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Abstract: The 3D digital characterization of vegetation is a growing practice in the agronomy sector.
Precision agriculture is sustained, among other methods, by variables that remote sensing techniques
can digitize. At present, laser scanners make it possible to digitize three-dimensional crop geometry
in the form of point clouds. In this work, we developed several methods for calculating the volume
of vine wood, with the final intention of using these values as indicators of vegetative vigor on a
thematic map. For this, we used a static terrestrial laser scanner (TLS), a mobile scanning system
(MMS), and six algorithms that were implemented and adapted to the data captured and to the
proposed objective. The results show that, with TLS equipment and the algorithm called convex hull
cluster, the volumes of a vine trunk can be obtained with a relative error lower than 7%. Although the
accuracy and detail of the cloud obtained with TLS are very high, the cost per unit for the scanned
area limits the application of this system for large areas. In contrast to the inoperability of the TLS in
large areas of terrain, the MMS and the algorithm based on the L1-medial skeleton and the modelling
of cylinders of a certain height and diameter have solved the estimation of volumes with a relative
error better than 3%. To conclude, the vigor map elaborated represents the estimated volume of each
vine by this method.

Keywords: Vitis vinifera; terrestrial laser scanning; plant vigor; mobile mapping; precision agriculture;
vine size

1. Introduction

Precision agriculture strategies that apply remote sensing techniques are widely used, particularly
in viticulture [1]. Information obtained from satellites, airborne cameras, and ground-based sensors
(among others) over the earth’s surface is a trend in research and innovation activities that has been
applied to precision agriculture. With these techniques, not only can we obtain the spectral response of
the surface of crop from a determined point of view (aerial or ground-based), but we can also obtain
the approximate crop geometry [2].

Canopies drive the main vegetal processes, such as photosynthesis, gas interchange,
and evapotranspiration. These processes are directly related to sunlight interception and the
microclimate generated by the plants [3]. Efforts to measure the spatial parameters in canopies
have been made with simplified geometrical models, as proposed in [4], through parameters like the
leaf area index (LAI), “point quadrat” [5,6], leaf area density (LAD) [7], tree area index (TAI) [8–10],
ground canopy cover (GCC) [11], tree row LiDAR volume (TRLV) [12], surface area density (SAD) [3],
and photosynthetically active radiation (PAR) [13], among many others. Canopy characterization and
monitoring help improve crop management through the estimation of water stress, the affection by
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pests and weeds, nutritional requirements, and final yield. This monitoring could be performed with a
network of ground sensors [14,15] and/or remote sensing techniques at any scale.

When applying satellite or airborne-based remote sensing techniques, users receive the data
captured by sensors as a set of images (bidimensional data) or as a set of isolated measurements.
However, less attention has been paid to other types of information that can contribute significantly
to the geometry characterization of the canopy, such as 3D point clouds. It is possible to obtain an
accurate 3D model of a crop from aerial imagery using photogrammetry techniques [2,16–18], but the
point of view of these images does not build a true 3D model. Instead, it builds what is called a 2.5D
model. These flights obtain images from a nadir perspective, so all objects are projected on a horizontal
plane. The lower part of the canopy structure of the plant is hidden from the sensor, and therefore,
it is ignored in the data acquisition process. To solve this limitation, laser scanning is becoming a
promising technology in precision agriculture. These systems can be mounted on static tripods [19],
aircraft [20], land vehicles [8], or be used as hand-held systems [21,22], so scanning can be done from
several perspectives. Further, laser scanning systems can be mounted on drones, which facilitates data
acquisition in the process of biomass mapping [23]. However, the autonomy of these systems can limit
the applicability of these types of systems.

Point clouds taken by active sensors, such as laser scanners, are generated via the return of light
pulses that are emitted and received by the sensor. A light pulse is emitted from a known point in
space with a specific direction. This pulse travels in a straight line through the air until it intercepts the
object’s surface where the pulse is reflected. The distance between the sensor and the scanned surface
is measured by receiving the return with three possible methods, depending on the construction of
the equipment: (1) the time of flight (TOF); (2) the phase shift; or (3) optic triangulation. The location
of the scanned point can be estimated by comparing it with the base. These sensors are commonly
accompanied by a rotating mirror converting a single scan direction to a full plane of scan directions
(perpendicular to the rotated axis). The platform where the equipment is mounted is used to determine
if the scanning is performed from a fixed point (static terrestrial laser scanner) or a trajectory (mobile
mapping, hand-held, or aircraft). Mobile systems can measure the objects from several perspectives.
However, to obtain a complete and accurate digitalization there should be as many perspectives as the
number of the object’s faces. Crops are an especially difficult object to measure due to the irregular
shape of their canopies [19,24].

Due to the capture process, static laser scanning equipment generally registers a higher point
density and with higher accuracy than mobile integrated laser scanning systems [25]. However, they are
less operational because, to cover a wide area and avoid occlusions, the number of scanning stations
is very high, and therefore, the time to acquire the information is also high. However, the cost of
acquisition is often lower than that for mobile equipment because the integrated sensors required for
both types of equipment are more sophisticated for mobile systems. The postprocessing of the captured
information is more laborious on static platforms because the static equipment must solve the joint of
each single scan and its georeferencing. However, for the mobile and aircraft systems, the trajectory of
the capture is measured, and the integration of all sensors is solved, which facilitates the matching of
all the point cloud in an automatic manner. Hand-held portables also need subsequent georeferencing.

The system can integrate other sensors to collect the spectral response of the scanned object.
The spectral response of the object can then be integrated in the built 3D point cloud. The final
point cloud jointly provides the geometry and spectral response of the scanned surfaces [26]. It can,
for instance, account for the bidirectional reflectance distribution function (BDRF), which is a main issue
in high-resolution remote sensing techniques in vegetation [27]. The integration of global positioning
systems (GPS) has also achieved great success in geolocating and scaling geomatic products [28,29].
Greater integration has been done with an inertial measurement unit [30]. Clearly, integration of
software and hardware devices expands the scanned variables and improves accuracy, although it
makes processing more difficult and tedious.
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The use of laser sensors to digitize the 3D components of crops (particularly in viticulture) is new
but promising. One of the first attempts to use laser scanning in viticulture was the studied in [31],
which calculated the light interception of each vegetal organ with a laser beam mounted on a structure
with an arc shape. The use of LiDAR on vineyards has increased since then. The total canopy volume
can be characterized, but other agronomic parameters of interest can also be directly estimated with
this technology, such as canopy height and fruit position, among many others, or indirectly estimated,
such as LAI, canopy porosity, and others, through the generation of the relationships between these
agronomic variables with the measured geometrical characteristics of the canopy. In addition, knowing
the spatial disposition of certain plant organs could optimize some treatments of a localized nature.
For example, the autonomous detection of fruits can determine the yield [32–34] or automate its
harvest. Moreover, a spray application of any phytosanitary material [10,35–38], grapevine sucker
detection [26], weeding, quantification of biomass storage [19,39–41], pest prevention [42], and any
other treatment that may be necessary to achieve sustainable, desired results can now be accurately
applied, and even automated, with current technology.

