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Abstract: Water and energy are recognized as the most influential climatic vegetation growth-limiting
factors. These factors are usually measured from ground meteorological stations. However, since both
vary in space, time, and scale, they can be assessed by satellite-derived biophysical indicators. Energy,
represented by land surface temperature (LST), is assumed to resemble air temperature; and water
availability, related to precipitation, is represented by the normalized difference vegetation index
(NDVI). It is hypothesized that positive correlations between LST and NDVI indicate energy-limited
conditions, while negative correlations indicate water-limited conditions. The current project aimed
to quantify the spatial and seasonal (spring and summer) distributions of LST–NDVI relations over
Europe, using long-term (2000–2017) MODIS images. Overlaying the LST–NDVI relations on the
European biome map revealed that relations between LST and NDVI were highly diverse among
the various biomes and throughout the entire study period (March–August). During the spring
season (March–May), 80% of the European domain, across all biomes, showed the dominance of
significant positive relations. However, during the summer season (June–August), most of the
biomes—except the northern ones—turned to negative correlation. This study demonstrates that the
drought/vegetation/stress spectral indices, based on the prevalent hypothesis of an inverse LST–NDVI
correlation, are spatially and temporally dependent. These negative correlations are not valid in
regions where energy is the limiting factor (e.g., in the drier regions in the southern and eastern
extents of the domain) or during specific periods of the year (e.g., the spring season). Consequently, it
is essential to re-examine this assumption and restrict applications of such an approach only to areas
and periods in which negative correlations are observed. Predicted climate change will lead to an
increase in temperature in the coming decades (i.e., increased LST), as well as a complex pattern of
precipitation changes (i.e., changes of NDVI). Thus shifts in plant species locations are expected to
cause a redistribution of biomes.
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1. Introduction

In terrestrial ecosystems, vegetation growth-limiting factors (VGLFs) are species-specific values
attributed to a cause that constrains the biological response to appropriate environmental conditions [1].
The primary VGLFs are either climatic or terrestrial. The climatic constraints include water, energy,
light, relative humidity, wind, and atmospheric elements (e.g., gases). Climatic variables directly and
indirectly affect all levels of biodiversity, from the individual species through to population, community,
ecosystem, and up to biome scales [2]. Terrestrial VGLFs include soil characteristics (e.g., texture,
depth, and nutrients) and terrain properties (e.g., elevation, slope, and aspect). Different VGLFs should
be in balance in order to allow optimal growth and development. When one or more of these factors
exceed a low or high value, all biodiversity levels are altered accordingly.

Among the above VGLFs, water and energy constraints are recognized as the most important
climatic factors [3–6]. Water availability is commonly associated with precipitation, evapotranspiration,
and, to a lesser extent, dew and fog. Solar radiation—the main source of energy—is one of the drivers
of land surface temperature and, in part, air temperature. Temperature controls the photosynthetic
and respiration rates, as well as the amount of nutrient availability for vegetation uptake; this is due to
its influence on litter decomposition rates, thus governing vegetation growth [4].

Water and energy limitations vary in the spatial and temporal dimensions. From a global
perspective, excluding the tropical zone, vegetation growth at high latitudes is energy-limited, while
water is the limiting factor at the lower latitudes. These two VGLFs also change throughout the year.
Energy from solar radiation changes seasonally due to the tilt of the Earth’s axis. Water, in terms of
precipitation minus evapotranspiration, varies with seasons, elevation, and distance from the ocean
and inland water bodies.

Since energy and water constraints vary at regional to global scales, there are notable advantages of
Earth observations for quantifying these two major VGLFs spatially and temporally via satellite-derived
biophysical indicators. In this regard, Earth-observed land surface temperature (LST) has been widely
recognized as capable of mimicking near-surface air temperature [7–9]. Similarly, the normalized
difference vegetation index (NDVI), calculated from spacecraft data, has been found to correlate
with ground-measured precipitation at different spatial and temporal scales, and for various Earth
observation systems [10–12]. Despite the range of correlation values reported in the literature, there is
a general agreement that NDVI can be an indicator of water availability in vast areas around the globe,
at least at the mesoscale, and possibly on wider scales.

