVM. To unify the
classifier in the classification process, the NN classifier was used in all the experiments.

4.6. Analysis of Parameters

The proposed LWDA method has two trade-off parameters r and β. The value of
r affects the number of neighbors in the spatial space, while the value of β balances the
contribution between the weighted scatter matrix model and the spatial consistency matrix.
r was tuned with the set {3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27}, and β was varied with the set
{0, 0.001, 0.005, 0.01, 0.02, 0.04, 0.05, 0.06, 0.08, 0.1, 0.5, 1, 5, 10, 50, 100}. Figure 8 shows the average OAs
with respect to the values of parameters r and β.

Figure 8. OAs versus the value of parameters r and β in the proposed LWDA method with NN classifier
on the (a) Indian Pines and (b) KSC datasets using τ = 0.05.

According to Figure 8, when the value of β increases, the OAs display a subtle change with a fixed
r. That is because the spatial consistency matrix generates a similar contribution for the Indian Pines
and KSC datasets. An increased r leads to introducing more between-class samples in the construction
of a spatial consistency matrix. For the Indian Pines dataset, a peak value is generated in the curved
surface map when the value of r reaches 11, and then the OAs begin to slowly decrease when the value
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of r continues to increase. If r is a large value, the contribution of the preservation of the local manifold
structure will be reduced. Similarly, a peak value of the curved surface is obtained when r increases to
25 for the KSC dataset. Therefore, the parameters r and β were set to 11 and 0.05 for the Indian Pines
dataset and 25 and 0.04 for the KSC dataset in the experiments.

The proposed method can be divided into two versions: online and offline. The online version of
LWDA needs to construct the optimal projection matrix for each test sample, which leads to a large
computational cost. To reduce the computational time, the experiments in this paper used the offline
version. Figure 9 shows the histograms of the spatial distance between the input test sample and
its nearest training sample. The two histograms for the Indian Pines and KSC datasets illustrate that
the spatial distance is mainly distributed in the range of [1, 5]. The samples in a small neighborhood
should be close to each other in the desired feature subspace. Furthermore, the experimental results
shown in the Section 4.2 demonstrate that the offline version of the proposed method achieves better
classification performance than the existing approaches.

Figure 9. Histogram of spatial distance for the (a) Indian Pines and (b) KSC datasets.

4.7. Analysis of Data Partition Factor τ

The data partition factor τ affects the number of selected samples in the training process.
The influence of different values of τ was investigated, and results are presented in this section. The
value of τ was tuned with the set {0.05, 0.06, 0.07, 0.08, 0.09, 0.1}. Tables 6 and 7 show the classification
results in terms of average OAs, average KCs, and their STDs with the Indian Pines and KSC datasets.

In Tables 6 and 7, the OAs and KCs improve with the increase in the data partition factor for
all the methods on the two HSI datasets. It implies that a large number of training samples contain
more valuable information in the feature representation. DLPP achieves better classification results
than PCA and LDA, because DLPP applies the discrimination information to preserve the local
structure. TwoSP shows better OAs and KCs than MFA and LGSFA in most conditions, since TwoSP
effectively alleviates the nonlinear problem in HSI data and simultaneously preserves the global and
local structures. In all experiments, the proposed LWDA method achieves the best classification results
under different values of τ, especially with a small τ value, which indicates that a small number of
training samples is enough for a good performance. Moreover, LWDA applies the spectral-spatial
information to the discriminant analysis process, which largely enhances the discriminating power of
low-dimensional embedding features.
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Table 6. Classification results (%) with different values of τ on the Indian Pines dataset with NN
classifier. Each method has two rows, where the first row is the OA ± standard deviation (STD) and
the second row is the kappa coefficient (KC) ± STD.

