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Abstract: The accuracy of remote-sensing reflectance (Rrs) estimated from ocean color imagery
through the atmospheric correction step is essential in conducting quantitative estimates of the
inherent optical properties and biogeochemical parameters of seawater. Therefore, finding the main
source of error is the first step toward improving the accuracy of Rrs. However, the classic validation
exercises provide only the total error of the retrieved Rrs. They do not reveal the error sources.
Moreover, how to effectively improve this satellite algorithm remains unknown. To better understand
and improve various aspects of the satellite atmospheric correction algorithm, the error budget in
the validation is required. Here, to find the primary error source from the OLCI Rrs, we evaluated
the OLCI Rrs product with in-situ data around the China Sea from open ocean to coastal waters and
compared them with the MODIS-AQUA and VIIRS products. The results show that the performances
of OLCI are comparable to those MODIS-AQUA. The average percentage difference (APD) in Rrs is
lowest at 490 nm (18%), and highest at 754 nm (79%). A more detailed analysis reveals that open
ocean and coastal waters show opposite results: compared to coastal waters the satellite Rrs in open
seas are higher than the in-situ measured values. An error budget for the three satellite-derived
Rrs products is presented, showing that the primary error source in the China Sea was the aerosol
estimation and the error on the Rayleigh-corrected radiance for OLCI, as well as for MODIS and
VIIRS. This work suggests that to improve the accuracy of Sentinel-3A in the coastal waters of China,
the accuracy of aerosol estimation in atmospheric correction must be improved.
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1. Introduction

The first global chlorophyll-a concentration image from the NASA Coastal Zone Color Scanner
(CZCS, 1978–1986) launched efforts to begin conducting optical remote sensing of the world’s oceans.
Many ocean color sensors have been launched since CZCS, including the NASA Sea-viewing Wide
Field-of-view Sensor (SeaWiFS, 1997–2010), the NASA Moderate Resolution Imaging Spectroradiometer
(MODIS-T, 1999–present on board the Terra platform, and MODIS-A, 2002–present on board the Aqua
platform), the ESA Medium Resolution Imaging Spectrometer (MERIS, 2001–2012), NOAA Visible
Infrared Imaging Radiometer Suite (VIIRS, 2011–present on board the Suomi NPP) and the most recent
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sensor, the ESA Sentinel-3 Ocean and Land Color Instrument (OLCI, 2016–present). All data acquired
by these sensors have been widely used to study the impact of climate change on marine biomass [1,2]
and on the carbon cycle [3–7].

Calibration and validation of the various ocean color products in open-sea and coastal waters
are important tasks in ocean color satellite missions [8]. Although the methods for acquiring ocean
optical properties from satellite measurements is currently established, improving the accuracy of the
products for ocean color satellite mission remains a challenge. The remote sensing reflectance (Rrs)
(Table 1) is a well-defined radiometric quantity, and its exact definition is common to multiple space
agencies [9]. However, uncertainties in calibration, which affect the quantification of the initial signal
recorded at the top-of-atmosphere level, may introduce errors when estimating Rrs [10]. Moreover,
differences among the atmospheric correction schemes, which affect the magnitude and shape of the
retrieved marine signals (i.e., Rrs) [11–13], may also introduce errors when estimating Rrs [9]. Most
importantly, the differences in Rrs values may further affect the subsequent optical (absorption and
back-scattering coefficients) and biogeochemical products (i.e., chlorophyll concentration, Kd_490,
primary production, etc.) [14], which may induce bias in the studies of the impact of anthropogenic
carbon on the climate and environment [15,16]. Furthermore, the most critical parameters, such as the
inherent optical properties (IOPs) of seawater and biogeochemical parameters, are also estimated from
Rrs. Therefore, achieving highly accurate Rrs is also critical for ocean color.

Table 1. Symbols and definitions.

Symbols Definitions

Lt Total measured radiance
Lr Radiance due to the Rayleigh scattering

La, Lra
Contribution of the scattering by the aerosols and the scattering between

the aerosols and the air molecules
Lrc Rayleigh-corrected radiance
F0 Solar irradiance at the mean Earth-Sun distance
t0 Diffuse transmittance of the atmosphere from the surface to the sensor
Rrs Remote-sensing reflectance
Lwn Normalized water-leaving radiance
ρw Water reflectance
τr, τA, τO Rayleigh, aerosol, and ozone optical thicknesses
θ0 Viewing direction
ηR, ηA Rayleigh and aerosol forward scattering probabilities
ωA Aerosol single scattering albedo
δA Error of A (any symbols can called A)

The latest generation of ocean color remote sensor is the Ocean and Land Color Imager (OLCI),
which is on board the Sentinel-3A (S3A) satellite, which was successfully launched by the European
Space Agency (ESA) on February 16th, 2016. This satellite features many new capabilities, such as
(1) global coverage at 300 m (Full Resolution, FR) or 1200 m (Reduced Resolution, RR) resolution;
(2) 21 spectral bands from 400 nm to 1020 nm; (3) sun glint minimization by tilting the sensor from
the nadir. OLCI will quickly become the main remote sensor for studying the open ocean and coastal
waters [17,18] because four successive versions of the sensor are planned for launch over the next 10–15
years (OLCI-B, on board the Sentinel-3B has been in space since 25 April 2018).

