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Abstract: Spatiotemporal fusion provides an effective way to fuse two types of remote sensing data
featured by complementary spatial and temporal properties (typical representatives are Landsat
and MODIS images) to generate fused data with both high spatial and temporal resolutions.
This paper presents a very deep convolutional neural network (VDCN) based spatiotemporal fusion
approach to effectively handle massive remote sensing data in practical applications. Compared with
existing shallow learning methods, especially for the sparse representation based ones, the proposed
VDCN-based model has the following merits: (1) explicitly correlating the MODIS and Landsat images
by learning a non-linear mapping relationship; (2) automatically extracting effective image features;
and (3) unifying the feature extraction, non-linear mapping, and image reconstruction into one
optimization framework. In the training stage, we train a non-linear mapping between downsampled
Landsat and MODIS data using VDCN, and then we train a multi-scale super-resolution (MSSR)
VDCN between the original Landsat and downsampled Landsat data. The prediction procedure
contains three layers, where each layer consists of a VDCN-based prediction and a fusion model.
These layers achieve non-linear mapping from MODIS to downsampled Landsat data, the two-times
SR of downsampled Landsat data, and the five-times SR of downsampled Landsat data, successively.
Extensive evaluations are executed on two groups of commonly used Landsat–MODIS benchmark
datasets. For the fusion results, the quantitative evaluations on all prediction dates and the visual
effect on one key date demonstrate that the proposed approach achieves more accurate fusion results
than sparse representation based methods.

Keywords: spatiotemporal fusion; very deep convolutional neural network; non-linear mapping

1. Introduction

One of the fundamental features of remote sensing data is the resolution in spatial, spectral,
temporal, and radiometric domains. However, all single remote sensing sensors are constrained by
their tradeoffs in spatial, spectral, temporal, and radiometric resolutions due to the technical and
economic reasons. Specifically, we focus on the tradeoff between spatial and temporal resolution of
remote sensing data in this study. For example, the images from sensors of Landsat TM/ETM+ and
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SPOT/HRV are featured by high-spatial resolutions of 10–30 m but low-temporal resolutions from a
half to one month, while the images from sensors of MODIS, AVHRR, and MERIS are characterized by
low-spatial resolutions of 250–1000 m but daily temporal coverage. These remote sensing data are
complementary in both spatial and temporal resolutions.

However, capturing both spatial and temporal dynamical characteristics simultaneously is
one important property for existing current remote sensing based monitoring systems. Examples
include a monitoring system for change detection of land use/cover, crop growth monitoring system,
disaster monitoring system, etc. [1,2]. To solve this conflict between data deficiency and the needs of
practical applications, various spatiotemporal fusion methods [3–10] were proposed in the past decade.
These methods combine high spatial resolution remote sensing data and high temporal resolution
remote sensing data to generate fused data with both high-spatial and high-temporal resolutions.
Specifically, the high-spatial resolution data suffer from low-temporal resolution (shortened as HSLT)
and the high-temporal resolution data has low-spatial resolution (shortened as HTLS), but they are
characterized by some similar spectral properties, such as band width and the number of bands.
Considering the long revisit cycles of HSLT images and the effects of bad weather, the usual assumption
for inputs of spatiotemporal fusion methods is that one or two pairs of HSLT–HTLS images on prior
dates and one or more HTLS images on prediction dates are given. According to the differences
in fusion basis, these fusion methods are usually divided into three classes: reconstruction-based,
transformation-based, and learning-based [11]. We introduce several representative works for each
category in the following section.

In the reconstruction-based methods, given the input images, they first search the neighboring
pixels with spectrally similarity, and then each pixel in the fused image is predicted by a weighted sum
of these pixels. Gao et al. [3] first introduced the reconstruction-based method into spatiotemporal
fusion, termed as the spatial and temporal adaptive reflectance fusion model (STARFM), which
fuses the Landsat and MODIS surface reflectance to obtain daily Landsat-like surface reflectance.
However, STARFM has the following issues: first, it cannot deal well with the abnormal cases of
land-cover type changes or disturbance events not contained in one Landsat image; second, it cannot
handle well the predictions in heterogeneous landscapes. To address these issues, afterwards, several
STARFM-improved models have been proposed. Hilker et al. [4] presented a spatial and temporal
adaptive algorithm or mapping reflectance change (STAARCH) by discovering the temporal variations
from a dense set of MODIS data. Zhu et al. [5] proposed an enhanced STARFM (ESTARFM) by handling
homogeneous and heterogeneous regions separately with different conversion coefficients. Wang et
al. [6] extended STARFM by first downscaling MODIS 500 m bands to 250 m by using bands 1 and 2 to
enhance the predictions at areas with abrupt changes or heterogeneity.