In precision viticulture, canopy characterization is directly related to the quantitative and
qualitative production potential of a vineyard [34,43–46]. The canopy’s structure, position,
and orientation (among others) are what defines vegetal performance [46] because light interception
and canopy microclimates are driving factors for energy and gas interchange and evapotranspiration.
Further, in viticulture, the correct balance between vegetative growth (shoot and leaf “production”)
and reproductive development (grape production) is the key to optimizing grape production and
quality [47]. Several parameters are defined in viticulture with this aim, such as vine capacity,
vine vigor, crop load, and crop level [48]. Monitoring all these parameters could be a benefit of the
use of 3D characterization using remote sensing techniques (and particularly laser scanning systems).
The quantification of the total biomass produced (vine capacity) is also crucial for estimating carbon
sequestration by vineyards [49].

This work is focused on the development of a new methodology, software, and procedure for
data acquisition to determine the volume occupied by the trunks of vines from 3D point clouds taken
by laser scanning equipment. A comparison between a static and mobile laser scanner was also
performed. After calibration, the procedure was applied to a real case study to determine maps for
the vine trunk volume as a measure of vine capacity (or plant vigor). The difficulties, weaknesses,
and future requirements of this technology are fully applied, and the objective of characterizing vine
capacity is also analyzed and discussed.

2. Materials and Methods

2.1. Proposed Procedure

Figure 1 shows the workflow of the proposed methodology. Due to the complexity of the shape of
the vines and the non-destructive condition of this study, this study starts with an accurate volume
calculation of a vine-shaped artificial object (VSAO) to obtain the real volume data of an object of
similar geometry to validate the proposed methodology. The VSAO is composed of two PVC pipes
(5 cm in diameter) arranged in a "T" shape, resembling the trunk and the arms of the vineyards driven
on a trellis (Figure 2). The choice of the diameter of the pipes used was made according to the average
diameter observed in the vines of the vineyard. Likewise, the dimensions and shape of the artificial
object were generated by simulating the geometries of the vines in this vineyard. To calculate the
volume of the VSAO, the diameter and length of both cylinders were measured.

Field data were acquired and processed for a test area with two laser scanning systems: static
terrestrial laser scanner (TLS) and mobile mapping system (MMS). Each piece of equipment produced
a colored 3D point cloud with accurate geolocation and high density. These point clouds were
the input data used to calculate the volume of the VSAO with specifically developed algorithms.
These algorithms, which will be fully described in this manuscript, return the volume of the VSAO
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from the point clouds obtained with the different systems. After comparing the calculated volume with
the actual volume of the VSAO, a volume accuracy can be determined for each system. This process is
called the calibration process. Once calibrated, the methodology and the best algorithm will be applied
to a real case study on a vineyard located in the southeast of Spain.Remote Sens. 2019, 11, x FOR PEER REVIEW 4 of 24 
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2.2. Study Areas for Calibration Process and Application of the Proposed Methodology

A calibration area where the VSAOs were scanned is located in a practice field at the University of
Castilla, La Mancha, Albacete (Spain). This vineyard has experimental and teaching purposes, so its
state and morphology are highly heterogeneous. However, it covers the typical physical characteristics
of trellis systems with a drip irrigation system, where possible occlusions, slope changes, vegetation
height, etc., occur. Two identical VSAOs were located in places were vines were missing in positions
similar to those of actual vines. Figure 2 shows the location of the two VSAOs in the scanned area.
Since the objective was to determine the volume occupied by the vine’s trunk, measurements were
obtained without leaves and prunes. This state is the most appropriate for scanning the evidence of
crop vigor, because the accumulated vigor appears in the perennial parts of the plant and not in the
deciduous parts, such as leaves or prunes.

A real application of this methodology was implemented in a vineyard located in the southeast
of Spain (38.728928◦, −1.470696◦ EPSG:3857, Figure 3). The study area comprises an area inside of a
0.58 ha vineyard. Trellis driving is separated 3 m between strips and 1.5 m between vines. In this plot,
different irrigation treatments have been performed since 2016, as described in Figure 3. These different
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treatments will, in the future, drive new developments of this canopy. These features make this place
an interesting application area due to their high variability. These treatments have been applied
only during the last two years, so they have not yet resulted in noticeable differences in the trunk
diameter. However, determining plant vigor using the proposed methodology can provide useful
information about nutritional and irrigation requirements in the decision making process. Vines with
higher vigor would demand more nutrients and water than those with lower vigor. Also of interest
is the determination of carbon sequestration by plants, which only accounts for perennial wood and
not for shoots or leaves that are removed every year. Thus, with the proposed methodology and data
acquisition procedure, vigor maps can be obtained to help farmers better manage their vineyards.
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2.3. Equipment

The TLS equipment was a FARO Focus3D X 330 (FARO Technologies, Inc., Lake Mary, Florida)
(Figure 4a), which utilizes phase shift technology to read the distance to an object. This reader was
mounted on a Manfrotto Super Pro Mk2B tripod and Manfrotto 3D Super Pro head (Manfrotto, Cassola,
Italy) (Figure 4a) for each single scan station. This equipment’s field of view is almost complete, with a
360◦ view on a horizontal plane and 300◦ on a vertical plane because of its gyratory base and rotation
mirror. The scan resolution was configured to 6 mm to 10 m, with a beam divergence of 0.19 mrad
(1 cm to 25 m) and a ranging error of ±2 mm (10 to 25 m). It also contains an RGB camera, GPS receiver,
electronic compass, clinometer, and altimeter (electronic barometer) to approximately correlate the
individual scans in postprocessing. For the accurate joining of different point cloud-calibrated white
spheres, an ATS SRS Medium (ATS Advanced Technical Solutions AB, Mölndal, Sweden) was used
(Figure 4a). The information captured with this equipment was processed by the software SCENE 6.2
(FARO Technologies Inc., Lake Mary, United States), resulting in a unique georeferenced and colored
3D point cloud.

