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Abstract: Plane segmentation is a basic yet important process in light detection and ranging (LiDAR)
point cloud processing. The traditional point cloud plane segmentation algorithm is typically affected
by the number of point clouds and the noise data, which results in slow segmentation efficiency and
poor segmentation effect. Hence, an efficient encoding voxel-based segmentation (EVBS) algorithm
based on a fast adjacent voxel search is proposed in this study. First, a binary octree algorithm is
proposed to construct the voxel as the segmentation object and code the voxel, which can compute
voxel features quickly and accurately. Second, a voxel-based region growing algorithm is proposed to
cluster the corresponding voxel to perform the initial point cloud segmentation, which can improve
the rationality of seed selection. Finally, a refining point method is proposed to solve the problem
of under-segmentation in unlabeled voxels by judging the relationship between the points and the
segmented plane. Experimental results demonstrate that the proposed algorithm is better than the
traditional algorithm in terms of computation time, extraction accuracy, and recall rate.
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1. Introduction

With the development of three-dimensional (3D) laser scanning technology, it is simpler and more
accurate to acquire point cloud data. A large number of 3D reconstruction applications have been
developed in various fields using 3D laser scanning, such as cultural heritage protection, navigation
and positioning, and urban planning [1–3]. Planar features are important in both indoor and outdoor
3D scenes. For large-scale 3D scene reconstructions, complex objects can be reconstructed better by the
segmentation and recognition of planar shapes [4–6]. Traditional plane segmentation algorithms are
limited by the large amount of point cloud data and the search method of neighbor points, which result
in slow computation efficiency. Most segmentation criteria use only pairwise information between
elements and are sensitive to missing points and structural incompleteness caused by occlusions [7].
Furthermore, the effectiveness and accuracy of a plane segmentation algorithm is affected by noise
points and unevenly distributed points. According to the difference in segmentation objects, point
cloud plane segmentation methods can be divided into two categories: point-based and voxel-based
point cloud segmentation algorithms.

A point-based plane segmentation algorithm uses a single point as the object of plane
segmentation and further classifies points of similar plane characteristics according to certain rules.
Such algorithms can be classified into clustering-feature-based methods, model-fitting-based methods,
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and region-growing-based methods. Clustering-feature-based methods use the spatial coordinates,
curvatures, and normal vectors of points to cluster spatial points by K-means, maximum likelihood,
and fuzzy clustering [8–11]. The results of using clustering-feature-based methods are significantly
affected by feature calculation and clustering method selection. Moreover, this method typically fails
to cluster boundary points correctly. Model-fitting-based methods typically use planes, cylinders,
spheres, and other geometric shapes to segment all or part of the point cloud data and classify points
satisfying the fitting parameter model as the same group. The random sampling consistency (RANSAC)
algorithm [12–17] is a typically used model-fitting-based method. This method can estimate plane
parameters with high accuracy even when a large number of outliers exist. However, owing to the
random selection of points to fit the geometric model using RANSAC, the algorithm demonstrated
poor stability. The segmentation effect is greatly affected by the fitting distance d, and it is easy
to produce over-segmentation and under-segmentation. Region-growing-based methods aggregate
neighbor points of similar characteristics into clusters iteratively; it was first proposed by Besl and
Jain [18]. In this method, seed selection and growing criteria are two main factors affecting the
results. Rabbani et al. used the minimum residual of plane fitting as the criterion for seed selection [19],
whereas Cai et al. computed variance of distances from initial seed k nearest points to the plane
estimated by these points and the height difference between the certain point to the highest point in its
cylinder-based neighborhood to select a real seed point, this method can exclude those low noise points
as seed point [20]. For the growing criteria, normal vector consistency, surface smoothness, curvature,
and a combination of various factors are typically selected. Rabbani et al. selected smoothness as
the constraint of region growing to segment point clouds [19]. Tovari and Feifer selected the normal
vector of a point cloud and the distance from neighbor points to the fitting plane as the criteria for
region growing [21]. However, region-growing-based methods require obtaining neighbor points
and computing the feature information of each point, which results in an inefficient computation.
Furthermore, they are affected by noise points and normal consistency and can also easily produce
over-segmentation and under-segmentation phenomenon.

Compared with point-based plane segmentation algorithms, a voxel-based plane segmentation
algorithm uses voxels instead of scattered point clouds for plane segmentation, which builds grids to
generate voxels based on the original point cloud and then uses voxel as objects for plane segmentation.
Woo et al. introduced a new segmentation method that uses an octree-based 3D mesh to process a large
number of disordered point cloud datasets [22]. The final 3D mesh was constructed by a refining process
and iteratively subdividing voxels using the normal vectors of points. Because the normal vector of the
voxel was the average value of the normal vectors of all points in the voxel, the computational efficiency
of this algorithm was poor. In 2016, Su et al. proposed an octree-based segmentation and merging
algorithm [23]. First, the input point cloud was divided into voxels until each voxel contains only
coplanar points during segmentation. A new segmentation and merging framework based on graph
theory and a series of connectivity were proposed to split and merge voxels. However, this method
was primarily used in industrial scenarios, and its effect on plane segmentation has not been verified.
Vo et al. combined an octree structure with a region growing algorithm to segment point cloud planes
fast to accommodate 3D point clouds in urban environments [24]. But this method can’t find boundary
voxels accurately, especially at the junction of two or more planes. Xu et al. proposed a point cloud
segmentation strategy based on voxel structure and graph theory, where clustering was performed
according to perceptual rules [7]. The algorithm enables a learning-free and completely automatic but
parametric method for segmenting 3D point clouds. However, this method requires many parameters,
and over-segmentation and under-segmentation are not considered in-plane segmentation. Lin et al.
formalized supervoxel segmentation as a subset selection problem and then solved it using a heuristic
algorithm [25]. This algorithm does not depend on the selection of seed points, and the extracted
supervoxels can preserve the edges of the target object more effectively. However, this algorithm is only
a segmentation method for point clouds and does not cluster supervoxels as a plane, thus rendering
it inconvenient to use its result directly. In conclusion, voxel-based plane segmentation algorithms
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are complex and inefficient in voxel search and some shortcomings exist in voxel clustering, such as
unreasonable seed selection, inadequate bases for selecting growing conditions, over-segmentation
and under-segmentation, and unsatisfactory processing effects.