Since OLCI was launched, only a few works have been performed to validate its products [19–22].
Shen et al. (2017) [19] developed a dual band ratio algorithm to calculate the downwelling diffuse
attenuation coefficient at 490 nm (Kd(490)) for the waters of Lake Taihu with OLCI data and showed
that the new OLCI product has a smoother spatial distribution and finer textural characteristics than
does the MODIS product and it contained notably higher-quality data. Zibordi et al. (2018) [20]
summarized a regional assessment of radiometric data products from OLCI with in-situ data from
the ocean color component of the Aerosol Robotic Network (AERONET-OC) and the bio-optical
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mapping of marine properties (BiOMaP) program and revealed that there Rrs was systematically
underestimated while the aerosol optical thickness was overestimated, explainable by biases in
calibration coefficients or poor performance of bright pixel correction. Mograne et al. (2019) [21]
validated the OLCI water-leaving reflectance products over two contrasted French coastal waters
obtained by five different atmospheric correction algorithms (AC), and discovered that the polymer
and C2R-CCAltNets algorithms obtain high performances. Gossn et al. (2019) [22] developed a new
atmospheric correction algorithm (BLR-AC) for turbid waters based on the red, near-infrared (NIR)
and 1016 nm bands of OLCI. They presented a comparison with the NASA/SeaDAS and ESA standard
atmospheric correction algorithms, showing that the BLR-AC is better than the NASA/SeaDAS and
ESA AC, particularly over extremely turbid waters. However, these published OLCI validation studies
described only the overall error of OLCI in the region of interest; they did not analyze the error sources.
Therefore, there is a need to validate OLCI products in other regions of interest (in our case, the China
Sea) and, more importantly, to further analyze the sources of their overall error.

Here, we present a validation of the OLCI-Rrs product and compare it with the MODIS and
VIIRS-derived Rrs(λ) products around the China Sea based on in situ measurements and match-up
analysis. Then, we further assess the uncertainties, the error budget, and the factors that influence the
accuracy of the Rrs product.

2. Theoretical Background

2.1. Description of Atmospheric Correction

The goal of atmospheric correction is to estimate and then remove the atmospheric path radiance
contribution. The water-leaving radiance is at most 10–20% of the total top-of-atmosphere (TOA)
radiance in the visible bands (VIS) over open ocean waters, and it can reach 50% in the red bands over
turbid waters. Therefore, atmospheric correction is a critical step for remotely sensed data [11]. For the
ocean–atmosphere system, after pre-correcting for gas absorption, whitecaps, and sun glitter on the sea
surface, the radiance (Lt(λ)) measured by the remote sensor can be decomposed as follows [11,23,24]

Lt(λ) = Lr(λ) + La(λ) + Lra(λ) + t0(λ)cosθ0F0(λ)Rrs(λ) (1)

where λ is the wavelength. Lr(λ) is the radiance due to Rayleigh scattering, La(λ) + Lra(λ) is the
contribution of the aerosols to scattering and the scattering between aerosols and air molecules, t0(λ) is
the diffuse transmittance of the atmosphere from the surface to the sensor, θ0 is the viewing direction,
F0 is the solar irradiance at the mean Earth–Sun distance, and Rrs(λ) is the remote-sensing reflectance.

Assuming that the corrections for Rayleigh scattering [25–27], whitecaps [28–30], gas absorption
(O3, NO2) [31,32], and sun glitter [26] have all been made, then the left-hand side of Equation
(1) becomes

Lt(λ) − Lr(λ) = La(λ) + Lra(λ) + t0(λ)cosθ0F0(λ)Rrs(λ) (2)

The term La(λ) + Lra(λ) is the aerosol path radiance LA(λ) and the term Lt(λ) − Lr(λ) is the
Rayleigh-corrected radiance Lrc(λ). Equation (2) thus becomes

Lrc(λ) = LA(λ) + t0(λ)cosθ0F0(λ)Rrs(λ) (3)

The purpose of atmospheric correction is to estimate LA(λ), the combined aerosol and
aerosol-Rayleigh reflectance and to subtract it from the left-hand side of Equation (2).

Over open ocean waters, the LA(λ) estimation is based on the hypothesis of a black ocean in
the near-infrared (NIR) bands [23]. Over turbid waters, this hypothesis is no longer valid; thus,
the contribution of the ocean to the NIR must be estimated to accurately estimate Rrs in the visible
(VIS) bands [11,12,33].
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In this study, we focused on the standard OLCI radiometric product obtained with the standard
OLCI atmospheric correction algorithm and the MODIS-AQUA and VIIRS radiometric products
obtained with the NASA standard atmospheric correction algorithm [24]. The latter algorithm has been
extensively validated worldwide [13,14,34,35]. The hypotheses for the standard OLCI atmospheric
correction [36,37] are similar to those of NASA MODIS/VIIRS atmospheric correction [23,24,38,39].

The standard OLCI atmospheric correction algorithm first retrieves the suspended particulate
matter (SPM) by assuming the water reflectance (ρw(λ)) and the single scattering aerosol reflectance
(ρas(λ)) in the NIR bands based on the black ocean hypothesis. Then, the initial SPM is used to get an
initial estimate of ρw(λ) and ρas(λ) in the NIR bands via an empirical relationship [37]. Finally, the
ρas(λ) in the NIR bands is used to get ρw(λ) in the VIS bands by accounting for the multiple scattering
of air molecules and aerosols [36] using Equation (3).

To compare the OLCI product with the MODIS-AQUA and VIIRS Rrs, we first present a brief
description of the standard NASA atmospheric correction algorithm. This algorithm is described in
Bailey et al. (2010) [24]. First, the black-pixel assumption is used for both NIR bands to obtain the first
initial Rrs(λ) estimation [23]. Second, Equation (3) is used to obtain the initial estimate of Rrs(λ) in the
NIR bands. Third, the initial Rrs(λ) is used to obtain an initial estimate of the chlorophyll concentration
by using a bio-optical model. Fourth, this chlorophyll concentration is used to obtain the absorption
(a(λ)) and backscatter coefficients (bb(λ)) at the NIR bands via an empirical relationship [24,38]. Fifth,
a(λ) and bb(λ) in the NIR bands are then used to obtain Rrs(λ) in the NIR bands and these quantities
are used to remove the non-zero Rrs(NIR) contribution to Lrc(λ) from the NIR bands. Finally, this
process is repeated until Rrs(NIR) convergence to obtain the Rrs(λ) in all bands.