LST and NDVI data have also been related to each other in several studies. Prihodko and
Goward [13] cited a list of earlier studies that showed a strong negative correlation between LST and
vegetation indices, commonly NDVI. LST and NDVI data derived from the Moderate Resolution
Imaging Spectroradiometer (MODIS) for May 2001 over the Great Plains, USA, revealed negative
correlations [14,15]. Correlations calculated from Landsat for individual days were found to be negative
in many small study sites worldwide [16–19]. It was further shown that such relationships can be
confined within a triangle or trapezoid space and related to land-cover classification and change
detection [20], evapotranspiration and stomatal resistance [21], air temperature [22], leaf area index [23],
phenology [24], crop yield [25], and evapotranspiration and soil moisture status [26]. Note that these
studies, among others, were mostly performed on a relatively small area, on one type of vegetation,
usually covering agricultural cropland, and were limited to a short observation time (typically one
growing season).

Upscaling the LST and NDVI relations to regional, continental, and global scales revealed that
the above-cited negative correlation is not robust. In this regard, large-scale studies also propose
reference to land-cover/land-use or biomes. The global-scale relationships investigated by Schultz and
Halpert [27] show a negative LST–NDVI correlation in the desert, savanna, and woodland regions
related to water-limited systems but a positive LST–NDVI correlation in the broad-leaved humid
evergreen forest and around the equator, closer to energy-limited conditions. In a study at continental
scale, Lambin and Ehrlich [28] presented negative correlations between LST and NDVI over all African
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biomes except for the evergreen forests, where the correlation switched to positive. Based on the same
relations, Nemani and Running [29] proposed a simple land-cover classification scheme of various
land-cover types across the continental USA. Tateishi and Ebata [30] used the LST–NDVI relation
to differentiate between phenology patterns on a global scale. They showed a negative LST–NDVI
correlation in most of the equatorial latitudes and a positive one in the high altitudes. Julien et al. [31]
used LST and NDVI values to estimate changes in vegetation in the European continent between
1982 and 1999. They were able to distinguish between trends from the arid areas in southern Europe
and those from the moister northern regions. Over Mongolia, Karnieli et al. [32] demonstrated that
the slope of the LST–NDVI correlation changed across biomes and latitudes. Significant negative
correlations were found in the desert and desert steppe regions, while significant positive correlations
were shown in the high mountains and taiga.

Longer temporal scales—months and seasons—were also examined. From the intra-annual
perspective, LST–NDVI relations were found to be seasonally dependent. Over the USA, Sun and
Kafatos [33] revealed positive correlations during winter and negative correlations during summer.
This general pattern can be modified in shorter periods (months) and for smaller spatial land-cover
units [15]. Moreover, significant changes in the monthly correlations were identified in conjunction
with land covers. Karnieli et al. [34] investigated a long LST and NDVI time series over North America.
They revealed positive correlations from April–May, over most of the domain except for the southern
latitudes. Specifically, the evergreen needleleaf forest biome deviated from these positive relations. In
contrast, the LST–NDVI slopes gradually shifted to negative values in mid-summer, while cropland,
grassland, and shrubland exhibited significant negative correlations in June and July. Similar seasonal
dependencies were observed around Berlin, Germany [35]. Six different land-cover/land-use categories
were defined and analyzed for all four seasons. In autumn, winter, and spring seasons all LST–NDVI
correlations were positive but statistically non-significant. During summer, all correlations were
negative, but again generally not significant, except in green urban areas and forests where they were
found to be significant.