In the transformation-based methods, input images are first transformed into another space and
then the fusion procedure is implemented in a local subspace. For example, Acerbi-Junior et al. [7]
improved the spatial resolutions of MODIS data by combining Landsat images into a three-level
wavelet decomposition framework. Hilker et al. [4] fused the reflectance data of MODIS and Landsat
TM/ETM+ that is able to capture changes using two fine spatial resolution images based on Tasseled
cap transformation, which transforms the original bands into a new space with brightness, greenness,
and wetness as axes, respectively.

With the popularity of sparse representation and deep learning in the past decade,
the learning-based spatiotemporal fusion methods have been presented in recent years. With two-paired
Landsat–MODIS images as priors, Huang and Song [8] worked to establish a corresponding relationship
between the difference images of MODIS and Landsat by training a dictionary-pair, and then generate
the Landsat image on the prediction date by a weighted sum of the predictions from two prior dates.
To cope with the case of one-paired prior images, the authors further presented a fusion framework
by first improving the spatial resolutions of the MODIS images based on sparse representation and
then generating the fused image via a two-layer high-pass modulation framework [9]. To deal with
the problems of manual feature designing and optimization disunity in sparse representation based
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fusion methods, Song et al. proposed a convolutional neural network (CNN) based fusion method to
automatically extract effective image features by learning an end-to-end mapping between MODIS and
downsampled Landsat images [10]. However, this CNN-based method only used three hidden layers,
which was difficult to accurately simulate the complex non-linear correspondence between MODIS
and Landsat images (caused by the differences in aspects of imaging environment, sensor design, etc.).

To improve this CNN-based shallow model, we present a novel spatiotemporal fusion approach
with very deep convolutional neural networks (VDCNs). Specifically, we first trained a nonlinear
mapping VDCN model to directly correlate MODIS and downsampled Landsat data, and then trained
a multi-scale SR VDCN model between the downsampled Landsat and the original Landsat data in the
training stage; in the prediction step, the input MODIS images were first mapped into the downsampled
Landsat data using the trained non-linear mapping function of VDCN, and then super-resolved to
the original Landsat image through a two-step image super-resolution. The learned two VDCN
models can automatically extract image features and optimally unify feature extraction, non-linear
mapping (playing the same role as sparse coding and dictionary learning in sparse representation),
and image reconstruction.

The remaining sections are structured as follows. In Section 2, we introduce the work related with
the proposed method. The proposed method is presented in detail in Section 3, and the experimental
results and comparisons are demonstrated in Section 4. In Section 5, the paper is concluded with
some discussions.

2. Related Work

2.1. Convolutional Neural Networks (CNNs)

CNNs are a type of deep and feed-forward artificial neural network that leverages a variation of
multi-layer perceptrons tailored to recognize visual patterns directly from images without manual
tweaking or preprocessing [12]. CNNs are shift-invariant because of their shared-weights architecture
and translation invariance characteristics. Compared with shallow models (e.g., sparse representation
based models), CNNs have much stronger learning capacity, ensuring more accurate predictions.
Instead of using hand-designed features, CNNs can automatically learn rich feature hierarchies in a
data-driven manner.

In recent years, much advance has been achieved for CNNs in the following aspects [13]: (1) the
availability of largescale training sets with millions of annotated labels; (2) powerful GPU (Graphics
Processing Unit) computation, which makes it practical to train a very large model; (3) a series of better
model regularization strategies have been proposed, including the rectified linear unit (ReLU) [14],
batch normalization [15], and residual learning [16]. Such advances promoted applying CNNs into
a variety of computer vision tasks, such as object detection, object recognition, image classification,
image de-noising, and image super-resolution, to name a few [17–20]. Since the breakthrough in image
classification [20], the architecture of CNNs in [20] has been improved in several aspects. One of the
important improvements is to increase the depth of CNNs using an architecture with a set of 3 × 3
convolution filters [21] (i.e., the very deep convolutional network). This work shows that a significant
improvement can be achieved by setting the depth to 16–19 layers. In spite of the larger number of
parameters and the greater depth compared to the original net in [20], the nets require less epochs to
converge due to (1) the implicit regularization imposed by the greater depth and smaller convolution
filter sizes; and (2) pre-initialization of certain layers.