MMS is a Topcon IP-S2 Compact+ (Topcon Corporation, Tokyo, Japan) (Figure 4b). This is a
system that integrates five laser scanners, a 360◦ spherical digital camera with six optics, an IMU
(Inertial Measurement Unit), a dual frequency GNSS receiver, and a wheel encoder. The laser scanners
are all SICK LMS511-10100S01 (SICK AG, Waldkirch, Germany), and the spherical camera is a FLIR
LadyBug 5+ (FLIR Integrated Imaging Solutions Inc., Richmond, Canada). The system was mounted
in a regular 4 × 4 car, with additional batteries and a control system (a high performance rack system,
with an i7 processor, 32 GB RAM, and redundant SSD with industrial USB 3.0). The capture software
was Topcon Spatial Collect 4.2.0 (Topcon Corporation, Tokyo, Japan). The postprocessing software for
the data collected by this equipment was the Topcon Geoclean Workstation 4.1.4.1 (Topcon Corporation,
Tokyo, Japan). The resulting product was a georeferenced and colored 3D point cloud. Considering
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the mobile condition of the equipment and the integration of the sensors, the five possible returns for
each laser scanner were filtered to the highest intensity to ensure false observations (noise points).
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For the acquisition of geolocation data, we used a GPS-RTK (global positioning system—real time
kinematic) with Topcon HiPer V (Topcon Corporation, Tokyo, Japan) receptors and postprocessing
software MAGNET Tools 5.1.0 (Topcon Corporation, Tokyo, Japan) in the reference point measurement,
using the MMS trajectory solution with centimetric precision.

The main characteristics of both laser scanners are reviewed and compared in Table 1.

Table 1. The laser scanner’s technical characteristics.

Characteristic TLS MMS

Brand and model FARO Focus3D X 330 Topcon IP-S2 Compact+
Laser principle Phase shift Time of Flight

Number of evaluated echoes 1 5
Wavelength 1550 nm 905 nm

Beam divergence 0.19 mrad 11.9 mrad
Maximum scan rate 976,000 points/s 150,000 points/s

Range 0.6 to 330 m 0.7 to 80 m

2.4. Data Acquisition

For the calibration process, VSAOs were ubicated on two points where vines were missing, as can
be seen in Figure 2. Scanning with TLS and MMS was performed with the spatial configuration shown
in Figure 5. Six TLS stations were used, at 1.60 m from terrain, around the two VSAOs. The MMS
trajectory was three rows on each side of the VSAO. On the chosen date (February 2019), the crop was
pruned, and the sprouting had not yet started to avoid occlusions.

On 11 May 2018, data were acquired for the real case, with the sprouting just having started,
so there was no occlusion of leaves. The MMS was driven by all rows of the experimental zone
(Figure 3) and the two contiguous rows to each side of the perimeter, to cover all the delimited areas of
interest with enough overlap.
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2.5. Algorithms for Volume Calculation

Several algorithms that help in the process of volume calculation from point clouds have already
been developed [50,51]. However, these are general algorithms that require adaptation and calibration
for different object shapes, as well as sparse and noisy point clouds, such as in the case of vine trunk
volume calculation. Other algorithms, such as the L1-medial skeleton [52], can help develop new
algorithms for volume calculation, which is one of the main contributions of this paper. The shape
of the vine trunks is highly irregular; these trunks are located in an adverse environment for data
acquisition, which demands point cloud treatment, algorithm evaluation, calibration, and adaptation.
This process should be incorporated in a tool that performs these tasks in an automatic manner. With the
methodology and tool developed in this manuscript, these requirements are fulfilled. The proposed
methodology includes the development, adaptation, and implementation of a set of algorithms
developed in the C++ language and a classification algorithm implemented in MATLAB (Mathworks
Inc., Massachusetts, USA); all of these algorithms have been integrated into a unique piece of software.

The imported information includes:

• A text file with the approximate coordinates for each vine base, which can be obtained with a
GNSS-RTK or a high resolution orthoimage, among others.

• A text file describing the main parameters of the project: the name, approximate dimension of the
searched figure (Figure 6), input and output file paths, formats, coordinate reference systems, etc.

• A point cloud in the LAS file format [53] or compressed LAZ.
• A text file with the position of each single scan performed by TLS.
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Three strategies have been implemented and evaluated to calculate the volume occupied by
the vine: (1) OctoMap [50], which is an algorithm to generate volumetric 3D environmental models
based on voxelization of the occupied space; (2) a convex hull cluster (CHC) [51] that closes the
convex envelope of previously clustered sets of points according to geometric and radiometric criteria;
and (3) volume calculation from the trunk skeleton (VCTS), which obtains the volume of an object
from the distance between each point of the cloud and the internal structure of the object, generated
with the L1-medial skeleton [52] algorithm. These three algorithms will be described below. These are
some volume calculation strategies that we have adapted to the characteristics of the point clouds
captured by our TLS and MMS. However, none of these strategies are ready to be applied to the specific
case of calculating the volume of vine trunks. In this paper, we describe the new developments and
adaptations required for the case study of vine volume calculation. This is especially crucial in the case
of MMS, where point cloud data are sparse and noisy, but whose applicability is higher due to the
wider areas covered. Automated point cloud classification based on RGB values, point selection based
on trunk shape, and the development, adaptation, and calibration of algorithms for volume calculation
are the main contributions of this work.

Before applying any of these three algorithms, the acquired point cloud should be preprocessed
to produce a point cloud with a high quality and three-dimensional definition of the scanned object.
If automated clipping, classification, and debugging processes are not enough to define the vine shapes,
possible manual editing of the resulting point cloud can be performed. The latter is a step that should
be avoided to ensure a highly automatic process.

It should also be noted that the tools for each algorithm (i.e., 3D viewers) have also been
incorporated in the implementation of the algorithms used in this work, since most of the modelling
libraries from the point clouds include them for their determination and use in different workflows.