Based on the above literature review, one can infer that energy and water control vegetation
growth, but they are mostly time- and region-dependent. Earth observation datasets of biophysical
satellite-derived products such as LST and NDVI enable the modeling of vegetation productivity with
the ability to cover large areas worldwide. It is hypothesized that positive LST–NDVI correlations
indicate energy-limited conditions, while negative correlations appear for water-limited conditions.
Consequently, the direction and magnitude of the correlation may change seasonally. The overarching
goal of the work presented here was to quantify the spatial and seasonal (spring and summer)
distributions of LST–NDVI relations as main indicators for vegetation growth-limiting factors (water
and energy constraints) in the European domain. Specifically, based on long-term (2000–2017) LST
and NDVI Earth observation data, the study objectives were twofold: (1) to explore long-term,
pan-European correlations between LST and NDVI during the spring and summer seasons, based on
18 years of Earth observation data; and (2) to analyze LST–NDVI patterns for each European biome at
the seasonal scale.

2. Materials and Methods

2.1. Study Area

The study area was the European continent, as identified by its standard geographic definition. It
is bordered by the Arctic Ocean in the north, the Atlantic Ocean in the west, and the Mediterranean
Sea in the south. In the east, Europe is bordered by the watershed that divides the Ural Mountains
and the Ural River, the Caspian and Black Seas. The territory of Turkey and some regions south of the
Caucasus Mountains were included in the analysis, but Cyprus was excluded. Additionally, Iceland,
Severny–Yuzhny, and other smaller northern islands were excluded since they are almost entirely
covered by glaciers with very little vegetation cover variability.
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The climate of Europe varies with respect to latitude, longitude, and altitude. Solar radiation is a
function of latitude. Consequently, the European climate changes from the hot, dry Mediterranean
summer climate in the south, through the colder and wetter middle region with no dry season, to polar
climate in the north. Under the influence of the Gulf Stream, Western Europe has mild winters and
relatively higher annual temperatures. Parts of Eastern Europe are characterized by dry and even arid
climate, affected by continental air masses that originate in Asia. The climatic gradient also exists at
the main mountainous regions such as the Alps, the Carpathians, and the Caucasus mountains. All
these factors determine European biomes.

The study domain included seven terrestrial biomes; here, we use the biome definition provided
by the World Wide Fund for Nature (WWF) [36]. The biomes were categorized based on their climatic
and geologic features, as well as their evolutionary history, gridded to a 0.05-degree spatial resolution,
and their locations within the study area are shown in Figure 1. The biomes are as follows: (1) Tundra,
the most northern Arctic belt, is characterized by low temperatures and short vegetation growing
season in the summer. The plants mainly consist of dwarf shrubs and lichens. (2) Boreal forest/taiga
is a subarctic biome where the forests are mainly evergreen coniferous species with deciduous trees
dominating in the oceanic climate. (3) The temperate forest is the largest biome in Europe, spreading
from west to east across the domain. It is characterized by cool winters and warm moist summers,
mainly with deciduous trees. (4) Temperate conifer forest is a cold and windy biome that is mainly
confined to high elevated ridges such as the Alps, Carpathians, and Pontic Mountains, as well as in
Scotland. (5) Temperate steppe covers large parts of Eastern Europe, north of the Black Sea and the
Caspian Sea, as well as south of the Caucasus Mountains. This biome is characterized by a warm,
dry climate, and since it receives a small amount of rain, shrubs are common and trees are sparse.
(6) Mediterranean forest, woodland, and scrub, located in southern Europe, is generally characterized
by hot dry summers and mild to cool, rainy winters. (7) Desert and xeric shrubland is located in the
east of the domain, near the Caspian Sea, north and south of the Caucasus Mountains. This biome
is characterized by less than 250 mm of annual rainfall and high evaporation rates, with dispersed
woody plants. The biome map was downloaded from the WWF Terrestrial Ecoregions of the World
website (https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world).