To improve the efficiency and quality of plane segmentation based on a large number of point
cloud data, an efficient encoding voxel-based segmentation (EVBS) algorithm based on a fast adjacent
voxel search is presented herein. Firstly, a highly efficient point cloud voxelization method is proposed
to improve the efficiency of voxels and point cloud searching. It is the basis of fast and accurate point
cloud plane segmentation. Secondly, by improving the selection of seed voxels and the determination
of constraints in region growing algorithm, point cloud planes are segmented more accurately. Finally,
to solve the problem of over-segmentation, the voxels with lower plane features are not labeled and
clustered into any plane in the initial segmentation. Then for these unlabeled voxels, a method of
refining points in unlabeled voxel by judging the relationship between the points and the segmented
planes is proposed to solve the problem of under-segmentation which is just an easy implement.

2. Methods

The process of the EVBS algorithm is shown in Figure 1, which includes four main steps: (1) Using
a highly efficient binary-coded octree to voxelize the point cloud, which can realize a fast voxel
adjacency search; (2) estimating the features of each voxel, including the spatial position, normal
vector, and residual value of the voxel; (3) clustering voxels using a region growing algorithm, in
which the effects of residual value and number of points in voxels are considered while selecting a
reasonable seed voxel; smoothness and continuity constraints are used as two main constraints for
region growing; (4) refining point clouds in unlabeled voxels by judging the relationship between
points and the segmented plane to improve the recall rate and accuracy of plane segmentation.Remote Sens. 2019, 11, x FOR PEER REVIEW 4 of 24 
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2.1. Point Cloud Voxelization

2.1.1. Voxelization Based on Binary Coding Octree

As with many unstructured spatial data sets, some spatial indexing techniques are used to support
faster search and access to data. Octree and k–d trees are widely used in the field of point cloud
processing to organize disorder point clouds. K–d tree is a binary search tree, which is very useful
for interval and neighbor search of point. Octree is a kind of tree data structure used to describe
three-dimensional space. Each node of an octree represents the volume element of a cube, and each
node has eight child nodes. In order to improve the efficiency and stability of point cloud segmentation,
voxel is used to instead of point as the object of plane segmentation, so it is necessary to use octree
to complete the voxelization of the point cloud [26] (k–d tree cannot complete the voxelization of
the point cloud). The region growing algorithm is used in this paper, which merges the voxels with
adjacent relationship and similar plane features. Therefore, it is important to search the adjacent voxels
with highly efficient.

For a traditional octree to search for adjacent voxels, the search radius must be set and the
corresponding voxels are obtained by recursive search; additionally, the relationship between child and
parent nodes is assessed, which is not efficient, or a table-based storage and location are used, which
requires significant memory. Therefore, traditional methods are not suitable for searching adjacent
voxels when the point cloud is large [27,28]. In this paper, a novel point cloud voxelization method
based on binary coding octree is proposed to do a fast search of adjacent voxels. The voxelization
method is shown in Figure 2, which is described as follows: (1) The level of an octree was calculated
according to the bounding box of the point cloud data and the set leaf node size dI. (2) Eight child nodes
were divided from the parent node and coded according to the X, Y, and Z axes with 0 or 1, as shown
in Figure 2a. The initial coding of eight child nodes was obtained by combining the coding of X, Y and
Z axes. Figure 2b shows the coding value of the node when level = 1. Then adding the encoding of the
parent node to the front of the initial encoding of the child node to form the final encoding of the child
node. Figure 2c shows the coding value of part voxels when level = 2. (3) After the coding method
was determined, the relationship between node coding and coordinates was established. We used the
octree which level = 2 and dI = 1 m as an example: the binary code of a node is 111,011 as shown in
Figure 2c, of which steps are shown as follows:

• Extract the code value related to X in the code, i.e., the value 1 of the first bit and the value 0
of the fourth bit, constitute the binary code is 10, and the decimal system is 2, then the voxel X
coordinate is 2 × 1 = 2 m.

• Similarly, Y = 3 × 1 = 3 m and Z = 3 × 1 = 3 m.

Conversely, when we know the coordinates of a point p, we can convert it into binary code using
Equation (1):

Xb = binary( f loor((p.x−O.x)/dI)

Yb = binary( f loor((p.y−O.y)/dI)

Zb = binary( f loor((p.z−O.z)/dI)

(1)

where, Xb, Yb and Zb are the coding of three coordinate values of p, O is the origin point of octree.
Then insert each bit of Xb, Yb, Zb into the corresponding position, and the coding value of the voxel
where this point located in can be obtained. Put all the points into the corresponding voxels to complete
the voxelization of the point cloud. In order to speed up the extraction of encoded bits value, we use
the bit operation instruction: parallel bits extract (PEXT) to extract the X, Y, Z three-dimensional spatial
coordinates from the voxel encoding, and parallel bits deposit (PDEP) to insert the binary encoding bits
of the three coordinate values of point cloud into different position and merge them into one encoding.
This encoding method takes up little memory, and the speed of encoding and coordinate conversion is
fast. It is suitable for the voxelization of point cloud with a large amount of data.
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Figure 2. A highly efficient binary encoding octree data structure. (a) A voxel coded according to the X,
Y, and Z axes with 0 or 1, (b) binary coding of octree in level 1, and (c) binary coding of octree in level 2
which is part of (b).