The processing steps are summarized in Figure 7. The algorithm implements six different and
independent processes that require parameter definitions that are adequate for each datum and can be
applied to each vine separately. Intensive work has been performed to determine the parameters that
best apply to this case study; these parameters will be shown in results section.
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2.5.1. Point Cloud Preprocessing

The raw data collected by TLS and MMS are processed with the software supplied
with the equipment—FARO SCENE for TLS and the Topcon Geoclean Workstation for
MMS—integrating the information from the different sensors that each system incorporates (Section 2.3).
As a result, these software packages return two georeferenced and colored 3D point clouds.
However, before applying the algorithms to volume calculation, it is necessary to preprocess the
georeferenced and colored point cloud to (1) obtain the point cloud relative to each individual vine;
(2) eliminate any point cloud belonging to leaves; and (3) remove any outliers that appear because of
the adverse environment in which the measurements were obtained. To perform these preprocesses,
software was developed that permits the automated application of this preprocess.

(1) Cylinder and square clipping subprocesses

With the cylinder clipping algorithm, the input point clouds are segmented for each vine as a
cylinder with two possible criteria from which to choose the radio: the ROI (region of interest) buffer
(found at a half distance between the contiguous vines in its strip) or the fixed distance between vines
in the same row. The cylinder centers are determined by the coordinates of the vine base collected by
centimetric GPS-RTK measurement.

The square clipping step algorithm permits one to approximate cropping to a composed figure of
two superposed straight parallelepipeds, one for trunk definition and one for arm definition (Figure 6),
depending on the type of pruning performed. In the case study, the scanned vines were pruned with
Guyot, so only the trunk was characterized. This process helps to improve the point cloud depuration
and removing noise and other elements.

A review of the editable parameters of these two steps is listed in Table 2.

Table 2. List of the editable parameters of the cylinder and square clipping processes.

Name Description Possible Values

ROI 1 buffer Method to segment first cylinder fix@distance,
computed@halfMeanDistance

Trunk buffer from strip Length in meters. See Figure 6 0.050 to 0.500
Trunk buffer in strip Length in meters. See Figure 6 0.050 to 0.500

Minimum foliage height from
terrain Length in meters. See Figure 6 0.100 to 1.000

Maximum foliage height from
terrain Length in meters. See Figure 6 0.400 to 2.000

Foliage buffer from strip Length in meters. See Figure 6 0.100 to 1.000
Foliage buffer in strip Length in meters. See Figure 6 ROI buffer, distance (0.500 to 2.000)

Sensor type Sensor type choice TLS 2, MMS 3

1 Region of interest. 2 Terrestrial laser scanner. 3 Mobile mapping system.

(2) Point cloud classifier subprocess

This process consists of classification according to standardized classes [53]. This allows one
to segment the points that define the woody part of the plant in case the canopy is developed.
The implemented algorithm is a semi-automatic segmentation of points using only their color.
This approach is an application of computational vision techniques based on an artificial neural
network (ANN) capable of clustering points with similar radiometric responses. This process has two
subprocesses that are clearly differentiated: training a neural network and applying it.

This algorithm is a further development of the leaf area index calculation software (LAIC) [54],
which is applied to point clouds. For training, only one vine has to be used. In the input point cloud
loading, the RGB color space is transformed into a CIE-Lab color space (Commission Internationale de
l’Eclairage (Lab)), where L is lightness, a is the green to red scale, and b is the blue to yellow scale.
In this way, we transform the color space of the three components (R, G, and B) to two components
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(a and b). Then, a cluster segmentation (k-means) is performed on a determined number of clusters
(2 to 10), considering this bi-dimensional variable (coordinates a and b). The user then identifies, in a
supervised process, which cluster of points represents the woody vine part. With this selected cluster,
an ANN is trained. A minimum percentage of successfully classified points with the ANN-calibrated
model in the supervised process should be reached (usually 95%). Afterward, the trained ANN is
applied to all vines, assigning a class to the points that represent the woody parts of each vine.

The processing parameters for this tool are listed in Table 3.

Table 3. List of the editable parameters of the point cloud classifier.

Name Description Possible Values

Calibrate or apply Calibrate (1) or apply calibration (0) 1 or 0
Class for trunk Code classifier as trunk [53] 13 to 31
Hidden nodes Number of hidden nodes 2 to 15
Input nodes Number of input nodes 3 to 3

Iterations Number of iterations 10 to 2000
Minimum calibration

accuracy
Minimum percentage of successfully classified points with
the ANN 1 calibrated model in the supervised process, % 50 to 100

Output nodes Number of output nodes 1 to 1
1 Artificial neural network.

(3) Remove outliers subprocess

It is possible that previous processes were not able to accurately segment the vine and required
an automatic outlier detection process. This process is parameterized according to the density
and disposition of the points expected in the segmented figure. This program implements two
different algorithms that are executed consecutively. Both are classes from the Point Cloud Library
(PCL) [55], and both are filters of outlier points. The first is the statistical outlier removal [56] algorithm,
which detect outliers based on a threshold calculated as the standard deviation of the distance for
each point to a certain number of neighboring points. The second algorithm is the radius outlier
removal [57]. This filter considers a point as an outlier if the point does not have a given number of
neighbors within a specific radius from their location. Detected outliers are classified as a noise point
class (Class 7 [53]) in both processes. A list of processing parameters is given in Table 4.

Table 4. List of editable parameters for the remove outliers process.

Name Description Possible Values

Class to use LiDAR class [53] to use −1 to 31 1

Statistical sample neighbors for
SOR 2 algorithm

Number of sample neighbors to
compute mean distance 10 to 1000

Statistical std threshold for
SOR algorithm

Threshold of standard deviation of
computed mean distance 0.1000 to 10.0000

Radius minimum neighbors for
ROR 3 algorithm Number of minimum neighbors 1 to 1000

Radius search for ROR algorithm Radius search (meters) 0.0010 to 1.0000
1
−1 for all classes. 2 Statistical outlier removal. 3 Radius outlier removal.

2.5.2. Volume Calculation with the OctoMap Algorithm

OctoMap is an algorithm, programmed as an open-source C++ library, to generate volumetric
3D environment models [50]. 3D maps are created by taking the 3D range measurements afflicted
with underlying uncertainty. Multiple uncertain measurements are fused into a robust estimate of
the true state of the environment as a probabilistic occupancy estimation. The OctoMap mapping
framework is based on octrees. Octrees are hierarchical data structures for spatial subdivisions in
3D [58,59]. Space is segmented in cubic volumes (usually called voxels), which represent each node of
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the octree. Cubic volumes are recursively subdivided into eight subvolumes until the given minimum
voxel size is reached (Figure 2 in [50] or Figure 8c). The resolution of the octree is determined by this
minimum voxel size (Figure 8). The tree can be cut at any level to obtain a coarser subdivision if the
inner nodes are maintained accordingly [50].Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 24 
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Voxels are treated as Boolean data, where initialized voxels are measured as an occupied space (1),
and null (0) voxels are free or unknown spaces. It should be noted that we only measured the face of the
object shown from the position of the equipment, with existing occlusions. Therefore, each measurement
establishes free voxels between the observer and the detected surface (occupied voxel), and all those
behind are defined as unknown voxels.