2.2. MODIS Data Sources and Analyses

The daytime LST and NDVI were products of MODIS Collection 6 datasets. Data were extracted
from the NASA/USGS Land Resources Distributed Active Archive Center (LP DAAC) (https://lpdaac.
usgs.gov/) as MOD13C2 and MYD13C2 data products for NDVI (from Terra and Aqua satellites,
respectively) and MOD11C3 and MYD11C3 for LST. The data were downloaded at a spatial resolution
of 0.05 degrees, for the 18 years between 2000 and 2017. The monthly products included images
between March and August. This seasonal window allows examination of the main European
vegetation growing season while avoiding the massive winter snow cover. The daytime LST values
were converted from kelvin to degrees Celsius. Both NDVI and LST were averaged for three periods:
the entire period (March to August) and two sub-periods, representing springtime (March–May) and
summer (June–August). The March–August period was selected since it represents a large amplitude of
vegetation phenology, in most of the European domain [37]. Each season included 18 years of LST and
NDVI images, cropped to fit the study area. Pixels that included no data, or were covered with clouds,
were removed. Moreover, water bodies and urban areas were masked out of the images, according to
land-cover maps produced by the European Environmental Agency’s COoRdinate INformation on the
Environment (CORINE) in 2012 (https://land.copernicus.eu/pan-european/corine-land-cover).

https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world
https://lpdaac.usgs.gov/
https://lpdaac.usgs.gov/
https://land.copernicus.eu/pan-european/corine-land-cover
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Figure 1. European biomes within the study area based on the World Wide Fund for Nature
(WWF)–Terrestrial Ecoregions of the World website (https://www.worldwildlife.org/publications/
terrestrial-ecoregions-of-the-world).

2.3. LST–NDVI Relation Analyses at Pan-European and Biome Scales

The pre-processed LST and NDVI products were analyzed to quantify the relationships between
these factors for the entire European domain, and at the biome scale. The relationships between LST
and NDVI were analyzed by plotting the averaged values of these factors, for each defined timeframe
using the 18 images against each other, for each of the timeframes specified in Section 2.2. Scatterplots
were computed for the entire European domain, one for each timeframe. Similarly, biome-specific
scatterplots were generated.

The correlation between the two variables throughout the examined period was quantified using
the Pearson correlation (rlst–ndvi) for each individual pixel. For each pixel, values of LST and NDVI
were examined for each three months for 18 years, giving a total of 54 observations per pixel. For the
entire period of six months, the total number of observations was 108. The resulting r map illustrates
the strength and sign of the LST–NDVI relations. This analysis was conducted for each of the three
periods specified in Section 2.2.

For each period, the significance of the LST–NDVI correlation for each pixel was also computed
using the t-statistic. Significant (α = 0.05) positive correlation was defined when r > 0 and t > 1.96 and
significant negative correlation when r < 0 and t < −1.96, according to the t-distribution. Correlations
where −1.96 < t < 1.96 were defined as non-significant. Each pixel was then assigned to its biome
category. General quantification of the percentage of negatively, positively, or non-significantly
correlated pixels within each biome for each period was generated to estimate the overall LST–NDVI
trend distribution across the biomes (positive, negative, or non-significant) for each timeframe.

3. Results

3.1. LST–NDVI Correlation Dynamics

In order to explore long-term pan-European correlations between LST and NDVI, their values
were firstly mapped over the spatial domain of interest. Long-term (2000–2017) averages of higher
daytime LST and NDVI for the entire seasonal study period (March–August) and the two sub-seasons