To summarize, the general flow of these algorithms is as follows:
Step 1. Estimate Rrs(λ) (or equivalently ρw(λ)) at the NIR reference wavelengths using the

iterative model [24,38,40] so that the non-zero water-leaving radiance can be removed from the TOA
signal, leaving only the aerosol reflectance as the contribution to LA(λ).

Step 2. The aerosol reflectance at the NIR bands is used to estimate the aerosol properties and
extrapolate aerosol reflectance to the VIS bands. Then the aerosol reflectance can be removed from the
TOA signal, leaving the Rrs(λ) (or equivalently ρw(λ)) in the VIS bands.

In the iterative model, the difference between the real Rrs(NIR) and the estimated Rrs(NIR) is
called the error of the iterative model, and it stems from the error that occurs when estimating LA(NIR)
and is later transferred to LA(λ) in the VIS bands (LA(VIS)), leading to inaccurate Rrs(λ) in the VIS
bands (Rrs(VIS)).

The aerosol lookup tables (LUTs) used in the atmospheric correction are obtained from simulations
of the radiative transfer and take a given number of aerosol models into account [23,33,36]. These
estimated aerosol LUTs are ideal, but they may differ from the values observed over the ocean, especially
over coastal waters. The difference between the real LA(VIS) and the estimated LA(VIS), which we
term the error of the aerosols LUTs, also has an impact on the final Rrs(VIS) estimation.

Thus, Step 1 of the algorithms depends on the accuracy of the iterative model used to estimate the
aerosol properties in the NIR bands, while Step 2 depends on the accuracy of the aerosol LUTs, which
are used to extrapolate the aerosol reflectance to the VIS bands. Note that the iterative model and the
aerosol LUTs algorithms differ between ESA and NASA, although their general principles are similar.

2.2. Error Budget

To improve the product accuracy for ocean color satellites, it is necessary to not only determine
the total error but also to find the most algorithm component that contributes the most to the total error.
The error budget decomposes the total error into sub-error categories and then compares the sub-errors
to obtain the maximal error contribution. Therefore, calculating the error budget is an essential part of
the validation.

If the measurement result is determined by a functional relation from other quantities, rather
than directly measured, that function or model should represent not only the physical/bio-optical laws
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but also the measurement process. In particular, it should include all the quantities that may have
a significant impact on the uncertainty of the measurement result [41]. Here, we introduce an error
budget model that represents both the physical/bio-optical laws and the measurement processes and
apply it to estimate the error budget of the Rrs-derived product [42].

If the result (C) includes two independent parts, such as A and B. The error of C is

δC ≈ δA + δB. (4)

If the function is given as
q = x + . . .+ z− (u + . . .+ w) (5)

then the error budget is
δq ≈ δx + . . .+ δz + δu + . . .+ δw, (6)

where q is the result; x, z, u, and w are function quantities; δq is the error of the result; and δx, δz, δu,
and δw are the error of quantities [42].

If the function is given as
q = Bx (7)

with B, being a constant. Then the error budget is

δq ≈ |B|δx, (8)

where q is the result, x is the quantity, δq is the error of the result, and δx is the error of the quantity [42].

2.2.1. Total Error of the Satellite Product

With the in-situ data and match-up procedures, the total difference in Rrs(λ) between the in-situ
data and the satellite product can be obtained in the VIS bands, for example, the absolute percentage
difference (APD, Equation (25)) and the bias (Equation (24)). The in-situ data and the satellite product
are independent, according to Equation (4); therefore, the difference between in-situ data and the
satellite product can be obtained by

δEinsitu−satellite = δEinsitu + δEsatellite (9)

where δEinsitu−satellite is the difference between the in-situ data and a satellite-derived product, δEinsitu is
the error of the in-situ data (also named the uncertainty on the measurement of the in-situ data), δEsatellite
is the error of the satellite-derived product. Then, we can calculate the error of the satellite-derived
product in the VIS and NIR bands.

Because the error of in-situ data is independent of the satellite measurement, the total error of the
satellite-derived product can be computed as

δRrs−satellite = δRrs−insitu−satellite − δRrs−insitu (10)

where δRrs−insitu−satellite is the difference between the in situ and satellite-derived Rrs, δRrs−insitu is the
error of the in situ Rrs, and δRrs−satellite is the error of satellite-derived Rrs.

2.2.2. Decomposition of the Total Error

For NASA and OLCI atmospheric correction algorithms, Rrs(λ) can be derived using the equation

Rrs(λ) =
Lrc(λ) − LA(λ)

t0(λ)cosθ0F0(λ)
(11)
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For a given band, when the observation geometry and aerosol type are known, then t0(λ)cosθ0F0(λ)

is also known, and can be considered a constant [43]. Then, the error of Rrs(λ) can be derived using
Equations (5)–(8), leading to

δRrs(λ) =
δLrc(λ) + δLA(λ)∣∣∣t0(λ)cosθ0F0(λ)

∣∣∣ (12)

Thus, the error of Rrs(λ) includes two parts: the error of Lrc(λ), which is called the error of the
Rayleigh-corrected radiance and the error of LA(λ), which includes the error of the iterative model and
the aerosol LUTs.