OctoMap creates maps with low memory consumption and fast access time. This contribution
offers an efficient way of scanning and the possibility of achieving multiple measurements that can be
fused in an accurate 3D scanned environment. In contrast to other expeditious approaches focused on
the 3D segmentation of single measurements, OctoMap is able to integrate several measurements into
a model of the environment.

Taking advantage of the flexibility of writing data, this framework ensures the updatability of the
mapped area, as well as its resolution, and copes with the sensor noise. The state of a voxel (occupied,
free, or unknown) can be redefined if the number of observations with different states is higher than
the times it was previously observed with its initial state.

Furthermore, the appropriate formulas in the algorithm control the possibility of a voxel to be
changed based on its neighbors and the number of times that it has been modified. Thus, the quantity
of the data is reduced to the number of voxels that must be maintained. This clamping method is
lossless because its thresholds avoid the losses of full probabilities.

The subprocess called OctoMap is an adaptation of the OctoMap algorithm [50] for the purpose
of estimating the volume of vines. The editable parameters for the processing point clouds with our
adapted algorithm are listed in Table 5.
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Table 5. List of the editable parameters of OctoMap.

Name Description Possible Values

Class to use LiDAR class [53] to use −1 to 31 1

Compute free voxels Compute free voxels True, False
Voxel resolution Voxel linear resolution in meters 0.0010 to 1.0000

1
−1 for all classes.

2.5.3. Volume Calculation with the CHC Algorithm

The volume calculation algorithm called convex hull cluster (CHC) is the result of the integration
of an algorithm from PCL (Point Cloud Library) [52] implemented into our software. It uses the method
of voxel cloud connectivity segmentation (VCCS) [51], which generates volumetric over-segmentations
of 3D point cloud data, known as supervoxels. These elements are searched as variant regions of
k-means clusters through the point cloud (considered a voxel octree structure). They are evenly
distributed across 3D space and are spatially connected to each other (Figure 9). Thus, each supervoxel
maintains 26 adjacency relations (6 faces, 12 edges, and 8 vertices) in voxelated 3D space with its
adjacent neighbors.
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Figure 9. (a) VSAO; (b) example of a clustering TLS point cloud with the convex hull cluster algorithm.

The process starts from a set of seed points distributed evenly in space on a 3D grid with an
established resolution (Rseed) where the point cloud is located. The voxel resolution (Rvoxel) is the
established size of the voxel’s edge. The seed voxels begin to grow into supervoxels until they reach
the minimum distance from the occupied voxels. If there are no occupied voxels near any point of
the cloud among the grown supervoxels, and there are no connected voxels among their neighbors,
the isolated seed voxel is deleted.

The seed points are expanded by a distance measure calculated in a feature space consisting of
spatial extent (normalized by the seeding resolution), color (the Euclidean distance in normalized RGB
space), and normals (the angle between surface normal vectors).

The supervoxels’ growth is an iterative process that uses local k-means clustering.
In this process, confirmed voxels are ignored. In this way, processing is sped up, and the amount

of information that needs to be taken into account is reduced. The iterations end when all supervoxels
have been confirmed or rejected, and, therefore, all points in the cloud belong to a specific cluster.
The editable parameters of the supervoxel clustering are listed in Table 6.
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Table 6. List of the editable parameters of the convex hull cluster.

Name Description Possible values

Class to use LiDAR class [53] to use −1 to 31 1

Color weight Weight of color variable 0.000 to 1.000
Normal weight Weight of normal variable 0.000 to 1.000
Spatial weight Weight of spatial variable 0.000 to 1.000
Seed resolution Seed linear resolution (meters) 0.0200 to 2.0000
Voxel resolution Voxel linear resolution (meters) 0.0010 to 1.0000

1
−1 for all classes.

2.5.4. Volume Calculation with the VCTS Algorithm

The L1-medial skeleton is an algorithm that generates a curved skeletal representation of scanned
objects as 3D point clouds. This curved skeleton defines a simplified inner abstraction of the 3D shape
of the object, which facilitates analysis of that shape.

This skeleton consists of nodes and segments linked together, as shown in Figure 10. A line string
is formed by all segments whose nodes are up to two segments long. The nodes belonging to three
(or more) segments define the end of a line string and the beginning of two different line strings.
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Figure 10. (a) An MMS point cloud imported in the L1-medial skeleton viewer. (b) Skeleton results
(grey points are the input point cloud, green points are the nodes, and red lines are segments).

Although this algorithm is not conditioned by previous assumptions of the geometric shape of
the object, we start from the premise that the vine trunk can be modelled as the sum of the volumes
enclosed by the cylinders defined by each segment of the skeleton or by the cylinders defined by each
line string. Knowing the skeleton and its segments, all the points of the cloud are clustered according
to the segment to which they belong. This clustering is based on the proximity of the point to the
segment as the minimum (orthogonal) distance between them.

In the first case, the height of each cylinder is taken as the length of each segment. For the
estimation of the radius, the parameters of the mean and median centralization of the minimum
distances that exist between each point and its segment were used. In the second case, the height of the
cylinder is considered to be the sum of the lengths of the segments that comprise it, and the radius as
the mean and median of the minimum distances between the points and the segments.

These four volume estimation strategies have been called “VCTS segment mean”, “VCTS segment
median”, “VCTS line string mean”, and “VCTS line string median”. These strategies are designed
to solve the problem that, for a segment, each point provides a different radius, which can be due to
real changes or noise in the point cloud. The success of the algorithm depends on defining a suitable
strategy to estimate a single radius value that represents the segment of the object.
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To this point, it is necessary to highlight that in the extremes of the vines, the skeleton strategy
can fail, because there are few points near the base for the presence of soil, stones, vegetation, and the
upper section due to the obfuscation caused by the aperture of the arms. Again, it is necessary to find
a strategy to estimate the dimensions of the cylinders at the extremes of the figure. The problems
that arise in the clustering of points and the assignation of each segment or string are solved in the
following ways:

• The extreme points that are not assigned to any segment or line string (because they are not
enclosed between planar sections fixed by nodes and segments) are added to the nearest segment
or line string in each case, and extend until they reach the same conditions of belonging as the
rest of the points assigned to this segment or line string. This, by default, avoids errors when
quantifying the total volume of the vine.