https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world
https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world
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(March–May and June–August) were created. Figure 2A,E,I generally indicate higher mean daytime
LST values along the Mediterranean region in southern Europe that gradually decreased toward the
higher latitudes. From June–August, the mean temperature range was 0.5 to 55 ◦C (with a mean
of 26 ◦C), compared to a range of −12 to 37.5 ◦C (with a mean of 12.4 ◦C) from March–May. NDVI
(Figure 2B,F,J) was characterized by overall higher values from June–August (range = −0.18 to 0.91,
mean = 0.66) than from March–May (range = −0.19 to 0.81, mean = 0.42), with a substantial increase in
northern and eastern Europe. Negative NDVI values indicate snow-covered pixels. Pairs of LST and
NDVI maps were used to create density scatterplots (Figure 2C,G,K). In these plots, red and yellow
colors represent higher pixel concentrations. For the entire period (Figure 2C), two distinct trends can
be identified: one with a negative slope and a second with a positive slope. The strengths of these
opposite correlations changed with the sub-period considered. A dominant positive correlation was
observed during the spring months (Figure 2G). In contrast, during the summer months, most of the
domain was characterized by a negative correlation (Figure 2K). The spatial distribution of rlst–ndvi
also varied between seasons (Figure 2D,H,L). For the entire period, most of the European region was
characterized by a significant positive LST–NDVI relationship, with negatively-correlated areas only
in the Mediterranean region and the Caucasus Mountains. From March–May, the positive relationship
was even more pronounced across the continent. The warmer June–August sub-season reflected a
different spatial pattern: the southern half of the study region showed mostly negative rlst–ndvi values.
However, mountainous areas (i.e., the Alps and the Carpathian Mountains) and the northern latitudes
showed non-significant rlst–ndvi correlation, with patches of positive values.

3.2. Biome-Specific LST–NDVI Relations

As noted above, seven biomes were involved in the current study: tundra; boreal forest/taiga;
temperate forest; temperate conifer forest; temperate grassland, savanna, and shrubland; Mediterranean
forest, woodland, and scrub; and desert and xeric shrubland (Figure 1). The biome-specific relations
between LST and NDVI were highly diverse among the various biomes and throughout the entire
study period (Figure 3). The northern biomes with the lowest temperature values (Tundra and Taiga)
showed a constant positive relationship between LST and NDVI. The temperate biomes (broadleaf and
mixed forests, conifer forests, and grasslands) were characterized by shifting trends between seasons
(positive relationships from March–May that turned negative from June–August). The biomes with
higher temperatures (Mediterranean forest and desert) typically had a negative LST–NDVI relationship
throughout the entire studied timeframe.

Table 1 shows rlst–ndvi relations as percent of pixels that displayed each trend type (positive, negative,
and non-significant). Overall, during the entire period (March–August), most of the biomes—65% of the
study area—displayed a significant positive relationship. The Mediterranean and desert biomes, with a
negative correlation, covered only 19% of the area (Figure 2D). During the spring season (March–May),
80% of the European domain—across all biomes—showed the dominance of significant positive
relations. Exceptions were the Mediterranean forest and desert biomes, where the positive correlation
covered about half of the area with relatively high coverage of non-significant pixels (Figure 2H).
However, the summer season (June–August) featured a shift when 56% of the European area showed
negative correlation values, 19% had positive values, and 25% of the pixels were non-significant
(Figure 2L). Tundra and boreal forest/taiga were the only biomes that demonstrated a majority of
significantly positive LST–NDVI relationships (57% and 60% of their total areas, respectively). The
rest of the biomes were characterized by a large areal coverage of negative rlst–ndvi values, except the
temperate conifer forest biome which typically showed a larger portion of non-significant rlst–ndvi
values (45% of its area).
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Remote Sens. 2019, 11, 2406 8 of 15

Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 15 

 

 
Figure 3. LST–NDVI scatterplots for each biome from March–August, March–May, and June–August.  Figure 3. LST–NDVI scatterplots for each biome from March–August, March–May, and June–August.