2.1.2. Searching Adjacent Voxel

Generally, point cloud data are disorganized. In this study, a 26-voxel adjacent topology structure
is used to organize voxels and point clouds. When searching for adjacent voxels, the encoding of voxels
on three coordinate axes Xref, Yref, and Zref were obtained according to the bit operation instruction
PEXT. Because the leaf node sizes of an octree are equal, the component coding of the leaf node on one
coordinate axis differ by 1 or 0 between the leaf node and its adjacent leaf nodes, as shown in Figure 2c
or Figure 3b. According to this feature, the encoding of the three coordinate axes of 26 adjacent voxels
is calculated as follows:

X = Xre f ± 1(0)
Y = Yre f ± 1(0)
Z = Zre f ± 1(0)

(2)

Finally, the binary encoding of adjacent voxels is calculated using the bit operation instruction
PDEP according to the coding values of the three coordinate axes, and the corresponding voxels are
obtained via binary encoding and the octree structure. This binary coding converts the general traversal
comparison operation into a binary bit operation, which improves the search efficiency significantly
and is the basis for the fast region growing of voxels. The results of voxel search are shown in Figure 3c;
a red voxel represents the known coded voxel, whereas yellow and blue voxels represent adjacent
voxels that have point clouds. Figure 3d shows the point cloud in the adjacent voxels.
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2.2. Voxel Feature Estimation

Generally, the growing conditions of the point-based region growing algorithms were based on
the features of points, which include the location, normal, and curvature of points. Similarly, a voxel
region growing algorithm requires voxel features as growing conditions. Herein, three features of
voxels are calculated: the spatial position, normal vector, and residual value of voxels, which are
described as follows:

(1) The spatial position of a voxel is expressed by the average coordinate values of all points in a
voxel (centroid O(x, y, z)).

(2) The normal vector of a voxel is calculated by principal component analysis (PCA). First, the
covariance matrix is calculated by point set P

{
p1, p2,p3 . . . pn

}
in a voxel:

C =
1
n

n∑
i=1

(pi − p)(pi − p)T (3)

where p = 1
n

n∑
i=1

pi is the centroid of a point cloud in a voxel and matrix C is a symmetric positive

definite matrix; matrix C is decomposed into eigenvalues:

C =
[

e1 e2 e3
]
λ1 0 0
0 λ2 0
0 0 λ3




e1

e2

e3

 (4)

where λ1, λ2, λ3 are the three eigenvalues of matrix C and λ1 ≥ λ2 ≥ λ3 > 0; e1, e2, e3 are the
eigenvectors corresponding to the eigenvalues. The first eigenvector is the maximum variance
direction of the point cloud data. The second eigenvector corresponds to the direction in which
the data variance is the largest in the vertical direction of the first eigenvector, and so on. For
point cloud plane estimation, the first two eigenvectors form the basis of the plane, the third
eigenvector is orthogonal to the first two eigenvectors, and the normal of the fitting plane is
defined [29]. In other words, the eigenvector corresponding to the minimum eigenvalue of the
matrix is regarded as the normal vector of the point cloud data fitting plane in the voxel.

(3) The residual in the plane fitting of point cloud data can be caused by noise points and the
inconsistency between a point and a plane model. The equation for calculating the residual is
as follows:

r =

√√√
1
k

k∑
i=1

d2
i (5)

where di is the distance from the point to the fitting plane. For a single voxel, the residual value
of a point cloud in a voxel indicates the degree of dispersion from points to the fitting plane, as
shown in Figure 4. The smaller the residual value of the voxel, the higher is the flatness of a point
cloud in a voxel.
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2.3. Voxel-Based Region Growing

The region growing algorithm is an effective algorithm for point cloud segmentation. In the
study by Rabbani et al. [19], points are regarded as growing objects and region growing is performed
by calculating point features and smoothing constraints; thus, the segmentation of point clouds is
completed. In this study, voxels are used to replace points as the object of plane segmentation. The two
most important steps in a voxel-based region growing algorithm are the selection of seed voxel and the
determination of growing constraints. Our methods are described as follows:

2.3.1. Selection of Seed Voxel

The traditional seed selection method of a voxel-based region growing algorithm is to sort voxels
according to the residual value; subsequently, unclassified voxels are selected as the initial seed voxels
for plane according to the order of voxel residual from small to large. It is generally believed that the
smaller the residual value of voxel, the more likely the point cloud in voxel satisfies the plane features.
But this method has not considered the effect of the number of points. If only three points exist in a
voxel and a plane equation can be calculated, the residual of this voxel is 0. However, a voxel with
fewer points is not suitable as a seed voxel because its feature is unstable. Therefore, in this study, the
number of points of a voxel is used as a condition for selecting a seed voxel. Only when the number
of points in a voxel is sufficient and the residual value is relatively small can this voxel satisfy the
standard of a seed voxel. The normalized parameters of the number of points and voxel residuals are
defined by weight functions:

wi =
∏

k∈[ n r ]

exp

− (Dk)
2

2λ2
k

 (6)

where λn,λr denote the bandwidths of the Gaussian kernel that controls the importance of point
number and the residual value of a voxel, respectively. We set their values as 0.1. Furthermore, Dk is
the reflection of the point numbers n and the residual value r in voxels. In our method, the larger n is
and the smaller r is, the more obviously the plane feature of this voxel is. In order to make the change
of n and r have the same effect on the wi, we set Dn = 1/n and Dr = ri. Gaussian distribution is a
weight distribution model. On the Gaussian distribution curve, the closer to the center 0, the larger the
value. This just satisfies the characteristics that the closer the values of 1/n and r are to 0, the more
points are in the voxel and the more obvious the plane feature of the voxel is. This is why we use the
Gaussian function to calculate the normalized parameter. To select the most reasonable seed voxel, the
voxels are sorted according to the value of the normalized parameter w, and then the first unclassified
voxel is selected as the initial seed voxel of one plane. Subsequently, the region growing of the voxels
is performed according to the given constraints. Regarding the threshold value wth of the normalized
parameters, when wi > wth (wi is the normalized parameter value of the selected voxel), the growing
procedure will be stopped. When one plane is growing, voxels that satisfy the given constraints and
wi < wth are selected as new seeds to continue growing this plane, until no suitable voxels are growing
on this plane then continue to grow next plane. This implies that voxels whose normalized parameter
is larger than wth will always be unlabeled in the initial segmentation.