2.2.3. Error of the Iterative Model

For the NASA and OLCI AC algorithms, Rrs(NIR) is estimated using an iterative model, and the
error of Rrs(λ) is the difference between the Rrs(NIR) from the iterative model and the Rrs(NIR) from
the in-situ data. Thus, the error of Rrs(NIR) is

δRrs(NIR) = Rrs−ite(NIR) −Rrs−true(NIR), (13)

where δRrs(NIR) is the error of Rrs(λ) at NIR bands, Rrs−ite(NIR), the Rrs(λ) from the iterative model
in the NIR bands, and Rrs−true(NIR), the true/in situ Rrs(λ) in the NIR bands.

Because the error budget relies on the calculation/iterative process, by determination the δRrs(NIR),
the error budget of the error of the iterative model is calculated as follows:

(a) The error on Rrs(NIR) is passed to LA(NIR) using Equation (11), and the error of LA(NIR) due
to the iterative model (δLA−ite(NIR)) is

δLA−ite(NIR) =
∣∣∣t0(NIR)cosθ0F0(NIR)

∣∣∣δRrs(NIR). (14)

(b) Considering the laws of aerosol radiance in atmospheric correction algorithms [23,33,44],
LA(λ) can be derived as

LA(λ) = LA(NIR) ×
(
λ0

λ

)α
, (15)

where α is the Ångström exponent or Ångström coefficient, which is derived from aerosol LUTs using
the aerosol optical thickness τ.

For a given band and a known aerosol type,
(
λ0
λ

)α
is constant. Then, δLA−ite(NIR) is passed

to LA(VIS), and the error of LA(VIS) from the iterative model (δLA−ite(NIR)) can be derived using
Equations (4)–(7)

δLA−ite(VIS) = δLA−ite(NIR)

∣∣∣∣∣∣
(
λNIR

λVIS

)α∣∣∣∣∣∣ = ∣∣∣t0(NIR)cosθ0F0(NIR)
∣∣∣δRrs(NIR) ∗

∣∣∣∣∣∣
(
λNIR

λVIS

)α∣∣∣∣∣∣ (16)

(c) δLA−ite(VIS) is passed to Rrs(VIS) using Equation (10), and the error of Rrs(VIS) from the
iterative model (δRrs−ite(VIS)) is

δRrs−ite(VIS) =
δLA−ite(VIS)

t0(VIS)cosθ0F0(VIS)
= δRrs(NIR) ∗

F0(NIR)
F0(VIS)

∗

∣∣∣∣∣∣
(
λNIR

λVIS

)α∣∣∣∣∣∣ ∗ t0(NIR)
t0(VIS)

. (17)

where δRrs−ite(λ) is the error of the iterative model in the VIS bands.
Because to(λ) is not included in the L2 standard products, it can be obtained from [45]

to(λ) = exp
(
−[(1− ηR(λ))τr(λ) + (1− ηA(λ)ωA(λ))τA(λ) + τO]

cos(θ0)

)
(18)
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where τr(λ), τA(λ), and τO are the Rayleigh, aerosol, and ozone optical thicknesses, respectively; ωA(λ)

is the aerosol single scattering albedo; and ηR(λ) and ηA(λ) are the Rayleigh and aerosol forward
scattering probabilities, respectively. The τr(λ) value was computed using Bodhaine et al. (1999) [27].
The value of τO was taken as a constant equal to 0.008. The value ηR(λ) was also taken as a constant
equal to 0.5, while ηA(λ)ωA(λ) was allowed to spectrally vary from 0.89 at 412 nm to 0.86 at 670 nm.
The value θ0 was extracted from the OLCI L2 radiometric product, and from the orbitons for VIIRS
and MODIS. The value of τA(λ) was extracted from the L2 standard products.

2.2.4. Error of the Aerosol LUTs and the Rayleigh-Corrected Radiance

Given the total error of the satellite-derived product (Equation (10)) and the error of the iterative
model (Equation (17)), the error of the aerosol LUTs and the error of the Rayleigh-corrected radiance can
be calculated using Equation (4). The error of the aerosol LUTs and the Rayleigh-corrected radiance is

δRrs−LUTs(λ) + δLrc(λ) = δRrs−satellite(λ) − δRrs−ite(λ) (19)

where δRrs−LUTs(λ) is the error of the aerosol LUTs, and δLrc(λ) is the error of Rayleigh-corrected
radiance. The error of Lrc(λ) includes the errors of both Lt(λ) and Lr(λ).

3. Data and Method

3.1. In-Situ Data

The in-situ data were collected in the coastal and offshore waters of the China Sea (see Figure 1 and
Table 2). The stations used during the four campaigns were conducted around the Bo Sea (BoS), Yellow
Sea (YS), East China Sea (ECS), the Pearl River Estuary (PRE), and South China Sea (SCS); these stations
cover most of the China Sea. The Rrs(λ) were obtained using two above-water optical instruments,
SAS and ASD, following the NASA optical protocols [46]. The SAS and ASD were calibrated before
and after each campaign, and the Rrs(λ) (unit = sr −1) were estimated from the in situ radiometric
parameters using the R06 approach [47,48]

Rrs(λ) =
Lt(λ) − ρLsky(λ)

Es(λ)
(20)

where Lt(λ) is the total radiance, Lsky(λ) is the sky irradiance, Es(λ) is the total irradiance, λ is the
wavelength of incident light, and ρ is the Fresnel reflectance of the air–water interface (ρ is a function
of wind speed and cloud cover). Finally, a residual sun glint or white offset correction ([a*Rrs(780) −
Rrs(720)]/a−) was implemented with a = 2.35 [48]. The spectral backscattering coefficient (bb, m−1)
using Hydroscatt-6 (HS6) [49] and the spectral absorption coefficient (a, m−1) using AC9 [49] were
collected during only two campaigns (YS, ECS&SCS).