Remote Sens. 2019, 11, 2406 9 of 15

Table 1. Percent of positive, negative, and non-significant pixels covering each of the biomes from
March–August, March–May, and June–August. Bold values indicate values higher than 30%.

rlst–ndvi

Positive Correlation Negative Correlation Non-Significant Pixels

(%) (%) (%)

March–August
Tundra 96 4 0

Boreal forest/taiga 100 0 0
Temperate broadleaf and mixed forest 89 5 6

Temperate conifer forest 92 4 4
Temperate grassland, savanna, and shrubland 75 9 16

Mediterranean forest, woodland, and scrub 23 66 11
Desert and xeric shrubland 16 71 13

March–May
Tundra 75 15 10

Boreal forest/taiga 99 0 1
Temperate broadleaf and mixed forest 97 1 2

Temperate conifer forest 96 1 3
Temperate grassland, savanna, and shrubland 96 1 3

Mediterranean forest, woodland, and scrub 44 32 24
Desert and xeric shrubland 52 10 38

June–August
Tundra 57 4 39

Boreal forest/taiga 60 1 39
Temperate broadleaf and mixed forest 5 64 31

Temperate conifer forest 13 42 45
Temperate grassland, savanna, and shrubland 0 97 3

Mediterranean forest, woodland, and scrub 0 94 6
Desert and xeric shrubland 1 88 11

4. Discussion

This project explored the spatial and seasonal distributions of LST–NDVI relations as indicators
of VGLFs, while distinguishing between water and energy limitation factors at the pan-European
scale. Further, the project intended to link the LST–NDVI relations and the European biomes. To
accomplish this goal, long-term (2000–2017) MODIS-derived LST and NDVI variables were obtained.
Since the study covered a rather large continental scale, positive and negative correlations between
LST and NDVI were observed in different regions of the domain and at different sub-seasonal periods.
From a detailed analysis of these relationships, it can be inferred that when water is the limiting factor
for vegetation growth during the summer season in the study area’s low latitudes, the LST–NDVI
correlations are typically negative. However, when energy is the limiting factor for vegetation growth,
as is the case at the northern latitudes or high elevations areas (especially at the beginning of the
growing season), LST and NDVI correlations are positive. The correlation signs—either negative,
positive, or non-significant—varied between different seasons and biomes. For the spring months,
March–May, most of the areas of all biomes showed a positive correlation. During the summer months,
June–August, most of the areas of the biomes changed to negative correlations, but the northern biomes
of tundra and taiga mostly continued to display positive correlations. Large areas of non-significant
correlations were also observed. These findings led to the following discussions.

4.1. Energy Balance Perspective

The spatial distribution of LST–NDVI relationships can also be examined from the perspective of
the energy balance [38,39]. In rural areas, vegetation generally has a lower albedo than non-vegetated
terrain in the same region, due to its spectral characteristics (vegetation cover) and its 3D structure.
This 3D structure due to tree canopies leads to multiple scattering, increasing the shortwave radiation.
Thus, longwave radiation is trapped, resulting in increased net longwave radiation [40]. Therefore,
because of their lower albedo, the vegetated areas store more energy in the form of net radiation than
the surrounding non-vegetated areas [38]. Part of this energy is stored in the surface, increasing its
temperature (LST). This leads to a temperature gradient between the surface and lower atmosphere,
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and part of this energy is used to evaporate water, increasing turbulent latent heat flux. Evaporative
cooling depends on the available energy [41], the landscape heterogeneity [42], as well as the type of
vegetation and the soil moisture conditions. While evaporative cooling over grassland might exceed
that over forest at times of ample soil moisture, the reverse is likely to occur under conditions of low
soil moisture [43–45].

Generally, in southern latitudes (especially in arid/semi-arid areas) and the mid-latitudes during
the summer period, solar radiation is high, leading to higher air temperature. During the daytime,
high LST (and therefore high saturation water vapor pressure) is observed, whereas atmospheric water
vapor pressure is usually low. Therefore, a vegetated surface in these cases is more likely to use a great
part of the incoming energy to evaporate water. The higher the water availability (e.g., precipitation,
irrigation), the higher the latent heat flux. Since the dominant type of vegetation is broadleaf, stomatal
resistance is low, further contributing to high latent heat flux. Therefore, in these cases, the incoming
energy in vegetated areas is mainly used to evaporate water, despite the lower albedo of vegetated
areas. Conversely, the incoming energy in non-vegetated areas is stored in the respective surface,
leading to the increase of temperature. For this reason, the LST in non-vegetated areas is usually higher
than the LST of the surrounding vegetated areas. Pixels corresponding to vegetated areas (high NDVI)
are expected to have a lower LST than the pixels that correspond to non-vegetated areas (low NDVI),
which leads to a revised LST–NDVI correlation (Figure 2D,H,L).