2.3.2. Selection of Growing Conditions

The basic principle of voxel region growing is to iteratively estimate the similarity of all adjacent
voxels and classify voxels whose similarity differences were within a certain range into one group.
Points in voxels inherit the ID of the voxel cluster. The similarity of voxels was determined by
the features of the voxels. Compared with the traditional region growing algorithm that only uses
smoothness constraint, continuity constraint is proposed and added according to the definition of
plane equation in this paper to cluster voxels which improved the accuracy of plane segmentation.
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(1) Smoothness constraint: Equation (7) expresses a plane equation in a 3D space. (A, B, C) is
the normal of the plane. If points in two voxels are on the same plane, then the normal of
the fitting planes of these two voxels should be approximately parallel. This is called the
smoothness constraint.

Ax + By + Cz + D = 0 (7)

Smoothness constraint is measured by comparing the angles between the normal vectors of
two voxels. As shown in Figure 5a, two adjacent voxels A and B exist; their normal vA and vB,
respectively, have been computed in the feature estimation of voxels in Section 2.2. The angle
between them is obtained by point multiplication, as shown in Equations (8) and (9):

→

vA
·

→

vB = vA
x vB

x + vA
y vB

y + vA
z vB

z = ‖
→

vA
‖ ‖

→

vB
‖ cos

(
θAB

)
(8)

θAB = cos−1(vA
x vB

x + vA
y vB

y + vA
z vB

z ) (9)

If θAB
≤ θth, then these two voxels satisfy the smoothness constraints, and they are grouped

into the same plane cluster; the point in these voxels are labeled by the cluster ID, as shown in
Figure 5a; θth is the angle threshold. In Figure 5b, voxels A and B do not satisfy the smoothness
constraint when θAB > θth.

(2) Continuity constraint: To judge whether points in two adjacent voxels belong to the same
plane, it is insufficient to rely solely on the smoothness constraint. As shown in Figure 6b, the
normal vectors of two adjacent voxels are parallel to each other, satisfying the smooth connection
constraint; however, the point clouds of the two voxels do not belong to the same plane. Therefore,
the parameter D in the plane equation should also satisfy the corresponding conditions to ensure
that the points in the two voxels belong to the same plane. We call this constraint the continuity
constraint. The continuity constraint of the voxels implies that if the points in two voxels belong
to the same plane, then the two parts of the points are continuous, as shown in Figure 6a.
To measure the continuity between two voxels, we compute the centroids O1, O2 of voxels A

and B, respectively, and then connect the centroids of two voxels to obtain vector
→

O1O2. Before
applying the continuity constraint, the smoothness constraint is first applied; in other words,
the smoothness constraint is satisfied before the continuity constraint is applied. Therefore, the
normal vectors of the two voxels are approximately parallel before the continuity constraint is

applied. If
→

O1O2·
→

N1 < ϕth (N1 is the normal of voxel A), the points in two voxels are considered

to be continuous and cluster them into the same plane. If
→

O1O2·
→

N1 > ϕth, then the point clouds
in two voxels do not satisfy the continuity constraint. ϕth is the threshold. This can solve the
problem of clustering the parallel planes which are close to each other into the same plane (shown
in Section 4.3).
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Figure 5. Voxel smoothness constraint. (a) Voxels A and B satisfy smoothness constraint θAB
≤ θth and

(b) voxels A and B do not satisfy smoothness constraint θAB > θth.
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2.4. Unlabeled Voxel Segmentation

After the region growing segmentation of a voxel, points belonging to the same plane can be
clustered into one group, and a set of point cloud planes can be obtained, as shown in Figure 7a.
Although the point cloud planes are segmented correctly in the initial segmentation, there is a
phenomenon of under-segmentation which caused by two main reasons: (1) the normal of voxel at the
junction of two or more planes differs significantly from the normal of these planes, thus it is impossible
for them to be clustered into any plane, as shown in Figure 7f; furthermore, because of the large residual
value, they cannot be selected as a seed to grow a new plane, as shown in Figure 7b,d. (2) Some voxels
are not clustered because of incorrect normal vector calculations owing to noise points, as shown in
Figure 7c. To address under-segmentation, this paper allocates the points in unsegmented voxels
correctly by judging the relationship between the plane of adjacent voxels that have been segmented
from unsegmented voxels and the points in unsegmented voxels. First, we place the unsegmented
voxels into a set U and then traverse each unsegmented voxel v j in U and find its adjacent voxel set B.
Next, we record the index m of the plane in which voxel vb is located, and vb ∈ B. Subsequently, we
calculate the distance from each point pi in v j to these planes, as shown in Equation (10).

dmin = min
{ n

dist
m=0

(pi, rm)
}

∀pi
(
xi , yi, zi

)
∈ v j, rm ∈ R

(10)
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Figure 7. Process for handling under-segmentation. (a) Results of coarse point cloud segmentation;
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junction of two planes cannot cluster into anyone plane, and (g) results of unlabeled voxel segmentation.
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The distance dmin between a point and the nearest plane of its adjacent voxels, and the index md
of the nearest plane are calculated using the equation above. If dmin < dthd, then this point belongs to
this nearest plane and is placed into the plane Rmd ; otherwise, this point is considered as noise data
and will not be segmented, as shown in Figure 7e.{

pi ∈ Rmd , i f dmin < dthd
pi ∈ ∅, otherwise

(11)

After the segmentation of unlabeled voxels, the integrality of the point cloud in building facades
improved significantly, as shown in Figure 7g. The segmentation of unlabeled voxels proposed
herein is easy to implement and efficient. It can effectively solve the problem of under-segmentation.
The pseudocode is as follows:

Algorithm 1: Unlabeled voxel segmentation.