• The assignment to segments or line strings is unique to each point, so all the points are assigned
to a single segment or line string, which reduces errors by excess in the zones of insertion between
elements (segments or line strings).

• For the mean and median of the L1-medial skeleton segment, when the segments are given
without any assigned point (because the density is not great enough), the radius of the cylinder is
considered to be the minimum found in the segments of its line string.

• Because of the low density of the points, their quality and the probability of missing scanned
faces, for the VCTS algorithm’s mean and median, if the radius of a cylinder is lower than the
mean (or median) radius of the line string to which it belongs in by as many units as the threshold
establishes, its radius is considered to be the mean (or median) radius of the line string.

The editable parameters of these algorithms are listed in Table 7.

Table 7. List of the editable parameters of the VCTS algorithms.

Name Description Possible Values

Class to use LiDAR class [53] to use −1 to 31 1

Algorithm Chosen strategy to set radius and
height of cylinders

Segment mean, segment median, line
string mean, line string median

Minimum outlier threshold Threshold for elimination of rough
errors in meters 0.0010 to 1.0000

1
−1 for all classes.

2.6. Validation Analysis

For the validation of the methods, the absolute and relative errors made in the estimates of the
calculation of the volume of both VSAOs carried out with the six proposed strategies were calculated.
However, other factors have also been taken into account in order to determine the true possibilities
of each sensor and volume calculation algorithm, which will be fully analyzed in the results and
discussion. The real value of the volume of each VSAO has been obtained thanks to the simplified form
of the pipes that form it. In order to calculate the volume of these artificial objects, the diameter and
length of both cylinders that compose them were measured. Afterwards, the equation of the cylinder
volume (the circular area of the base multiplied by its height) was applied.

2.7. Generation of Vine Size Maps

Crop vigor maps were elaborated with the GIS (geographical information system) QGIS 3.4.3
Madeira (QGIS Development Team) through volumes calculated by the developed software in relation
to the geolocation of each vine. The output data of the implemented algorithms were written to an
ESRI Shapefile (Environmental Systems Research Institute, Inc., Redlands, USA) with a geometry type
point. Each point feature represented a vine in the vineyard, which included a field with the values of
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the estimated volumes for each vine. This vector layer was represented with an appropriate graduated
color ramp to show, with 7 classes, how vigorous each vine was (its volume). A 2 cm orthoimage of
the ground sample distance (GSD) was used as the background layer (the product of the solution of a
photogrammetric flight block taken via an airborne RGB camera in an unmanned aerial vehicle (UAV)
at a later date). As an aid for the delimitation of the experimental area of this vineyard, the extent
of each treatment, and its replications, was also represented. Due to its semi-automatic character,
this calculation was applied only to a random selection of 10% of the scanned vines.

3. Results

3.1. 3D Point Cloud Acquisition and Preprocessing

The input data acquisition performed in the test area with the TLS equipment resulted in a colored
and georeferenced point cloud. It was performed via six scan stations (Figure 5) with five calibrated
spheres as targets for scan joining and georeferencing. The mean target distance error was 9.98 mm
and 0.021◦, with a deviation of 1.57 mm and 0.009◦. The configuration parameters were as follows:
a horizontal resolution of 10,240 points, a vertical resolution of 4267 points, a horizontal angular area
of 0◦ to 360◦, a vertical angular area of 90◦ to −60◦, and 4× quality.

The GPS positions registered by this equipment have a precision with a 5 m error. Each scan
station takes 11.15 minutes.

The same area covered by the MMS collected a colored and georeferenced point cloud. The start
and stop angles of its scanners were 65◦ to 185◦, 65◦ to 185◦, −5◦ to 185◦, −5◦ to 115◦, and −5◦ to 115◦.
These angles are suitable according to the assembly and position of the scanners in the platform and the
occlusions that define the rest of the equipment of the system, including the vehicle itself. The assembly
of the scanners can be seen in Figure 4b. The scan frequency was set to 100 Hz, and the pulse repetition
frequency (PRF) for the system configuration was 134,000 points per second. The contamination level
was set to level 2 for all of them. Level 2, for this equipment, is a high level of contamination that
fits the requirement of the agricultural environment in which the data were acquired. The spherical
camera captured images in 5 m intervals. The recording of the GPS observations was kept at 10 Hz.
The capture lasted 27 minutes and drove 1.7 km due to the maneuvers and the obstacles that the driver
of the vehicle had to avoid. The car’s advance speed was set to approximately 1 m/s to increase the
cloud point density.

Both clouds were cut with the same defined area of 18.15 m2, which included six vines (represented
in Figure 5). The TLS cloud had 5,613,180 points, while the one captured with the MMS had
188,984 points.

For data acquisition from the real vineyard, the same capture configuration was used as in the test
area. The scanning work was divided into four independent captures of 34, 50, 54, and 35 minutes,
covering a total of 27.2 km. It should be noted that despite the size of the scanned area, the vehicle
had to find accesses to the strips and have a clear path for kinematic alignment at the beginning of
each shot. Thus, the distance travelled far exceeds the actual scanning distance. The environmental
acquisition conditions (reflection, dust, etc.) and the characteristics of the equipment’s techniques
generated several outliers, which were cleaned with a filter using points based on an intensity value
between 225 and 826 and a minimum threshold of four neighbors in a cube with a 0.09 m sized side.

The final point cloud clipped to the experimental zone (0.58 ha; represented in Figure 3) produced
38,833,904 points.

Point cloud preprocessing was done with the parameters reviewed in Table 8. These parameters
were determined by the conditions of the capture. Each situation (sensor, meteorology, crop status, etc.)
has specific characteristics to which these parameters have been adapted. The election of dimensional
parameters was established considering such aspects as the point density of the clouds, the plantation
framework, and the vine size or its prune. For outlier removal, we considered ambient conditions
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(i.e., dust presence); the skill of the equipment operator and vehicle driver, as well as ground conditions
(for constant-speed scanning); and the equipment’s functional requirements and limitations.

Table 8. List of the utilized parameters in preprocessing processes.