3.2. Quality Control of the In Situ Data

Quality control of the in-situ data was essential because the in-situ data were considered as the
sea-truth and because we sampled the Rrs values using two different radiometers.

3.2.1. Consistency of Multiple Measurements

Each in situ Rrs was measured three times (three replicates) at each sampling station. The samples
were excluded if the coefficient of variability (CV = standard deviation (Rrs)/mean (Rrs)) of the three
Rrs spectra at 490 nm at any given station was higher than 5% (Figure 2). Based on this threshold,
18 stations were removed.
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Table 2. Location, period, number, and source of Rrs samples used in the study.

Period Place Number of Stations Source of Rrs

2002.09 BoS 30 ASD
2017.08 YS 76 SAS
2018.03 PRE 30 SAS
2018.09 ECS&SCS 74 SAS

3.2.2. Removal of the Surface-Reflected Radiance

The surface-reflected radiance (mainly due to sky glint because direct sun glint is usually weak
with measurement geometry) is recognized as a major sources of uncertainty [50,51]; thus, a station
was discarded when the ρLsky/Lt exceeded 50%, [50,52]. Based on this threshold, eight stations
were removed.

3.2.3. Comparison with an IOP Model

Rrs can also be estimated from the IOPs of seawater, i.e., the backscattering (obtained here using the
HS6 instrument) and absorption coefficients (using the AC9 instrument). The Rrs can be modeled using
the IOPs, and the modeled Rrs values can be compared to the ASD/SAS in situ Rrs measurements [53,54]
using the equation

Rrs_IOP(λ) =

(
t2

n2
w

)∑2

i=1
gi

(
bb(λ)

bb(λ) + a(λ)

)i

(21)

The absolute difference between the in situ Rrs and the modeled Rrs is calculated as

di f f =
∣∣∣∣∣Rrs_AOP −Rrs_IOP

Rrs_AOP

∣∣∣∣∣ (22)
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The coefficients of the model presented in Equation (22) are from the GSM model [55,56]. If di f f
was larger than 30%, the corresponding in situ measurement was discarded. The PRE and BoS
campaigns were not included in this closure exercise because no IOPs measurements were collected for
these areas due to the lack of AC9 and HS6 data. The Rrs values from 17 stations were removed based
on this method. The remaining Rrs values are depicted in Figure 3. Some stations were kept when only
one band exceeded the threshold, which is the case for stations where the di f f was above 30% at 650
and 676 nm. The mean absolute percentage difference (APD, Equation (25)) and the relative percentage
difference (RPD, Equation (26)) between the modeled and in situ Rrs values are shown in Figure 3.
Overall, there is good consistency between the in situ and modelled Rrs in the VIS; the APD varies
from 11.82% (412 nm) to 25.35% (676 nm), and the values increase with increasing wavelengths [57,58].

The total number of the discarded stations is 43 (some values were discarded because there were
several Rrs for a given station). After undergoing this quality control process, the data from 167 stations
remained and were used for the match-up exercise.

3.3. Satellite-Derived Data

The L2 VIIRS and MODIS-AQUA Rrs products (reprocessing version 2018) were downloaded
from the NASA Ocean Color website (http://oceancolor.gsfc.nasa.gov/). OLCI L2 RR Rrs product
(version 2.23) was downloaded from EUMETSAT website (https://coda.eumetsat.int/).

3.4. Match-Up Procedures

The match-up analyses and quality control were performed for the Rrs values from VIIRS,
MODIS, and OLCI radiometric products. First, strict rules for time interval and spatial distance to
the match-up data were applied. We selected the mean Rrs values over a 0.034×0.034 degree (VIIRS),
0.05 × 0.05 degree (MODIS and OLCI RR) rectangle, from the L2 product within a time window of
±3 h. The spatial distance the same as in-situ data, corresponding to about a 5 × 5-pixel box near
the nadir, but this pixel box size was adjusted at the scan edge to address spatial heterogeneity as
suggested by Barnes et al. (2019) [59]. Second, views and solar zenith angles above 60◦ and 70◦,

http://oceancolor.gsfc.nasa.gov/
https://coda.eumetsat.int/
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respectively, were removed for all match-up data. Moreover, the L2 flags of the match-up data
were applied. The L2 flags for OLCI include INVALID, LAND, CLOUD, CLOUD_AMBIGUOUS,
CLOUD_MARGIN, SNOW_ICE, SUSPECT, HISOLZEN, SATURATED, HIGHGLINT, WHITECAPS,
AC_FAIL, OC4ME_FAIL, ANNOT_TAU06, RWNEG_O2, RWNEG_O3, RWNEG_O4, RWNEG_O5,
RWNEG_O6, RWNEG_O7, RWNEG_O8, and the 490 nm reflectance of is below 0.02. The L2 flags for
MODIS and VIIRS include ATMFAIL, LAND, HIGLINT, HILT, HISATZEN, STRAYLIGHT, CLDICE,
COCCOLITH, HISOLZEN, LOWLW, CHLFAIL, NAVWARN, ABSAER, MAXAERITER, ATMWARN,
NAVFAIL [60]. Third, because the accuracy of Rrs(488/490) is usually the highest [59], a coefficient of
variability CV (CV = STD/mean) was calculated for all boxes at 490 (488) nm in the space distance was
calculated and a match-up was considered valid when the CV was smaller than 0.15 at 490 nm [60].
Finally, the percentage of valid pixels in each box was checked, and when this percentage was no
less than 50%, the mean values of the valid pixels in the box was calculated and compared to the
in-situ data.
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3.5. Statistical Method