Data: Octree O, coarse segmentation plane set R, distance threshold dthd.
Result: Place the points in the unsegmented voxels into the correct plane
initialization: Place the unsegmented voxel in octree O into U
begin:

for each v j ∈ U do
find adjoin voxels B of v j
for each pi ∈ v j do

for each vk ∈ B
compute d between pi to rm

find dmin and its md
if dmin < dmin then

insert pi into Rmd

3. Experiments and Analysis

To test the efficiency and robustness of the proposed EVBS algorithm, it is compared with two
traditional point-based plane segmentation algorithms: region growing algorithm (SCRG) using the
smoothing constraint proposed in [19], and efficient RANSAC algorithm (ER) [17]. Furthermore,
a voxel- and graph-based point cloud segmentation algorithm (VGS) is selected for comparison to
validate the EVBS algorithm [7]. Two different sources of point data are selected as experimental
data, which are acquired using a terrestrial laser scanner and a mobile laser scanner. To evaluate the
automatic segmentation algorithm, two groups of point cloud data are segmented manually as the
ground truth [30,31]. Then, the results of automatic segmentation were compared with those of manual
segmentation to evaluate the advantages and disadvantages of the segmentation algorithm. According
to the ground truth plane si, we obtained its corresponding plane s′i that was segmented by algorithms.
Subsequently, we calculated the precision, recall, and comprehensive evaluation F1 to evaluate the
EVBS algorithm, as follows:

precision =
|TP|

|TP|+ |FP|
(12)

recall =
|TP|

|TP|+ |FN|
(13)

F1 = 2×
precision× recall
precision + recall

(14)

(1) True positive (TP): the number of pt, where pt ∈ (si ∩ s′i ), (2) false positive (FP): the number of
p f , where p f ∈ s′i , p f < si, and (3) false negative (FN): the number of pn, where pn < s′i , pn ∈ si.

The EVBS involves five parameters: voxel resolution dI, normal vector angle threshold θth,
normalized parameter threshold wth, continuity threshold ϕth, and distance from a point to a plane in
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the refining process dmin. The most important parameters are dI and wth. Voxel size directly affects the
performance and results of the algorithm. Therefore, it was necessary to select the appropriate voxel
size such that the algorithm performs correctly and efficiently. We used the method of Vo et al. [24],
who referred to Filin and Feifer [32], to determine the voxel size according to the point cloud density
and the parameters of the fitting plane, as shown in Equation (15).

mα = ±m0 ·
12
k · s

(15)

where mα is the accuracy of the fitting plane slope; m0 is the accuracy of the laser range measurement;
k represents the number of points in the neighborhood; s is the reciprocal of the point cloud density.
The voxel size is determined as dI ≥

√
k · s. The normalized threshold wth controls the voxel selection

of seeds in this algorithm. The setting of wth is closely related to the execution time of the algorithm.
The larger the wth, the more voxels become seed voxels, and the more planes appear; consequently, the
execution time will increase, wth is typically set according to the experience value, which is set to 0.05
in this study. θth is the angle between the fitting planes of the point clouds in the two voxels, which is
commonly used in the point cloud plane segmentation algorithm. Generally, its value is relatively fixed
and easy to understand. In this paper, it is set to 25.8◦. Similarly, ϕth is the embodiment of D in the
fitting plane equation of the point cloud of two voxels, and its setting is relatively fixed in this paper
(0.15). The last threshold dmin is set according to the already set threshold dmin = 0.5 · dI. In conclusion,
only dI and wth are sensitive to data in this paper, while the other three thresholds are usually fixed.

3.1. Results of Terrestrial Laser Scanner Data

The terrestrial light detection and ranging (LiDAR) data that we selected is the point cloud data of
an urban scene. This data is part of sg27_10 of the large-scale point cloud data classification benchmark
dataset [33] published by the Zurich Federal Institute of Technology (ETH Zurich) in 2016. It contains
28,112,328 3D points. This group of point cloud contains objects such as ground, walls, roofs, windows,
and railings, as shown in Figure 8a. The ground truth data obtained by manual segmentation is shown
in Figure 8b. Table 1 shows the parameters of four methods for experiment using terrestrial laser
scanner data.
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Figure 8. Terrestrial light detection and ranging (LiDAR) data. (a) Point cloud published by
Zurich Federal Institute of Technology (ETH) Zurich, and (b) ground truth data obtained by
manual segmentation.