2.2. CNNs for Single-Image Super-Resolution

Single-image super-resolution (SISR) aims to generate a high-resolution image from a low-resolution
input image [22]. Recently, deep learning has been successfully introduced to SISR and delivered
compelling performance [18,23]. In [18], Dong et al. first introduced CNN into SISR, whose model
was comprised of three convolutional layers corresponding to patch extraction, non-linear mapping,



Remote Sens. 2019, 11, 2701 4 of 16

and reconstruction, respectively. The input and output of this method corresponded to the low-resolution
and high-resolution images, respectively, which directly learn a mapping between the low-and high
resolution images in an end to end manner. Kim et al. [23] proposed a very deep CNN (20 layers)
based SISR approach, which leverages residual-learning and gradient clipping techniques to speed up
training. Compared with the previous methods, this method achieves more accurate results in large scale
datasets. CNNs-based single image super-resolution techniques were also applied to spatial resolution
enhancement of remote sensing images, such as the works in [24,25].

3. Methodology

To handle both phenology and land-cover changes, we did not impose any restrictions on the
proportion of each land-cover type or the land-cover type changes in temporal axis. The input HSLT
and HTLS data of the proposed method were Landsat/TM or ETM+ and MODIS images, respectively.
Notably, our method could handle both cases of one-paired and two paired prior HSLT–HTLS images.
However, we assumed there were two-paired prior Landsat–MODIS images in consideration of
applying deep learning into massive remote sensing data.

Figure 1 shows the overall flowchart of the proposed approach. In general, the proposed framework
consisted of a training stage and a prediction stage. In the training stage, we first learned a non-linear
mapping VDCN to directly correlate downsampled Landsat (250 m) and MODIS images (500 m), and then
we trained a multi-scale SR (MSSR) VDCN between 250 m Landsat images and the original Landsat
images (25 m). To model the complex correspondence between MODIS and Landsat images and to reduce
the spatial resolution gap in the next super-resolution step, we set a small resolution gap in designing the
non-linear mapping VDCN. Considering so large a spatial resolution gap (10 times) between the original
Landsat and the downsampled Landsat images, we designed an MSSR VDCN including 2 times and
5 times. Assuming that the noise intensities caused by imaging environment and imaging system were
the same in all bands, we trained a non-linear mapping model and an MSSR model for all bands. In the
prediction stage, the input MODIS images were first mapped into the 250 m Landsat images via the learned
non-linear mapping VDCN and a fusion model; then, the 250 m Landsat images were super-resolved to
the original Landsat images via a two-step super-resolution and a fusion model. The adoption of the
fusion model was to fully utilize the information in prior Landsat images.
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3.1. Configurations of Non-Linear Mapping VDCN

Inspired by the successful application of VDCN in image recognition [21], we designed a non-linear
mapping VDCN to model the complex correspondence between downsampled Landsat and MODIS
data. Since the downsampled Landsat and MODIS data were highly correlated, we decomposed one
downsampled Landsat image into a low frequency part (corresponding to MODIS image) and a high
frequency part (corresponding to image details). We thus built the non-linear mapping model between
MODIS images and the image details (or residual images). The work in [23,26] demonstrated that
residual-learning methods achieved superior performance over corresponding non-residual methods
in both efficiency and accuracy for image super-resolution. In the prediction stage, the predicted
downsampled Landsat image was obtained by the sum of network input and output.

Figure 2 illustrates the network architecture. It takes interpolated MODIS images as input and
exports the image details. D convolutional layers and D-1 nonlinear layers are contained in the network,
where each convolutional layer except for the last one is followed by an ReLU layer. The first layer
operates on the input image with 64 3 × 3 filters. The layers from 2 to D-1 contain 64 3 × 3 filters,
where each layer operates on 3 × 3 spatial region across 64 channels. The last layer contains a single
3 × 3 × 64 filter to yield the output residual images.
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(i.e., the downsampled Landsat image).

The stride of convolution was fixed to 1 pixel and zero padding with 1 pixel adopted for the input
of convolutional layers such that all feature maps and the output reconstructed image kept the same
size. The size of the receptive field was proportional to the depth of the network. For our depth D
network, the receptive field had a size (2D + 1) × (2D + 1).

3.2. Configurations of Super-Resolution VDCN

For the 10 times spatial resolution gap between downsampled Landsat and original Landsat
images, building one single super-resolution model was difficult between them. The work in [23,27]
demonstrated that a single VDCN model can achieve superior performance in both accuracy and efficiency
for super-resolution with multiple up-scales. This is probably attributed to the fact that a single VDCN can
simultaneously fit the correspondence between low and high resolution images with multiple upscales by
taking into account more contextual information in the neighborhood and modelling complex functions
with many nonlinear layers. Inspired by this, we thus proposed to design a multi-scale super-resolution
(MSSR) VDCN between original and downsampled Landsat images. Specifically, a general VDCN model
was trained for 2 up-scale factors (×2; ×5), where factor 2 was to super-resolve 250 m Landsat to 125 m
Landsat and factor 5 was to super-resolve 125 m Landsat to 25 m Landsat.