Several statistical parameters were used to evaluate the match-up results. The definitions of these
parameters are given below:

The bias:
Bias =

1
n

∑i=n

i=1
(yi − xi) (23)

The absolute percentage difference (APD):

APD =
1
n

∑i=n

i=1

(∣∣∣∣∣ yi − xi

xi

∣∣∣∣∣)× 100% (24)

The relative percentage difference (RPD):

RPD =
1
n

∑i=n

i=1

(
yi − xi

xi

)
× 100% (25)



Remote Sens. 2019, 11, 2400 11 of 22

The root mean square error (RMSE):

RMSE =

√∑i=n
i=1 (yi − xi)

2

n
(26)

The unbiased RMS difference (u∆) [61]:

u∆ =

√∑i=n
i=1 (yi − xi + x− y)2

n
(27)

with yi, the ith satellite-retrieved value, xi, the ith in-situ value, and n, the number of match-up
data points.

4. Results

4.1. Variability of the In-Situ Rrs Data

The total dataset of Rrs for the four campaigns are shown in Figure 4. The Rrs spectra include
both open and coastal waters. SCS is mainly composed of open ocean waters [62], while YS and
BoS are SPM-dominated waters [63]. We classified the Rrs values following the method developed
in Wei et al. (2016) [64]. The Rrs of the in-situ dataset corresponds to the classes 2–14 and 16 from
Wei et al. (2016) [64]. Figure 4 shows a color code that depends on the classes defined by Wei et al.
(2016) [64]. The blue plots are typical of open ocean waters (classes 2–4), whose Rrs values depend
only on phytoplankton. The green spectra correspond to more optically complex waters, including
those with CDOM and phytoplankton in the water (classes 5–9). The black spectra correspond to
SPM-dominated waters (classes 10–14 and 16). For open ocean waters (blue spectra), we can observe
the well-known shape of the spectra with high values of Rrs at 410 and 443 nm and a decreasing
magnitude from the blue bands to the NIR. For the intermediate waters (green spectra), we can observe
that the highest magnitude is observed in the green bands and that their magnitudes are low in the
NIR bands. Due to the high CDOM absorbance in the purple/blue bands, the Rrs at 410 and 443 nm
are lower than those in the green bands. In turbid waters (black spectra), the highest magnitude is
observed in the yellow bands and high magnitudes also exist in the NIR bands (compared to the open
ocean and intermediate waters) due to the strong SPM backscatter. In conclusion, our Rrs dataset
covers a large set of water types in the China Sea.

The spatial location and the Rrs spectra of the match-ups are shown in Figure 5. The number of
match-up stations for OLCI, MODIS, and VIIRS are 13, 13, and 15, respectively. Both the intermediate
waters (green) and the turbid waters (black) are coastal waters. Figure 5 shows the match-up stations
of the three sensors covering the coastal and open ocean waters. The match-up stations of MODIS and
VIIRS cover SCS, YS, and BoS. The match-up stations of OLCI cover SCS, ECS, and YS. The Rrs from the
match-up stations of OLCI and MODIS included all three types of waters. The Rrs from the match-up
stations of VIIRS included only two water types (open ocean and turbid waters). The match-up stations
of three sensors cover most of the China Sea and most of the water types.
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Figure 4. In-situ Rrs spectra at OLCI bands: (a) in the BoS, (b) in the YS, (c) in the PRE, (d) in the
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green corresponds to intermediate waters between open ocean and turbid waters.

4.2. Validation Results

Scatterplots showing the relationship between the in situ and satellite-derived Rrs are shown in
Figure 6 (OLCI) and Figure 7 (VIIRS and MODIS) and the statistical parameters are listed in Table 3. For
OLCI, the points of the scatterplots are mainly distributed around the 1:1 line. The scatterplots show
that the satellite-derived values are in good agreement with the in situ Rrs values, except at 400 and
410 nm, which corresponds to the campaign in PRE (coastal waters; the red circle in Figure 6). The bias
values show that the satellite-derived Rrs values are under-estimated compared to the in-situ Rrs,
except at 400, 443, 490, and 510 nm. Then, in the visible spectra, the Rrs are mainly over-estimated and
under-estimated in the NIR (negative bias values). The RMSE and u∆ are low for all bands, with values
below 0.003 sr−1, which means that the satellite-derived values are in good agreement with the in situ
Rrs. The highest RMSE value is obtained at 400 nm (0.003 sr−1). The statistical parameters showed that
the APDs at 400, 410, 443, 490, 510, 560, 620, 665, 674, 681, 708, and 754 nm are 43%, 30%, 23%, 18%,
20%, 21%, 68%, 57%, 77%, 66%, 56%, and 79% for OLCI, respectively. The Rrs values at 490 nm show
the lowest APD making it the most accurate band.
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Figure 5. In-situ Rrs spectra and the map of match-up stations: (a) OLCI, (b)VIIRS, (c) MODIS, (d) the
geographical map with the location of the match-up for each sensor. The color code is same as Figure 4.