The experimental results are shown in Figure 9. (1) Compared with point-based algorithms:
because both the ER and SCRG must obtain the neighbor points of every point and the feature of this
point is calculated according to the neighbor points, it is sensitive to noise. In addition, the normal of
the point computed by neighbor points at the intersection of multiple planes are different from those of
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each plane; therefore, over-segmentation and under-segmentation will occur, as shown in Figure 9a,b.
Our algorithm uses voxels to replace points as the object to segment. It is less affected by noise points
and the features are more stable. Furthermore, by setting a smaller normalized parameter threshold,
voxels at the junction of multiple planes are not labeled in the initial segmentation. The relationship
between each point in the unlabeled voxels and the segmented plane is analyzed during refinement
segmentation; subsequently, the points in the unlabeled voxels are segmented correctly, thus reducing
over-segmentation and under-segmentation significantly, as shown in Figure 9d. As shown in Table 2:
the segmentation precision and recall rate of this algorithm are both 0.85, which are higher than 0.78
and 0.70 of the ER algorithm. Compared with the 0.51 and 0.53 of the SCRG algorithm, these two
metrics increased by 66% and 60%, respectively. (2) Compared with the VGS algorithm: because
the VGS algorithm uses a graph-based segmentation method, many parameters must be set, thus
resulting in ambiguous plane clustering conditions that are not conducive to the segmentation of plane
point clouds. Our algorithm uses the region growing method to cluster voxels; the best seed voxel
was selected according to the point number and residuals in the voxel such that the best planes are
clustered. Additionally, we used the equation of the plane to select growing conditions that more
suitable for plane segmentation. These factors render the effect of our algorithm more detailed and
smoother than that of the VGS algorithm, as shown in Figure 9c,d. For example, our algorithm can
extract eaves successfully and extract windows more continuously, as shown in Figure 10a; however,
the VGS algorithm exhibits errors in extracting roofs and cannot divide them into two planes, as shown
in Figure 10b. From the segmentation results in Table 2, the segmentation precision of the EVBS is
0.85, which is greater than 0.80 of the VGS, and the comprehensive metrics F1 of this algorithm is 0.85,
which is higher than 0.70 of the VGS.

Table 1. Parameter settings for experiment using terrestrial laser scanner data.

dI (m) wth (m) θth (degree) dmin (m)

ER 0.034 - 25.8 0.034
SCRG - 0.05 25.8
VGS 0.1 - - -
EVBS 0.1 0.05 25.8 0.05

In the segmentation of large-scale point clouds, efficiency is an important index to evaluate the
performance of an algorithm. Compared with the traditional point-based segmentation algorithm,
three factors contribute to the efficiency of our algorithm: (1) our method does not require the normal
and characteristics of each point to be calculated, (2) voxels are used as growing objects, thus reducing
the clustering time of a plane point cloud, and (3) reasonable selection of seed voxels prevents the
generation of wrong planes and reduces the time of voxel clustering. As shown in Table 2, the EVBS
only required 7.8 s to process the data, whereas the ER algorithm required 329.6 s and the SCRG
algorithm required 749.3 s. The efficiency of EVBS is significantly improved. Compared with the
voxel-based segmentation algorithm VGS, our algorithm uses a binary coding method to encode voxels,
and adjacent voxels can be obtained quickly according to the voxel encode while the VGS searches
adjacent voxels by setting the search radius, which results in poor search efficiency. Consequently, our
algorithm is more advantageous than the VGS in processing terrestrial laser scanner data, as the time
spent for processing is approximately 1/10 that of the VGS, as shown in Table 2.

To study the effect of different-size data on the efficiency of the segmentation algorithm, the
original data of terrestrial laser scanner data are sampled according to different densities, and point
cloud data by down-sampling are separately segmented by the ER, SCRG, VGS, and EVBS herein.
The statistical graph of the execution time of four algorithms is shown in Figure 11. As shown, the
execution times of the other three algorithms increase significantly with the number of point cloud
data. But our algorithm was less affected by the increasing number of point clouds and keeps a high
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segmentation efficiency. It proves that our algorithm has more advantages in processing large-scale
point cloud data.
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Figure 10. Details of result comparison of terrestrial laser scanner data. (a) Details of segmentation
results of VGS, and (b) details of segmentation results of the EVBS algorithm.
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Table 2. Plane segmentation evaluation results of experiments using terrestrial laser scanner data.

Precision Recall F1 Time (s)

ER 0.78 0.70 0.73 329.6
SCRG 0.51 0.53 0.52 749.3
VGS 0.80 0.62 0.70 77.3
EVBS 0.85 0.85 0.85 7.8

3.2. Results of Mobile Laser Scanner Data

The second group of experimental data was provided by the MATIS Laboratory of the French
National Mapping Agency (IGN) and the Center for Mathematical Morphology in the IQmulus and
Terra Mobilita Contest [34], as shown in Figure 12a. The data contain 13,500,158 points. A mobile laser
scanner system developed at the IGN has been acquired by Stereopolis II. The mobile laser scanner
system exhibits characteristics of fast acquisition of point clouds and wide acquisition range compared
with a terrestrial laser scanner; however, mobile LiDAR point cloud data exhibit disadvantages of
uneven density distributions and complex scenes [35,36]. According to the actual scene and the
characteristics of mobile LiDAR point cloud data, in manual segmentation, a plane with a large area
such as ground and building facades is regarded as the segmentation unit. The ground truth data
obtained by manual segmentation is shown in Figure 12b.

The experimental results of handling mobile laser scanner data between the proposed and
point-based algorithms are compared in Figure 13. The traditional point-based region growing
algorithm SCRG only relies on the normal of the point as the constraint condition of region growing,
thus resulting in serious under-segmentation and over-segmentation in segmented planes, as shown in
Figure 13b. The RANSAC algorithm is a plane-fitting-based segmentation algorithm. Although the ER
algorithm adds the restriction of a normal, it is still limited by the distance from a point to plane d.
Therefore, when the road of the point cloud is extremely long and a slope exists, the segmentation
result of the road will be incorrect, as shown in Figure 13a. The EVBS regards voxels as growing
objects and voxel features as constraints, and it uses a region growing algorithm for segmentation to
avoid the abovementioned problems; therefore, it can achieve a better segmentation effect, as shown in
Figure 13d. The segmentation results are shown in Table 3. As shown, the EVBS is superior to the other
two algorithms in all metrics. The SCRG algorithm is disadvantageous for handling mobile LiDAR
data, as the comprehensive metrics F1 is only 0.40. The F1 of the ER is 0.77, which is lower than that of
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our method (0.81). In terms of segmentation time, our algorithm requires only 5.1 s to complete all
segmentations, while the other two algorithms require 249.8 s (ER) and 295.1 s (SCRG).
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Figure 12. Mobile laser scanner data. (a) Mobile laser scanner point cloud obtained by the MATIS
Laboratory, and (b) ground truth data obtained by manual segmentation.
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Figure 13. Segmentation results of mobile laser scanner data. (a) Segmentation results of ER algorithm,
(b) segmentation results of SCRG algorithm, (c) segmentation results of VGS, and (d) segmentation
results of the EVBS.