Conversely, in northern latitudes, both the solar radiation and the air temperature are generally
low. In general, where low LST (and therefore lower stomatal resistance) is observed, the relative
humidity is consequently higher, and the air is close to saturation. Furthermore, in northern latitude
areas, where boreal forest/taiga and tundra dominate, the respective stomatal resistance is expectedly
high. Therefore, a relatively low latent heat flux is expected for vegetated areas in these regions. The net
incoming energy in the form of radiation is stored in the vegetation canopies, increasing the respective
LST. A small part of this energy is transported to the atmosphere as sensible heat flux due to the
low-temperature gradient between the surface and air temperature in these latitudes. The mechanism
is the same for the surrounding non-vegetated areas (no latent heat flux and low sensible heat flux).
Thus, the incoming energy is stored in the surfaces, with higher storage in vegetated areas because the
net incoming energy is higher due to the lower albedo. The higher heat storage in vegetated areas
results in a higher LST than in non-vegetated ones. Consequently, pixels corresponding to vegetated
areas (high NDVI) are expected to have a higher LST than the pixels corresponding to non-vegetated
areas (low NDVI), which leads to a positive LST–NDVI correlation (Figure 2D,H,L). Finally, in the
mid-latitudes and transition zones, as well as regions that are characterized by mixed-land-cover types,
a combination of the above cases is expected, where both seasonality and water availability effects are
most prominent.

4.2. European Biomes and Vegetation Growth-Limiting Factors

Two concerns were raised in this work regarding climate change and land-use changes: how will
biome extents vary and how will the LST–NDVI relationships be affected. Parmesan [46] reviewed
the ecological effects of climate change on phenology and species range shifts, and Watson et al. [47]
estimated the vulnerability of ecoregions under climate change. In turn, Eigenbrod et al. [48] showed
that the vulnerability of ecosystems to climate changes that induce biome shift depends on habitat
intactness and on the scale on which intactness is estimated. In a study of European vegetation,
Thuiller et al. [49] revealed that species distribution shifts triggered by climate change threaten plant
biodiversity. In particular, species loss and turnover were found to be mainly determined by just two
climatic variables: temperature and precipitation. In our approach, these are represented by LST and
NDVI, respectively. For the coming decades, climate projections generally indicate an increase of
temperature (thus, of LST) and a complex pattern of precipitation changes (thus, of NDVI). Therefore,
plant species are expected to shift within and between biomes.



Remote Sens. 2019, 11, 2406 11 of 15

Since the relative strength of the different VGLFs might change, a major issue regards estimating
future vegetation stress. Summer droughts in particular are expected to increase in the coming decades
in Europe [50], possibly modifying the role of the different VGLFs and strengthening water limitation
(and thus negative LST–NDVI relations). In turn, this is expected to lead to more severe summer fires
and a drastic increase in the summer burned area [51]. Such estimates, based on empirical models,
are rooted in the effects of the different VGLFs and can thus be affected by changes in the role of
the different limiting factors, as expressed, for example, by the LST–NDVI correlations studied here.
During the past years, for example, unexpected summer fires plagued northern European regions.
A deeper understanding and modeling of the response of VGLFs and of the vegetation itself to the
changing climate conditions is thus needed.