Considering that low and high spatial resolution Landsat images are largely similar (low and
high herein are in a relative sense), we built the MSSR model between low spatial resolution image and
the image details (i.e., the residual images between low and high spatial resolution Landsat images).
Suppose that the depth of the MSSR VDCN is D’, the other parameters of the network architecture are
the same to those of nonlinear mapping VDCN. The network takes interpolated low spatial resolution
Landsat images as input and exports the image details. In the prediction stage, the predicted Landsat
image is obtained by summing network input and output.
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3.3. Training Networks

To train the non-linear mapping VDCN, we prepared N pairs of interpolated MODIS and
down-sampled Landsat images, denoted as {Xi, Yi}

N
i=1. Then the training samples were denoted as

{Xi, Ri}
N
i=1, where Ri = Yi −Xi is the defined residual image. The goal of non-linear mapping VDCN is

to learn the nonlinear mapping F(Xi) from input MODIS images Xi to predict the residual images Ri.
We solved the network parameters θ = {Wk, bk}

D
k=1, where Wk and bk denote the weights and bias of

the kth convolutional layer, respectively, through minimizing the loss function as

L(θ) =
1
N

N∑
i=1

‖F(Xi;θ) −Ri‖
2
2 (1)

This regression objective was optimized by adopting the mini-batch gradient descent based
on back-propagation [28]. To accelerate the network optimization convergence while suppressing
exploding gradients, we adopted a varying learning rate strategy during the iterations as in [23].
Specifically, we initially set a large learning rate and then decreased the learning rate gradually.

The training procedure of the MSSR VDCN is similar to the above. One thing noteworthy is that
the training samples for scales 2 and 5 were combined into one dataset. During training, images with
different scales fell into the same mini-batch.

3.4. Three-Layer Prediction Step

Given two-paired prior Landsat–MODIS images on t1 and t3 and one MODIS image on t2 as
input, we aimed to predict the Landsat image on t2. Usually, it is assumed that the prediction date t2 is
between t1 and t3, so that we can integrate the spatial and temporal information before and after to do
the prediction. Considering that the spatial information among time series satellite images is closely
correlated (e.g., the phenology changes are dominant, or the proportion of land-cover type changes
is small), we designed a fusion model to fully utilize the information in prior Landsat and MODIS
images. On the other hand, based on the learned non-linear mapping VDCN and the MSSR VDCN, the
non-linear mapping prediction and the two-step super-resolution predictions (×2; ×5) could be executed
sequentially. We experimentally found that first executing the ×5 super-resolution step and then the
×2 super-resolution step output almost the same accuracy but cost more in computation. Combining
the VDCN-based predictions and the fusion model, the prediction stage was achieved through three
layers: the non-linear mapping layer, the ×2 super-resolution layer, and the ×5 super-resolution layer,
where each layer consisted of a VDCN-based prediction and a fusion model, as demonstrated in the
lower part of Figure 1.

In each prediction layer, three images with lower spatial resolutions were fed into one VDCN,
which exported three images with higher spatial resolutions. Due to the existence of estimation errors
in the predictions of VDCNs, we defined the outputs of VDCNs as the transitional images. Then, the
fusion model integrated three transitional images and two prior Landsat images (those with low spatial
resolutions were down-sampled from the original Landsat images) together to predict the Landsat
image on t2 under different spatial resolution frames.

We take the first layer as an example to demonstrate the fusion procedure. We denoted the
inputs of three transitional images as T1

i (i = 1, 2, 3) and two prior Landsat images as L1
i (i = 1, 3).

We constructed the fusion model using a high pass modulation (HPM) module and an indicative
weighting (IW) module. The overall flowchart is shown in Figure 3. As in [9], the HPM was a linear
temporal change model between images of one prior date and the prediction date. Taking the time
point t1 as an example, the HPM predicts the Landsat image on t2 by modulating the prior Landsat
image on t1 with the ratio coefficients between transitional images on t2 and t1. The mathematical
formula is as follows:

L1
21 =

T1
2

T1
1

L1
1. (2)
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Similarly, the prediction from the time point t3 is as follows:

L1
23 =

T1
2

T1
3

L1
3. (3)

We leveraged a weighting strategy to integrate the two-end predictions, where the weighting
matrix is computed from two transitional images as follows:

Wi =

1∣∣∣T1
2−T1

i

∣∣∣
1∣∣∣T1

2−T1
1

∣∣∣ + 1∣∣∣T1
2−T1

3

∣∣∣ , i = 1, 3. (4)

Considering that when relatively large temporal changes exist between one prior date and the
prediction date, the prediction from that end may reduce the prediction accuracy at the prediction
date; we thus proposed an indicative weighting strategy by using an indicative matrix to choose the
predictions from two end dates. Therefore, the predicted Landsat image on t2 is computed as follows:

L̂1
2 = I1W1L1

21 + I3W3L1
23. (5)

When the temporal change is too large at one end, we then only choose the prediction result from
the other end, and vice versa. To determine the values of the indicative matrix I, we define a threshold
value ρ (e.g., ρ = 0.7). Then, the values of I are determined at each pixel location (r, c) as follows:

I1(r, c) = 1
W1(r,c) , I3(r, c) = 0 i f W1(r, c) ≥ ρ

I1(r, c) = 0, I3(r, c) = 1
W3(r,c) i f W1(r, c) ≤ 1− ρ

I1(r, c) = 1, I3(r, c) else

. (6)

The fusion procedures for the other two layers are the same as above.

4. Experimental Results

In this section, we compare the proposed method with two shallow learning models, i.e., the sparse
representation based spatiotemporal fusion method in [9] (abbreviated as SRSTF) and the convolutional
neural network based spatiotemporal fusion method in [10] (abbreviated as CNNSTF). To extensively
evaluate the performance of our method, we selected two Landsat–MODIS benchmark datasets in [29].
On one hand, these datasets are composed of 14 and 17 paired remote sensing images, respectively,
which is suitable for deep learning that needs a large training set. On the other hand, the landscapes of
the datasets have obvious contrasting spatial and temporal dynamical characteristics associated with
both land-cover type and phenology changes. For description convenience in this section, the proposed
very deep convolutional network based spatiotemporal fusion method is abbreviated as VDCNSTF.
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4.1. Sites and Datasets

The first study site was the Coleambally Irrigation Area (CIA), which is a rice based irrigation
system located in southern New South Wales, Australia, and covering 2193 km2. Over CIA, there were
17 cloud-free Landsat–MODIS image-pairs available from 2001 to 2002 for the austral summer growing
season. The study in [29] demonstrated that the temporal dynamics of CIA dataset are crop phenology
over a single growing season within the irrigation area. The relatively small field sizes determine that
CIA is more spatially heterogeneous. The Lower Gwydir Catchment (LGC) was the second study site,
locating in northern New South Wales and covering 5440 km2. Fourteen cloud-free Landsat–MODIS
image-pairs over LGC were available from April 2004 to April 2005. A large flood and the subsequent
inundation occurred in mid-December 2004, covering an area of about 44%, which indicated that LGC
is a more temporally dynamic site.

For the CIA dataset, the Landsat images were derived from Landsat-7 ETM+ and were atmospherically
corrected via MODTRAN4 [30]. For the LGC dataset, the Landsat images were derived from Landsat-5 TM
and were corrected atmospherically with the method in [31]. During pre-processing, geocorrection was
defined using the Australian Geodetic Datum (AGD66) for Landsat data. For the CIA dataset, the spatial
resolution is 25 m and the image size is 2040 × 1720; for the LGC dataset, the spatial resolution is 25 m
and the image size is 2720 × 3200. For both study sites, the MODIS images are from Terra MOD09GA
Collection 5 and the spatial resolution is 500 m. To match the Landsat data resolution, the MODIS images
were up-sampled to 25 m by using the nearest neighbor algorithm. To co-register Landsat and MODIS
images with sub-pixel accuracy, an optimal offset was applied to each MODIS image by maximizing the
correlation function between the image pairs. For experimental purpose, we selected the bands 1, 2, 3, 4, 5,
and 7 of the Landsat images and the bands 1, 2, 3, 4, 6, and 7 of the MODIS images. Due to the different
band order arrangements between Landsat and MODIS images, we adjusted the band orders of MODIS
images to match those of Landsat images.