A voxel-based segmentation algorithm regards a voxel as a segmentation object, and the voxel at
the junction of planes often contains points that belong to two or more planes. The VGS algorithm
directly clusters voxels and does not process voxels separately at the junction of planes. Therefore,
when the voxel resolution is large, a sawtooth point cloud plane boundary will appear, which results
in non-ideal segmentations, as shown in Figure 13c. Because the residual value (represented by
the normalized parameter herein) of voxels at the plane junction is large, our algorithm does not
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directly classify these voxels in the initial segmentation; subsequently, during refinement segmentation,
we judge the relationship between each point in an unlabeled voxel and the segmented plane to
avoid this phenomenon, thus improving segmentation, as shown in Figure 13d. As shown in the
segmentation results in Table 3, the comprehensive metrics F1 of EVBS is 0.81, which is higher than
0.69 of the VGS. In terms of efficiency, the VGS algorithm requires 49.3 s to segment mobile laser
scanner data, which is better than the general point-based plane segmentation algorithm; meanwhile,
the EVBS only requires 5.1 s, which is better than the VGS. The experimental results show that the
EVBS performs well in the plane segmentation of complex scene point cloud data.

Table 3. Plane segmentation results using mobile laser scanner data.

Precision Recall F1 Time (s)

ER 0.85 0.71 0.77 249.8
SCRG 0.66 0.29 0.40 295.1
VGS 0.86 0.57 0.69 49.3
EVBS 0.86 0.77 0.81 5.1

4. Discussion

Herein, we presented a point cloud plane segmentation algorithm based on fast adjacent voxel
search that aims to improve the efficiency and effect of point cloud plane segmentation. Based on the
results of the aforementioned experiments, three issues must be addressed: voxel size setting, curved
point cloud surface, and two parallel planes that are close to each other.

4.1. Voxel Size Setting

Our method uses a voxel as the segmentation object for point cloud plane segmentation. Unlike
the method of adaptive voxel resolution used in [24], to better organize voxels and improve the
efficiency and effectiveness of the algorithm, a voxel of uniform size is used in this study. To ensure
a detailed segmentation, we set the size of the voxel to be the same as the minimum resolution of
the voxels in [24]. Although this will increase the number of voxels, the efficient voxel organization
method applied will ensure the efficiency of the algorithm. However, the voxel is extremely small,
which results in fewer points in the voxel and unstable voxel features. According to our experiment,
at least 200 points are required in a voxel to obtain stable voxel features. Using the same voxel size,
the resolution of a point cloud affects the performance of the algorithm [37]. Although we can obtain
the voxel resolution range according to Equation (15), the voxel size must still be set according to
experience to achieve better segmentation in some cases (when we do not know the accuracy of the
laser range measurement or the point cloud density).

In the terrestrial laser scanner data experiment, given the accuracy of laser range measurement of
4 mm, local point spacing of 3.2 mm, according to Equation (15), the number of points required for
obtaining the angular accuracy of 6◦ is k = m0

s
12
mα

= 4
3.2

12
tan(6◦) ≈ 143 points. the voxel size should be

larger than dI =
√

k · s ≈ 38 mm. In order to verify the influence of voxel size dI on the segmentation
results, we used 0.03 m, 0.1 m, 0.15 m and 0.3 m to experiment. The experimental results are shown in
Figure 14. Figure 14a is the segmentation result when dI = 0.03, in this case, the size of voxels is small,
and the number of points divided into voxels is few. In the left voxelization result of Figure 14a, the
average number of points in voxels is n = 213, which can calculate stable voxel features and divide
them into correct planes. However, in the voxelization result of the roof point cloud on the right side of
Figure 14a, the average number of points in the voxel is n = 52, which is sparsely and leads to unstable
voxel features. It is easy to have a growth interruption problem in the voxel region growing when dI is
too small, resulting in a plane being divided into multiple planes, which affects the result of plane
segmentation. Due to the point cloud is divided into more voxels, the segmentation time is 81.5 s.
Figure 14c shows the segmentation result when dI = 0.15.There is a blank area in the voxelization
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point cloud in Figure 14c, so this part of the point cloud should be divided into two planes Figure 15a.
However, due to the large voxel size, the two parts of the boundary point cloud located in the adjacent
voxels meet the region growing constraints, then they will be clustered into the same one plane as
shown in Figure 15b. The same situation will occur at dI = 0.3, from Figure 14d, it can be seen that
with the increase of voxel size, the level of detail of plane segmentation is also decreasing. Figure 14b
shows the result of plane segmentation using threshold dI = 0.1 in Section 3.1. From the comparison
of experimental results, it can be seen that the segmentation effect is the best by this threshold and
consumes less time.Remote Sens. 2019, 11, x FOR PEER REVIEW 20 of 24 

 

 

Figure 14. Segmentation results and partial voxelization results of different sizes of Id . (a) 
experiment results when 0.03Id  , cost time 81.5 s, (b) experiment results when 0.1Id  , cost time 
7.8 s, (c) experiment results when 0.15Id  , cost time 7.0 s, and (d) experiment results when 

0.3Id  , cost time 5.8 s. 

 

Figure 15. The segmentation result by using different voxel sizes to process the red point cloud. (a) 
segmentation result of small voxel size, two planes have been segmented and (b) segmentation result 
of bigger voxel size, only one plane has been segmented. 