4.3. Relation to LST–NDVI Models

Previous studies, mostly limited in area and observation period, revealed a strong
negative correlation between LST and NDVI. Based on this prevailing assumption, several
vegetation/drought/stress indices were developed and widely applied. The hypothesis behind
this assumption was the synergetic effect of water availability and energy effect on vegetation: less
water and higher temperature promote vegetation stress and vice versa [26]. Hence, this naive
model used only the ratio between LST and NDVI, acquired from the NOAA/AVHRR imagery, for
mapping drought over Papua New Guinea and Mongolia [52,53]. A widely-used index based on the
negative LST–NDVI relation is the Vegetation Health Index (VHI), developed by Kogan [54] as a proxy
characterization of vegetation health or a combined estimation of moisture and thermal conditions.
The index originally used long-term data from the NOAA-AVHRR spacecraft and has recently been
used with the Visible Infrared Imaging Radiometer Suite (VIIRS) spectral bands [55] as well. VHI has
been applied on a regional scale in many areas around the world [56–58], but has also been proposed
as a global drought index [55,59–61]. Global coverage of the VHI is updated weekly on an official
NOAA webpage (https://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/vhbrowse.php).

Another spectral index that relies on an empirical parameterization of negative relations between
LST and NDVI is the Temperature Vegetation Dryness Index (TVDI) [62,63]. This index is based on the
location of a pixel in the LST–NDVI triangle or trapezoid-shaped scatterplot that associates higher LST
with less evaporation, while higher NDVI values are identified with higher vegetation cover. This index
has been applied to a vast number of sites all over the world, including Europe, as listed in Petropoulos
et al. [64]. Wang and Dickinson [5] have reservations about using TVDI in northern latitudes and
cold areas where temperatures, as a major control of latent heat flux, are mostly positively related to
evaporation. Garcia et al. [65] examined the performance of the TVDI in a spatially heterogeneous
region in southern Spain using MODIS imagery. They revealed that the index successfully assessed the
water pressure deficit only under water-limited conditions and failed under energy-limited conditions.

Since droughts occur mostly in southern latitudes, these indices were developed with the
implicit assumption that NDVI and LST are always and everywhere negatively correlated. Due to
their simplicity, such as LST–NDVI-based models, they are widely accepted and commonly used.
Furthermore, the availability of long-term remote sensing images at different spatial and temporal
resolutions enabled the easy application of these models. In areas where water is ultimately the limiting
factor for vegetation growth throughout the year, this assumption is apparently correct. However,
these indices have been applied globally, even in regions and periods where the correlation is positive
or non-significant.

5. Conclusions

In the current work, LST is a proxy for near-surface air temperature and NDVI is related to
precipitation. The analysis of the correlations between these two biophysical variables provides
information on how they vary in space and time and how they are related to each other. When
energy is the limiting factor for vegetation growth, as in the case of northern latitudes and high

https://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/vhbrowse.php
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elevations, significant positive correlations exist. Under water availability constraints, on the other
hand, significant negative correlations are observed. During spring months, most of the domain
is characterized by significant positive correlations that become significantly negative toward the
summer, except for the northernmost regions. This behavior can be explained by taking into account
the energy partitioning between latent and sensible heat flux, mainly regulated by surface albedo and
temperature, as well as by air temperature.

The spatial distribution of the LST and NDVI correlation was found to be in line with
previous studies that addressed large-scale climatic constraints but primarily relied on ground-based
measurements and models. Long-term and global coverage of Earth-observed imagery from space
provides a reliable dataset for biome mapping and ecological models. Predicted climate change will
lead to an increase of temperature in the coming decades (i.e., increased LST), as well as a complex
pattern of precipitation changes (i.e., changes of NDVI), thus shifts in plant species locations are
expected causing redistribution of biomes.

The current project demonstrates that the drought/vegetation/stress indices, based on the prevalent
hypothesis of a negative correlation between LST and NDVI, are also spatially and temporally dependent.
Consequently, they are not valid in regions where energy is the limiting factor or during specific
periods of the year. Furthermore, their results are doubtful when the correlations are statistically
non-significant. Consequently, it is essential to re-examine this assumption and restrict applications of
such an approach only to areas and periods in which negative correlations are observed.
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