4.2. Quantitative Evaluation Indices

Since the ground truth Landsat images were known, we selected four indices that quantitatively
evaluated the results from different aspects. The first one was root mean square error (RMSE), which
measures the radiometric differences between the fusion result and the ground truth as

RMSE =

√√√√√√ h∑
i=1

w∑
j=1

(
L(i, j) − L̂(i, j)

)2

h×w
, (7)

where L and L̂ denote the ground truth and the fusion result, respectively, and h and w denote the image
height and width, respectively. The smaller the RMSE is, the better the prediction is. We leveraged the
spectral angle mapper (SAM) [32] as the second index to measure the spectral distortion of the result
defined as

SAM =
1
N

N∑
i=1

arccos

M∑
j=1

L j
i L̂

j
i√

M∑
j=1

(
L j

i

)2 M∑
j=1

(
L̂ j

i

)2
, (8)

where N denotes the number of pixels in images and M is the number of bands. The smaller the SAM
is, the better the result is. We took the structural similarity (SSIM) [33] as the third metric, measuring
the similarity of the overall spatial structures between the fusion result and the ground truth as

SSIM =

(
2µLµL̂ + C1

)(
2σLL̂ + C2

)(
µ2

L + µ
2
L̂
+ C1

)(
σ2

L + σ
2
L̂
+ C2

) , (9)
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where µL and µL̂ denote the means of the ground truth and fusion result, respectively; σLL̂ represents
the covariance between the ground truth and fusion result; σL and σL̂ are the variances of the ground
truth and fusion result, respectively; and C1 and C2 are two small constants to avoid instability when
µ2

L + µ
2
L̂

or σ2
L + σ

2
L̂

approach to zero. SSIM is valid when falling in [−1; 1], and a larger SSIM means a
better fusion result. Finally, the erreur relative global adimensionnelle de synthese (ERGAS) [34] was
chosen as the last index to evaluate the overall fusion result as

ERGAS = 100
h
l

√√√
1
M

M∑
i=1

[
RMSE(Li)

2/(µi)
2
]
, (10)

where the spatial resolutions of Landsat and MODIS images are denoted by h and l, respectively;
the ith band image is denoted by Li; and µi denotes the average value of the ith band image. A better
fusion result is achieved when ERGAS is less than or equal to zero.

4.3. Experimental Setting

For description convenience, we arranged both CIA and LGC datasets in chronological order
and number them from 1 to 17 and 1 to 14, respectively. During the training stage, we chose all
bands of the 1st, the 6th, and the 14th image-pairs to generate the training samples for both datasets.
In the prediction stage, the other image-pairs excluding those for training were utilized for testing.
Specifically, we selected all three neighboring image-pairs (e.g., the 5th, the 7th, and the 8th image-pairs)
from both time series; by assuming that the Landsat images on each middle date were unknown,
we predicted the Landsat-like images from the corresponding MODIS images and two neighboring
image-pairs (one before and one after). By referring to [23], the parameter settings of the proposed
method are shown in Table 1, where the sizes of training sub-images were set to be the sizes of receptive
fields and the learning rate decreased by a factor of 10 every 20 epochs. The codes were implemented
by using matconvnet on a machine with Geforce GTX TITAN X GPU, 3.4 GHz CPU and 16 G RAM.
Although the training stage took a long time (e.g., roughly 8 h for LGC dataset), the prediction of each
Landsat image took about 10 min. For the comparison method SRSTF, the optimal parameters were set
according to the reference in [9].

Table 1. Parameter settings of VDCNSTF for CIA1 and LGC2 datasets.

CIA LGC

Network depth for NLM-VDCN 3 15

Network depth for MSSR-VDCN4 20

Size of training sub-images for NLM-VDCN 31

Size of training sub-images for MSSR-VDCN 41

Size of training batches 64

Interpolation method 5 Bicubic

Loss function Mean squared error

Number of training samples for NLM-VDCN 25,344 49,920

Number of training samples for MSSR-VDCN 137,472 315,648

Initial learning rate 0.01

Momentum 0.9

weight decay 0.0001

Epochs 80
1 Abbreviation for Coleambally Irrigation Area. 2 Abbreviation for Lower Gwydir Catchment. 3 NLM-VDCN refers
to non-linear mapping VDCN. 4 MSSR-VDCN refers to multi-scale super-resolution VDCN. 5 The interpolation
method is applied to up-sampling of MODIS images and the down-sampling of Landsat images.
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4.4. Experimental Results