Clipping Parameters TLS 2 Test Area MMS 3 Test Area MMS Real Case

ROI 1 buffer
computed@half
MeanDistance

computed@half
MeanDistance

computed@half
MeanDistance

Trunk buffer from strip 0.3 m 0.3 m 0.3 m
Trunk buffer in strip 0.3 m 0.3 m 0.3 m

Minimum foliage height from terrain 0.4 m 0.4 m 0.4 m
Maximum foliage height from terrain 1.2 m 1.2 m 1.2 m

Foliage buffer from strip 0.6 m 0.6 m 0.6 m
Foliage buffer in strip ROI buffer ROI buffer ROI buffer

Sensor type TLS MMS MMS

Point Cloud Classifier Parameters TLS Test Area MMS Test Area MMS Real Case

Class for trunk 13 13 13
Hidden nodes 5 5 5
Input nodes 3 3 3

Iterations 60 60 60
Minimum calibration accuracy 95 95 95

Output nodes 1 1 1

Remove Outliers Parameters TLS Test Area MMS Test Area MMS Real Case

Class to use 13 13 13
Statistical sample neighbors for SOR 4

algorithm
50 50 10

Statistical std threshold for SOR
algorithm 2 0.5 0.5

Radius minimum neighbors for ROR 5

algorithm
10 2 6

Radius search for ROR algorithm 0.05 0.2 0.09
1 Region of interest. 2 Terrestrial laser scanner. 3 Mobile mapping system. 4 Statistical outlier removal. 5 Radius
outlier removal.

Manual editing of the point cloud was done in the segmented vines when the results
were anomalous.

3.2. Volume Calculation Results

The processing parameters for volume calculations with OctoMap, CHC, and VCTS are reviewed
in Table 9.

These parameters were chosen in an iterative, manual, and supervised process of selection based
on the improvement of the results. The visual interpretation of the three-dimensional modelling of each
algorithm (whether in the form of voxels, the clustering of points, or simulation of internal structures),
and the approximation of the estimated volume to the actual volume of the VSAO, were the criteria for
optimizing these values.

The OctoMap algorithm needs to know the precise location of the sensor with respect to each
scanned point in order to determine if the resulting voxels represent occupied or undefined space,
and, therefore, makes it impossible for us to calculate the volume enclosed by the clouds of points taken
with MMS (with this algorithm), as in [60]. In addition, the density of the points attained with MMS
does not allow us to calculate the volume of the vines with the CHC algorithm, since the dimensions of
some parts (i.e., the trunk’s diameter) exceed the mean density of the cloud; moreover, its precision is
low and it lacks the geometric definition of the figure due to occlusions or a lack of perspective when
scanning, as in [60]. The results of these volume calculations are shown in Table 10.
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The results obtained follow the four strategies proposed for the estimation of the height and
radius of the identified cylinders, as shown in Table 10.

Table 9. List of the utilized parameters in the volume calculation algorithms.

OctoMap Parameters TLS 1 Test Area MMS 2 Test Area MMS Real Case

Class to use 13 - -
Compute free voxels False - -

Voxel resolution 0.01 - -

CHC 3 Parameters TLS Test Area MMS Test Area MMS Real Case

Class to use 13 - -
Color weight 0 - -

Normal weight 1 - -
Spatial weight 1 - -
Seed resolution 0.15 - -
Voxel resolution 0.01 - -

VCTS 4 Parameters TLS Test Area MMS Test Area MMS Real Case

Class to use - 13 13
Minimum outlier threshold - 0.01 0.01

1 Terrestrial laser scanner. 2 Mobile mapping system. 3 Convex hull cluster. 4 Volume calculation from the
trunk skeleton.

Table 10. Volume calculation results and errors committed.

Scanner Volume Calculation
Algorithm

VSAO 1 A
(dm3)

VSAO B
(dm3)

Absolute Error
(dm3)

Relative Error
(%)

TLS 2 OctoMap 2.329 1.666 0.793 28.41
TLS Convex hull cluster 2.807 2.450 0.179 6.40

MMS 3 VCTS 4 segment median 2.868 2.341 0.264 9.44
MMS VCTS segment mean 2.863 2.665 0.099 3.55
MMS VCTS line string median 2.843 2.128 0.358 12.81
MMS VCTS line string mean 2.916 2.779 0.069 2.46

Real volume 2.790 2.790
1 Vine-shaped artificial object. 2 Terrestrial laser scanner. 3 Mobile mapping system. 4 Volume calculation from the
trunk skeleton.

Considering these results, the maximum error is reached with the OctoMap algorithm for the
cloud scanned with TLS. This is a default error of 28.41%, which may be mainly due to the lack of faces
on the scanned object.

The convex hull cluster algorithm improves the volume estimation from this cloud (with a 6.40%
error). However, better approximations are given from MMS clouds with strategies based on the
calculation of the mean radius per segment (3.55%) and the line string (2.46%).

Figure 8 shows the VSAO (Figure 8a), and the 3D point cloud taken by its TLS (Figure 8b). One can
see the lack of scan points where the irrigation pipe is near the VSAO trunk, as well as under its arms.
These occluded parts are also visible in the result of the OctoMap algorithm in Figure 8f, where there are
no voxels. The same lack of occlusions is visible in the CHC algorithm results (Figure 9b), where it can
be observed that the cluster segmented in the arms is thinner than the cluster segmented in the trunk.
In both cases, the TLS point cloud underestimates the exterior surface of the VSAO and, consequently,
the volume that these two algorithms estimate.

In the same manner, the occlusion of the lower arms is also noticed in the point cloud captured
with the MMS equipment (Figure 10a), affecting both the position of the skeleton (not centered) and
the determination of the radius of the segmented cylinders (lower than the real value).
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3.3. Generation of Vine Size Maps

Based on the results obtained in the validation process, the methodology that achieves the lowest
error from the equipment and makes large-scale data collection (MMS) feasible in a real case study was
applied. This methodology applies the VCTS line string mean algorithm to 10% of the total scanned
strains (120 vines of 1203 vines), which were randomly selected. In the final generated map (Figure 11),
values between 1.0 and 8.0 dm3 are observed. This variability may be due to various factors such as new
vines planted to replace vines with problems, the lack of consistency in pruning methods, increased
occlusions, uneven scanning speed, and other reasons for managing a vineyard or the technical
limitations of the scanning method with this equipment in this type of scenario. No differences between
the treatments were found (as expected), because these differentiated treatments started only two years
ago. We expect to find these differences in the volume of the canopy but not in the trunk volume.
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It should be noted that the operational character of the MMS equipment allows a complete
mapping of the vineyard with an acceptable density of points, as can be seen in Figure 12.Remote Sens. 2019, 11, x FOR PEER REVIEW 19 of 24 
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4. Discussion

It should be noted that the technical limitations of each piece of equipment have guided this work
in its two subobjectives: to test the possibility of calculating the volume occupied by the trunks of
vines in a vineyard using clouds from points taken with TLS equipment, and to extrapolate the best
possibility to a real case study scanned with MMS, where it would be feasible to elaborate a vine size
map based on the volume of each vine.