Methods τ = 0.05 τ = 0.06 τ = 0.07 τ = 0.08 τ = 0.09 τ = 0.1

RAW 64.8 ± 1.0 65.5 ± 0.7 66.1 ± 0.4 67.0 ± 0.5 67.3 ± 0.5 67.7 ± 0.4
59.7 ± 1.1 60.6 ± 0.7 61.3 ± 0.5 62.3 ± 0.6 62.7 ± 0.6 63.1 ± 0.5

PCA 64.9 ± 0.8 65.6 ± 0.5 66.2 ± 0.3 67.2 ± 0.5 67.5 ± 0.3 67.7 ± 0.4
59.8 ± 0.8 60.7 ± 0.5 61.5 ± 0.3 62.5 ± 0.6 62.9 ± 0.4 63.1 ± 0.5

LDA 65.8 ± 1.7 67.9 ± 0.8 69.7 ± 1.2 71.0 ± 0.6 71.8 ± 0.9 72.6 ± 1.2
60.8 ± 2.1 63.1 ± 0.9 65.3 ± 1.4 66.9 ± 0.7 67.7 ± 1.0 68.7 ± 1.3

DLPP 67.5 ± 0.9 70.3 ± 0.5 72.8 ± 0.8 73.9 ± 0.5 75.5 ± 0.6 76.7 ± 1.1
62.9 ± 1.0 66.0 ± 0.6 68.9 ± 0.9 70.2 ± 0.6 72.0 ± 0.7 73.3 ± 1.3

MFA 68.6 ± 1.4 71.6 ± 1.6 73.5 ± 1.8 74.8 ± 1.5 76.6 ± 1.1 77.7 ± 1.2
63.9 ± 1.5 67.3 ± 1.8 69.6 ± 2.1 71.1 ± 1.7 73.2 ± 1.3 74.4 ± 1.4

LGSFA 69.3 ± 1.1 71.6 ± 1.2 73.4 ± 1.0 75.0 ± 1.0 76.6 ± 0.6 77.1 ± 1.0
64.7 ± 1.3 67.4 ± 1.4 69.5 ± 1.2 71.3 ± 1.2 73.2 ± 0.8 73.8 ± 1.2

TwoSP 73.9 ± 1.2 75.3 ± 0.8 76.3 ± 1.2 76.9 ± 0.6 77.7 ± 1.1 78.6 ± 0.9
70.1 ± 1.4 71.8 ± 0.9 72.9 ± 1.4 73.6 ± 0.7 74.5 ± 1.2 75.6 ± 1.1

DAGL 81.7 ± 1.2 83.5 ± 1.3 84.1 ± 1.0 85.2 ± 0.9 85.7 ± 1.0 86.5 ± 1.2
79.2 ± 1.5 81.1 ± 1.5 82.8 ± 1.3 83.9 ± 1.3 84.5 ± 0.9 85.1 ± 0.8

LWDA 85.1 ± 1.0 87.0 ± 1.6 87.7 ± 1.1 88.5 ± 1.0 88.9 ± 1.2 89.3 ± 0.7
83.0 ± 1.1 85.2 ± 1.9 86.0 ± 1.2 86.9 ± 1.2 87.3 ± 1.3 87.8 ± 0.7

Table 7. Classification results (%) with different values of τ on the KSC dataset with NN classifier.
Each method has two rows, where the first row is the OA ± STD and the second row is the KC ± STD.

Methods τ = 0.05 τ = 0.06 τ = 0.07 τ = 0.08 τ = 0.09 τ = 0.1

RAW 79.7 ± 0.6 79.8 ± 0.9 80.3 ± 0.4 81.1 ± 0.4 82.0 ± 0.4 82.2 ± 0.4
77.2 ± 0.6 77.2 ± 1.0 78.1 ± 0.4 78.9 ± 0.4 79.9 ± 0.5 80.2 ± 0.5

PCA 79.5 ± 0.6 79.4 ± 0.7 80.2 ± 0.3 80.9 ± 0.4 81.9 ± 0.4 82.0 ± 0.5
77.2 ± 0.6 77.0 ± 0.8 78.0 ± 0.3 78.8 ± 0.4 79.8 ± 0.5 80.0 ± 0.6