For the CIA dataset, we predicted the Landsat-like images on the 3rd, the 4th, the 5th, the 7th,
the 8th, the 9th, the 10th, the 11th, the 12th, the 13th, the 15th, and the 16th prediction dates; for the
LGC dataset, we predicted the Landsat-like images on the 3rd, the 4th, the 5th, the 7th, the 8th, the
9th, the 10th, the 11th, and the 12th prediction dates. The quantitative evaluation results on the CIA
and LGC datasets in terms of RMSE, SAM, SSIM, and ERGAS are demonstrated in Figures 4 and 5,
respectively, where the RMSE and SSIM are the average values of all bands. As seen in these two
figures, we observed that the fusion results of VDCNSTF had lower RMSE than those of SRSTF and
CNNSTF for all prediction dates on both datasets, which demonstrated that VDCNSTF could achieve
more accurate radiometric values. The lower SAM values and the higher SSIM values of VDCNSTF
results for all prediction dates on both datasets indicated that the proposed method performed better
than SRSTF and CNNSTF in predicting both spatial and spectral information. The lower ERGAS
values of VDCNSTF results also supported this point.
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To show more details of the fusion results, we showed the results on one key date of both study
sites, respectively. For the CIA dataset, the 8th prediction date was selected because of the color turning
in the sporadic irrigation fields from the 8th date to the 9th date (see Figure 6). For the LGC dataset, we
also chose the 8th prediction date due to the occurrence of a large flood on this day causing relatively
large temporal dynamics and abnormal changes of land surface (see Figure 7). Figures 6 and 7 show
the three neighboring image-pairs on the 7th, the 8th, and the 9th dates for CIA and LGC datasets,
respectively, where the Landsat images show bands 5, 4, and 3 as R–G–B and the MODIS images show
bands 6, 2, and 1 as R–G–B. We predicted the Landsat images on the 8th date from other input images
for both CIA and LGC datasets.

For clear comparisons, we selected one zoomed in area (shown in the red rectangles of Figure 6e)
for the CIA dataset and one zoomed in area (shown in the red rectangles of Figure 7e) for the LGC
dataset. Specifically, the zoomed in CIA area was selected due to the heterogeneity of fields and
obvious phenology changes; the zoomed in LGC area was selected due to the dramatically varying
land-cover types (from field area to flooded area between the 8th date and the 9th date). Figures 8
and 9 demonstrate the fusion results from SRSTF, CNNSTF, and VDCNSTF for CIA and LGC sites,
respectively. The ground truth, the fusion results from SRSTF, the fusion results from CNNSTF, and
the fusion results from VDCNSTF are displayed in the first rows. For comparisons with clearer details,
we selected one representative region of interest (ROI) for both CIA and LGC datasets, as shown in the
red rectangles of the first rows of Figures 8 and 9. The enlarged ROIs of the ground truth, the fusion
results of SRSTF, the fusion results of CNNSTF, and the fusion results of VDCNSTF for CIA and LGC
datasets are displayed in the second rows of Figures 8 and 9, respectively.
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Figure 7. Illustrating image-pairs of LGC. (a–c) are MODIS data on the 7th, 8th, and 9th dates,
respectively, and (d–f) are the Landsat data on the same dates as MODIS.

Tables 2 and 3 list the quantitative results in terms of RMSE, SAM, SSIM, and ERGAS of the fusion
results shown by Figures 8 and 9. We can observe that the fusion result of VDCNSTF was better than
the fusion result of SRSTF and CNNSTF on all bands, which indicated that VDCNSTF achieved better
spatial and spectral prediction results than comparison methods.
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Figure 8. Fusion results on the 8th date of the CIA site. Top row shows the zoomed ground truth in the
red rectangle of Figure 6e and the corresponding fusion results. Bottom row shows the zoomed ROIs in
the red rectangle of images in the top row. (a) the ground truth Landsat image; (b) the fusion result of
SRSTF; (c) the fusion result of CNNSTF; (d) the fusion result of VDCNSTF.
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Figure 9. Fusion results on the 8th date of the LGC site. Top row shows the zoomed ground truth in
the red rectangle of Figure 7e and the corresponding fusion results. Bottom row shows the zoomed
ROIs in the black rectangle of images in the top row. (a) The ground truth Landsat image; (b) the fusion
result of SRSTF; (c) the fusion result of CNNSTF; (d) the fusion result of VDCNSTF.

Table 2. Quantitative evaluations of the fusion results in Figure 8. Bold fonts indicate better results.

Index Bands SRSTF CNNSTF VDCNSTF

RMSE

B1 0.0093 0.0073 0.0059
B2 0.0115 0.0112 0.0105
B3 0.0184 0.0143 0.0133
B4 0.0251 0.0222 0.0219
B5 0.0267 0.0231 0.0220
B6 0.0239 0.0213 0.0193

SAM 2.6879 2.3393 2.2993

SSIM

B1 0.9679 0.9775 0.9835
B2 0.9647 0.9700 0.9748
B3 0.9423 0.9556 0.9610
B4 0.9205 0.9309 0.9337
B5 0.9059 0.9175 0.9228
B6 0.8986 0.9096 0.9150

ERGAS 0.2325 0.2026 0.1986

Table 3. Quantitative evaluations of the fusion results in Figure 9. Bold fonts indicate better results.