The MODIS/VIIRS derived-Rrs scatterplots are shown in Figure 7, and the statistical parameters
are listed in Table 3. For OLCI, the points of the scatterplots are mainly distributed around the 1:1
line and show that the satellite-derived values are in agreement with the in situ Rrs for MODIS/ VIIRS,
other than a few some outliers (red circle), where the in situ Rrs were collected in BOS (coastal waters).
The Bias values showed that the satellite-derived Rrs values were under-estimated compared to the in
situ Rrs in all bands (except at 678 nm for MODIS, perhaps due to chlorophyll fluorescence). The RMSE
and u∆ are low in all bands, and have values below 0.002 sr−1, which means that the satellite-derived
values are in good agreement with the in situ Rrs. The highest RMSE values were obtained at 412 nm
(MODIS) and at 443 nm (VIIRS). The statistical parameters show that the APDs at 412, 443, 488, 531, 555,
645, 667, and 678 nm are 39%, 30%, 26%, 19%, 19%, 48%, 32%, and 40% for MODIS, respectively, while
the APDs at 410, 443, 486, 510, and 671 nm were 46%, 42%, 30%, 27%, and 36% for VIIRS, respectively.
The Rrs(531) and Rrs(551) are the most accurate for MODIS and VIIRS, respectively. Although PRE
and BOS are located in different regions of the China Sea, their water types (which belong to coastal
waters) are similar, and the aerosols are affected by terrestrial sources, which might be the main source
of the outliers for these three sensors.
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Figure 6. Scatterplot of OLCI-derived versus in situ remote-sensing reflectance in the China Sea, total
R2 = 0.83. The blue scatterplots correspond to the open ocean, the black scatterplots to the coastal
waters. The red circles correspond to the outliers for the PRE region (the APD of the outlier points is
larger than the mean APD +/− 3*sigma of the other points).
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Figure 7. Scatterplot of the satellite-derived versus in situ remote-sensing reflectance in the SCS (left:
MODIS-AQUA, total R2 = 0.76; right: VIIRS, total R2 = 0.80). The color code and the outliers are similar
as in Figure 6. The red circles correspond to the outliers for the BoS region.

The spectral variation of the Bias, RMSE, APD, and u∆ for OLCI, MODIS and VIIRS are shown in
Figure 8. The trend of RMSE, APD, and u∆ are the same for OLCI, MODIS and VIIRS. The bias of OLCI
is positive in the 400, 443, 490, and 510 nm bands, which differs from MODIS and VIIRS. The absolute
value of the bias for OLCI is lower than that for MODIS and VIIRS in most of the bands (from 410 nm
to 620 nm). Rrs(400) is the least accurate band for OLCI. Among the three sensors, the RMSE and
u∆ are consistent in term of both trend and value. The u∆ of OLCI is lower than that of MODIS, and
VIIRS in the bands between 490 nm and 754 nm. The UV band (400 nm) is the least accurate for OLCI.
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The APD value of OLCI is lower than that of MODIS, and VIIRS in the 412, 443, 490, and 510 nm bands.
The APD of OLCI is higher than for MODIS and VIIRS in the NIR bands (from 600 nm to 678 nm).
Although their match-up stations are different, the performance of OLCI is similar to that of MODIS in
the visible bands.

Table 3. Statistical parameters of OLCI, MODIS, and VIIRS around the China Sea.

Satellite Product n Bias (sr−1) RMSE (sr−1) APD (%) u∆ (sr−1)

OLCI

Rrs(400) 13 0.001085 0.00300 43 0.00290
Rrs(410) 13 −0.000186 0.00252 30 0.00260
Rrs(443) 13 0.000120 0.00166 23 0.00172
Rrs(490) 13 0.000237 0.00107 18 0.00108
Rrs(510) 13 0.000061 0.00092 20 0.00096
Rrs(560) 13 −0.000061 0.00052 21 0.00053
Rrs(620) 13 −0.000241 0.00036 68 0.00031
Rrs(665) 13 −0.000231 0.00030 58 0.00023
Rrs(674) 13 −0.000206 0.00029 77 0.00024
Rrs(681) 13 −0.000227 0.00030 66 0.00023
Rrs(708) 13 −0.000177 0.00016 56 0.00018
Rrs(754) 13 −0.000098 0.00012 79 0.00012

MODIS

Rrs(412) 15 −0.000531 0.00149 39 0.00141
Rrs(443) 15 −0.000478 0.00127 30 0.00118
Rrs(488) 15 −0.000662 0.00143 26 0.00127
Rrs(531) 15 −0.000540 0.00122 19 0.00109
Rrs(555) 15 −0.000708 0.00119 19 0.00095
Rrs(645) 15 −0.000150 0.00041 48 0.00038
Rrs(667) 15 −0.000213 0.00040 32 0.00034
Rrs(678) 15 0.000079 0.00032 40 0.00031

VIIRS

Rrs(410) 15 −0.000481 0.00157 47 0.00155
Rrs(443) 15 −0.000495 0.00171 42 0.00169
Rrs(486) 15 −0.000508 0.00151 30 0.00147
Rrs(551) 15 −0.000549 0.00127 27 0.00118
Rrs(671) 15 −0.000137 0.00033 36 0.00032

4.3. Difference between Open Ocean and Coastal Waters

Although the mean bias or APD values differ between the satellites (see Figure 8), we noticed
that the satellite-derived Rrs has a small difference in the open ocean and a large difference in the
coastal water (see Figures 6 and 7). The reason may be the surface-reflected radiance which is one of
the main sources of uncertainties in satellite Rrs retrievals [65,66]. These effects are small in the open
ocean with small aerosol loads and much more pronounced in coastal waters with higher aerosol
loads, because they strongly depend on the aerosol optical thickness [67]. The phenomenon that the
APD of three sensors decreases with increasing band is also the same influencing factor, because the
sky radiance reflected from the water surface, which carries uncertainties to the satellite-derived Rrs,
is highest in the blue part of the spectrum [59].