LDA 81.4 ± 0.6 84.3 ± 1.2 85.8 ± 1.1 86.7 ± 1.0 87.8 ± 0.7 88.3 ± 1.0
79.3 ± 0.7 82.5 ± 1.3 84.1 ± 1.2 85.2 ± 1.1 86.4 ± 0.8 86.9 ± 1.1

DLPP 80.3 ± 0.6 84.1 ± 1.0 85.6 ± 0.7 86.8 ± 1.1 87.7 ± 0.9 88.0 ± 1.0
78.1 ± 0.7 82.3 ± 1.1 83.9 ± 0.7 85.3 ± 1.2 86.3 ± 1.0 86.6 ± 1.1

MFA 82.0 ± 0.9 84.1 ± 0.5 85.3 ± 0.5 85.9 ± 0.6 86.3 ± 0.8 86.9 ± 0.5
80.0 ± 1.0 82.3 ± 0.5 83.6 ± 0.6 84.3 ± 0.7 84.7 ± 0.9 85.4 ± 0.6

LGSFA 81.2 ± 1.5 84.4 ± 1.1 86.5 ± 0.9 87.6 ± 1.2 88.7 ± 1.1 89.5 ± 0.7
79.0 ± 1.7 82.7 ± 1.2 85.0 ± 0.9 86.2 ± 1.3 87.4 ± 1.3 88.3 ± 0.8

TwoSP 84.5 ± 0.6 85.3 ± 1.2 86.8 ± 1.0 88.0 ± 1.0 89.0 ± 1.0 90.1 ± 1.0
83.3 ± 0.8 84.2 ± 1.1 85.4 ± 1.0 86.4 ± 1.0 87.8 ± 1.1 88.9 ± 1.1

DAGL 92.3 ± 0.7 92.7 ± 1.3 93.3 ± 1.1 93.7 ± 0.9 93.9 ± 0.6 94.0 ± 0.5
91.4 ± 0.9 92.0 ± 1.2 92.9 ± 1.3 93.4 ± 1.0 93.6 ± 0.7 93.8 ± 0.6

LWDA 96.8 ± 0.7 97.2 ± 1.1 97.9 ± 1.3 98.3 ± 0.8 98.4 ± 0.7 98.5 ± 0.3
96.4 ± 0.8 96.9 ± 1.2 97.7 ± 1.4 98.1 ± 0.9 98.2 ± 0.8 98.4 ± 0.4

5. Conclusions

In this paper, a new supervised dimensionality reduction method, named LWDA, is proposed on
the basis of the spectral-spatial information of HSI data. During the discriminant analysis, LWDA uses
the proposed weighted scatter matrix model and computes the spatial consistency matrix for each
data sample, which can adaptively learn local manifold structures of the original HSI data. In addition,
LWDA preserves the within-class properties and suppresses the between-class characteristics in an
optimal low-dimensional feature subspace.

Through the experiments on two real-world HSI datasets, i.e., Indian Pines and KSC, LWDA
achieves better classification performance than the existing dimensionality reduction approaches.
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In particular, a small data portion of the training set is enough for a satisfactory classification
performance. The overall accuracy obtained by LWDA increases by at least 17% in comparison
with RAW when the data partition factor is 0.05. In addition, the McNemar test demonstrates that
LWDA has statistical significance when compared with the baselines. For LWDA, the absolute value of
the McNemar test is at least 10 > 1.96. LWDA learns similarity relationships of the within-class samples
and the means of different classes, as well as creates more available information in the subsequent
classification. Hence, LWDA achieves the qualitative and quantitative results in the experiments.

Our future work will focus on how to extend the online version of the proposed method to quickly
represent the spectral-spatial information and improve the computational efficiency.
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