Firstly, the TLS point clouds have digitalized, with high detail and precision, the areas of the
vines that were within their reach. Nevertheless, the areas occluded behind the equipment itself or
its intermediate elements were not captured, thus making the three-dimensional definition of the
scanned object incomplete (in this case, the vines of the vineyard), similar to the problems found in [61].
Secondly, the mobile capture system of the MMS solves this deficiency, as the number of views taken
of the object covers most of its faces. This result could be achieved by increasing the number of TLS
scan stations, but, considering the large number of faces these objects have, this process would be too
costly for the intended purpose. However, the point density and low-quality cause other problems
(also treated in [21]). Thus, the approach to treat and evaluate the obtained data should be different.
In fact, the different algorithms implemented obtained different results depending on the scanning
systems utilized because of the differences in the types of information acquired.

Taking advantage of the TLS (detail and precision) and considering their limitations (occlusions),
the two proposed algorithms (OctoMap and CHC) can estimate the volume occupied by the scanned
vines with the proposed methodology. OctoMap does not need to know the entire figure if the
occlusions are smaller than the calculated voxel size [50], which makes this method appropriate for
TLS, where many faces of the object are occluded. Indeed, we identified a defect error in the results
due to the occlusion of the lower face of the arms, which could be solved by placing the scan stations at
a lower height from the ground. The CHC algorithm is not as strongly affected by this lack of scanned
faces since in the case of figures with simple geometries, such as cylinders, the closing of the convex
envelopes of the point groupings obtained by this algorithm is accurate and resolves the occlusions
suffered by the cloud.

Nevertheless, the capture performance of the TLS makes it unfeasible to survey large extensions
of land, such as those covered by agricultural crops. However, the application of the tested algorithms
to MMS point clouds is not possible because they have lost the precision and definition conditions
required by OctoMap and CHC. In addition, those two algorithms also resulted in lower accuracy in
the determination of the VSAO volume for TLS. Thus, it can be concluded that OctoMap and CHC are
not the most appropriate algorithms for this case study. We recommend increasing future efforts in
developing strategies for the skeleton algorithm.

The proposed change of strategy that focuses on modelling algorithms based on the internal
structure of the objects (L1-medial skeleton [52]), and not on determining the closure of their surfaces
(OctoMap [50] and CHC [51]), has made it possible to estimate the volumes of individualized vines
scanned with MMS point clouds, as the results show. Even the estimation of volume with this strategy
improves, in some cases, the values obtained with TLS clouds (3.55% and 2.46% errors for the VCTS
segment mean and line string mean, respectively, compared with a 6.40% error with the CHC algorithm
and TLS point clouds). However, in the case of a TLS in which two faces of the trunk are perfectly
defined but there are many occlusions because of the lack of perspective, the skeleton algorithm
returned many errors that require further development to be robust and usable.

The extrapolation of this methodology to a real case study has identified several alterations that
make it difficult to obtain the individualized volumes, which should be overcome in future work.
On the one hand, the segmented point clouds of some vines do not define their shape due to the poor
quantity and quality of the scanned points. This makes manual additions to the cloud subjective,
in order to clean outliers that have not been identified, which is also seen in previous automatic
processes, and contributes to the generation of incoherent skeletons. Therefore, the volumes obtained
in these cases are inaccurate due to poor quality data acquisition, which can be solved by a better
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vehicle to transport the MMS, avoiding the generation of dust, decreasing the speed (to increase point
density), and maintaining constant speed, among many other factors. On the other hand, strategies
based on the VCTS algorithm are semi-supervised and require visual inspection of the generated
skeleton before applying the volume calculation. Consequently, this methodology is time-consuming
and materially cost-intensive. The increase in the costs that this methodology would require is also
affected by the number of vines that require manual editing because of anomalies. Thus, the more
variable the scanned noise is, the less the cleaning can be automated, and the more manual editing is
needed. More effort towards the complete automation of this process should be developed, because it
is the most promising algorithm with this objective.

As probable areas of work based on this experience, improvements will be developed in the
automation and handling of algorithms. Further, it will be necessary to improve the conditions
during data acquisition, taking into account the generation of dust, the constant speed of the vehicle
during data acquisition, and other factors. In addition, since these are parameterized algorithms,
their evaluation and optimization for each case study is necessary, so we intend to develop methods
that consolidate an appropriate choice based on the improvements that occur in the acquisition of
point clouds. Of course, more algorithms that allow the estimation of volumes will be tested, as in [62].
Another challenge to address is the determination of the volume occupied by the canopy (not only the
trunk), which will require other algorithms and software development.

Thus, the proposed methodology and developed software are the first step towards promising
technology to characterize the geometry of woody crops in order to help decision-making in
crop management.

5. Conclusions

In this work, different strategies for calculating vine volumes from point clouds captured with
static and mobile terrestrial laser scanners were developed in order to elaborate maps of the vegetative
vigor of crops, particularly vine size. The proposed methodology makes use of laser scanning systems
in precision agriculture, a promising technology; however, the experience has left several improvements
to be solved to improve the obtained results, such as (1) improving the data acquisition; (2) increasing
the automation of the result generation to avoid current manual data treatments; and (3) refining the
algorithms to better determine the volume.

The results have revealed that the calculation of volumes from different scanning systems requires
different algorithms because of the variability in the density of point cloud, noise, and occlusions. TLS
point clouds are more accurate using the CHC [51] algorithm (with a 6.40% relative error), while the
most complete and accurate results are obtained from MMS point clouds using the VCTS with the
L1-medial skeleton [52] line string mean algorithm (2.46% relative error). The VCTS could not be
applied to TLS because of the occlusions that appear with this system, but considering the results using
MMS, it is an interesting algorithm to apply to these systems after its adaptation.

The potential of laser scanning equipment has been demonstrated in agronomic challenges, as well
as the application of three-dimensional point clouds to the three-dimensional digital characterization
of vegetation. However, in this first approach, an intensive manual editing process is required,
which should be solved in future developments. Nevertheless, these are the first experiments with
this technology, and outstanding results were obtained by this working group, so future prospects
are positive.
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