Although the mean bias or APD values differ between the satellites (see Figure 8), we noticed that
the satellite-derived Rrs were higher than the in situ values in the visible bands over open ocean waters,
which is a different situation than coastal waters (Figures 6 and 7). The RPD values from OLCI, MODIS,
and VIIRS are shown in Figure 9, showing that the three satellites have similar results and, except for a
few points, the RPD values of the Rrs are positive over open ocean but negative in coastal waters.
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5. Discussion

Few works exist that the error of Rrs(λ) from in-situ data [34,50,68]. The error of Rrs(λ) from
BOUSSOLE was reported to be 6% in the VIS bands [68], and the error of in-situ data from AERONET-OC
was approximately 5% from 412 nm to 551 nm, and 8% at 667 nm [34]. The difference between
directly measured Rrs(λ) and Rrs(λ) obtain using the optimization approach (bio-optical model) is
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approximately 11% in all bands [50]. The data in Figure 3 show that the difference in Rrs(λ) between
the GSM model and the in-situ data is approximately 14% in the VIS bands and 26% in the NIR bands.
We assume that the error of Rrs(λ) from the GSM model is the same as the error of the in-situ data.
Then, using Equation (3), the error of in-situ Rrs(λ) is 7% in the VIS bands and 13% in the NIR bands.

As discussed in Section 2.2, we estimated an error budget. We used 754, 678, and 671 nm as the
NIR bands for OLCI, MODIS, and VIIRS, respectively, due to the lack of Rrs(NIR) in standard MODIS
and VIIRS products. We first calculated the error of Rrs and the error of the iterative model; then, we
calculated the percentage of the error of the iterative model in the error of Rrs. Finally, we calculated
the average result according to the location of stations (open ocean or coastal waters). We investigated
the factors that impacted the errors on the estimation of Rrs in the open ocean and coastal waters using
the equation presented in Section 2.2.

5.1. Influencing Factors in the Open Ocean

The mean error of Rrs for the three sensors in the open ocean is shown in Figure 10a, revealing that
the three sensors have similar Rrs errors, all of which are relatively high in the blue band (approximately
0.0008 sr−1) and then decrease as the band increases (falling to approximately 0.0002 sr−1 for the red
band). In terms of numerical values, VIIRS shows the highest error, followed by OLCI and MODIS,
which show the lowest errors at 443 and 486 nm, respectively. The 400 nm band of OLCI has the
largest error.Remote Sens. 2019, 8, x FOR PEER REVIEW  17 of 21 
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The mean percentage of the iterative model error in the error of Rrs over the open ocean is shown
in Figure 10b, showing that the percentages of the iterative model error in the error of Rrs from the three
sensors have similar trends, all have high percentages in the red bands and lower values in the blue
band, except for 410 nm (OLCI) and 412 nm (MODIS). The ratio of the iteration error of OLCI is less
than that MODIS and VIIRS in the bands before 500 nm. For the open ocean region of the China Sea,
the ratio of the iteration error of the three satellites from 400 to 600 nm in the total error is less than 50%,
which indicates that the main influencing factors of the three satellites are not the iterative algorithm,
but the aerosols LUTs (δLA(λ)) [65] and the Rayleigh-corrected radiance (δLrc(λ)). This conclusion
was also reached by Zibordi et al. (2018) [20].
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5.2. Influencing Factors in the Coastal Waters

Similar operations were conducted for coastal waters. The mean error of Rrs for the three sensors
in the coastal waters is shown in Figure 11a. The figure shows that the Rrs error trends of the three
satellites are similar to those in the open ocean, but the blue bands show different behaviors. In the
bands shorter than 500 nm, the Rrs error of OLCI is the highest, and the Rrs error of MODIS is the
smallest. For bands above 510 nm, the Rrs error of OLCI and MODIS are both less than the Rrs error of
VIIRS. We can also observe that the Rrs error of OLCI increases at the 410 and 443 nm bands. The Rrs

errors of the three satellites over coastal waters are higher than those over open ocean, especially for
OLCI in bands shorter than 450 nm.
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The mean percentage of the error of the iterative model in the error of Rrs in the coastal waters is
shown in Figure 11b, where the iterative algorithm error of MODIS has the highest proportion in the
total error of Rrs except at 531 nm, and it is less than 50% from 440 to 555 nm, which are the main VIS
bands, while the ratio of the iterative algorithm error of OLCI and VIIRS is less than 50% in the total
error of Rrs in all bands. Although the impact of the iterative algorithm on the Rrs error is higher in
MODIS, the aerosol estimation and the error of the Rayleigh-corrected radiance in the coastal waters
remain the major error sources for all three sensors over coastal waters.

6. Summary

The OLCI, MODIS, and VIIRS Rrs products were evaluated against in situ measurements through
a match-up analysis in the China Sea. This analysis showed that the satellite-derived-Rrs are in good
agreement with the in-situ data and that the Rrs from the three sensors are overestimated over the
open ocean and underestimated over the coastal waters around China. The highest uncertainty was
observed in the NIR bands for the three missions. The bands with the best performances for the
three missions were all between 488 and 560 nm, which agree with the results of previous studies.
The performance of OLCI is good (the APD of Rrs at 490 nm is the most accurate with values of 18%)
and close to or better than MODIS (the APD of Rrs at 531 nm is the most accurate with values of 19%)
around the China Sea.

The calculated error budget showed that the iterative model used in the atmospheric correction
algorithm of OLCI has a smaller impact on the error of Rrs compared to the NASA iterative model
used to process the MODIS and VIIRS data over the open ocean around China. The main influencing
factors on the error of Rrs for OLCI, MODIS, and VIIRS are the aerosol LUTs and the Rayleigh-corrected
radiance (the error of system vicarious calibration, the error of Rayleigh scattering, whitecaps, gas and
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glint correction algorithm, and surface effects [51,66]) used in the atmospheric correction algorithm
over the open ocean and coastal waters around the China Sea.
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