Index Bands SRSTF CNNSTF VDCNSTF

RMSE

B1 0.0152 0.0141 0.0133
B2 0.0203 0.0195 0.0185
B3 0.0256 0.0246 0.0236
B4 0.0344 0.0317 0.0305
B5 0.0542 0.0514 0.0502
B6 0.0426 0.0389 0.0381

SAM 10.1531 9.8586 9.8086

SSIM

B1 0.9372 0.9482 0.9583
B2 0.9178 0.9284 0.9383
B3 0.8948 0.9042 0.9143
B4 0.8517 0.8589 0.8690
B5 0.6741 0.6916 0.7016
B6 0.7135 0.7401 0.7501

ERGAS 0.3801 0.3622 0.3572
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5. Discussion

Comparing the quantitative evaluation results for CIA and LGC datasets in Figures 4 and 5, the
general prediction errors on LGC dataset were higher than those on the CIA dataset, which indicated
that land-cover type changes were more difficult to predict than phenology changes. This was due to
the spatial resolution gap being too large between MODIS and Landsat images and the lost land cover
change information in MODIS images were more difficult to recover than the lost phenology change
information in MODIS images. To compare the improvements of our method over SRSTF on two
datasets, we computed the average improvements of all prediction dates for CIA and LGC datasets
and the results were as follows: decreased 0.0011 vs. 0.0010 for RMSE, decreased 0.04 vs. 0.05 for SAM,
increased 0.0049 vs. 0.0085 for SSIM, and decreased 0.004 vs. 0.005 for ERGAS. This demonstrated that
our method could better leverage the difficult land-cover type changes than CNNSTF, which may be
attributed to the fact that our deep learning model could better correlate MODIS and Landsat images
than the shallow learning model, and the VDCN based MSSR model had higher prediction accuracy
than the one-step super-resolution model in CNNSTF.

Comparing the fusion results on the CIA dataset and the ground truth in Figure 8, we can see that
all were able to predict the phenology changes within the prediction and the prior dates. However, as
shown by the enlarged ROIs in the second row of Figure 8, which have some special heterogeneous
regions, VDCNSTF performed better than SRSTF and CNNSTF in terms of the predicted spectral
information. Comparing the fusion results on the LGC dataset and the ground truth in Figure 9,
we conclude that all were unable to predict well the dramatically flooded areas because the change
information in the low SR MODIS images was lost; but despite the dramatic changes of land-cover types
shown in Figure 7, they could predict most areas well in aspects of both spatial structures and spectral
information. The enlarged ROIs in the bottom row of Figure 9 demonstrated that the fusion results
of all methods had some degree of spectral distortion and lost some spatial details, but VDCNSTF
performed better than SRSTF and CNNSTF in predicting areas with land-cover type changes.

6. Conclusions

In this paper, we proposed a spatiotemporal fusion method based on VDCNNs by blending the
spatial information of Landsat data and the temporal information of MODIS data. To handle the
highly non-linear correspondence relations between MODIS and Landsat data, we trained a non-linear
mapping VDCN between MODIS and Landsat data with low-spatial resolutions. To bridge the large
spatial resolution gap between the original Landsat and the downsampled Landsat data (10 times),
we trained a multi-scale super-resolution VDCN between low spatial resolution Landsat and original
Landsat images. In the prediction step, the Landsat data on the prediction date was predicted from the
corresponding MODIS data and two prior MODIS–Landsat data pairs. Based on the learned VDCN
models and a fusion model, the prediction stage consisted of three layers, where each layer contained a
VDCN-based prediction step and a fusion model. To thoroughly explore the prior information, we
leveraged the predicted images generated by the VDCN model as transitional images and then used an
HPM module and an indicative weighting strategy to integrate the information in prior image-pairs.
Experimental evaluations on two benchmark datasets validated the superiority of the proposed method
over other learning based methods.

Although the proposed method achieved favorable performance compared to other learning
based methods, there is still a lot of room for improvement in both prediction accuracy of spectral
information and in the finer details of recovering spatial information. Prediction accuracy of spectral
information is very important for application to heterogeneous regions, and spatial detail recovery
is very important for application to land-cover type changes. To increase the prediction accuracy of
spectral information, our future work will focus on implementing precise geo-registration between
two types of satellite sensors in the pre-processing step and building a more accurate fusion model
between the outputs of VDCN and the prior images. To recover the lost spatial details in MODIS
images, our future work will continue with learning the temporal dynamics of Landsat images.
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