4.2. Curved Point Cloud Surface 

The purpose of this algorithm is to segment a point cloud into point cloud planes. Sawtooth 
usually at the boundary between two connected planes which decreases the accuracy of plane 
segmentation in other methods [38–40]. In our paper a method of subdividing each point in an 
undivided voxel at the junction of two or more planes is adopted to segment point cloud data 
correctly, thus avoiding the sawtooth appearance of plane boundary points. However, in some 
scenes, a curved surface point cloud appeared. As shown in Figure 16, the point cloud at the junction 
of eaves and walls of the data in Section 3.1 is curved, and its boundary with the point cloud on the 

a b 

c d 

a b 

Figure 14. Segmentation results and partial voxelization results of different sizes of dI. (a) experiment
results when dI = 0.03, cost time 81.5 s, (b) experiment results when dI = 0.1, cost time 7.8 s,
(c) experiment results when dI = 0.15, cost time 7.0 s, and (d) experiment results when dI = 0.3,
cost time 5.8 s.
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Figure 15. The segmentation result by using different voxel sizes to process the red point cloud.
(a) segmentation result of small voxel size, two planes have been segmented and (b) segmentation
result of bigger voxel size, only one plane has been segmented.

4.2. Curved Point Cloud Surface

The purpose of this algorithm is to segment a point cloud into point cloud planes. Sawtooth usually
at the boundary between two connected planes which decreases the accuracy of plane segmentation in
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other methods [38–40]. In our paper a method of subdividing each point in an undivided voxel at
the junction of two or more planes is adopted to segment point cloud data correctly, thus avoiding
the sawtooth appearance of plane boundary points. However, in some scenes, a curved surface point
cloud appeared. As shown in Figure 16, the point cloud at the junction of eaves and walls of the data in
Section 3.1 is curved, and its boundary with the point cloud on the wall is not obvious. Therefore, the
voxel residual value of this part is small and can grow to a certain plane in the initial growth, which
will also result in the appearance of a sawtooth point cloud plane boundary, as shown in Figure 16a.
However, in this study, we do not consider the segmentation of a curved surface point cloud. If the
voxel resolution is set reasonably, this phenomenon will not be obvious and thus the segmentation
results will not be affected significantly. Other circumstances, such as the segmentation of sphere,
cylinder, cone, etc., will be the focus of our next stage research.
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Figure 16. Sawtooth boundary in curved surface point cloud. (a) Details of sawtooth point cloud, and
(b) bending section of sawtooth point cloud.

4.3. Two Parallel Planes Which are Close to Each Other

In the case of urban scenes, the abundant parallel facades bring difficulties to plane
segmentation [41]. During voxel-based region growing, voxels with the same plane features are
clustered into one group. For example, in Vo’s paper, a voxel normal is selected as the clustering
condition for the voxel region growing [24]. However, according to the plane equation, it is insufficient
to determine a plane by only the normal. When two planes are parallel and close to each other, it is
easy to divide two planes into one plane according to the rule of region growing of adjacent voxels.
Figure 17b shows two parallel planes that are close to each other. Figure 17c shows their side view
and the result of voxelization. If only the normal of the voxel is selected as the growing constraint,
the two grey voxels shown in Figure 17c will be clustered into one group; subsequently, these two
parallel planes will be clustered into the same point cloud plane, as shown in Figure 17d. Therefore,
according to the plane equation, we consider the spatial position relationship between the two voxels
and add the constraint of continuity to cluster the voxel. When the spatial position of two adjacent
voxels does not satisfy the set continuity threshold, the two voxels will not be clustered into the same
plane; therefore, the parallel and adjacent planes will be separated correctly, as shown in Figure 17e.
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Figure 17. Managing a parallel plane. (a) Original point cloud of terrestrial laser scanner data, and
(b) two parallel planes that are close to each other, (c) side view of (b) and the result of voxelization,
(d) segmentation result of (b) without continuity constraint, and (e) segmentation result of (b) with
continuity constraint.

5. Conclusions

Herein, an EVBS algorithm based on a fast adjacent voxel search was proposed. Compared with
point-based and other voxel-based point cloud plane segmentation algorithms, the proposed EVBS
algorithm demonstrated better segmentation and higher efficiency. Firstly, a highly efficient octree
was used to organize a point cloud to replace a point cloud as a segmentation object. The voxels
were binary coded such that 26 adjacent voxels could be obtained quickly, which is the basis of
fast and accurate point cloud plane segmentation. Secondly, we improved the voxel-based region
growing algorithm by selecting the rationality seed and growing criteria, which improved the plane
segmentation accuracy. Lastly, in the initial segmentation, voxels with low flatness were not clustered.
To solve the under-segmentation problem, we proposed a method of refining points in unlabeled
voxels by judging the relationship between a point and a segmented plane. This method could prevent
the sawtooth boundary of the segmented plane. Consequently, the recall rate and accuracy of the plane
segmentation improved. Our algorithm was designed to afford a fast and accurate plane segmentation
of a point cloud that had a large amount of data. It performed better in terms of accuracy and recall
rate compared with traditional point-based segmentation algorithms (ER and SCRG) and an advanced
voxel-based segmentation algorithm (VGS). This was verified from two groups of experiments. In terms
of algorithm efficiency, our algorithm was less affected by the amount of point cloud data and was
advantageous for handling a large amount of point data.

However, the focus of this method is only a plane object. It is interesting and significant to segment
the point cloud with mixed objects efficiently, which will be our future work.

Author Contributions: M.H. and P.W. conducted the algorithm design, P.W. wrote the paper, and X.L. revised the
paper. M.H. and X.L. performed the experiment and analyze the results. All authors have contributed significantly
and have participated sufficiently to take responsibility for this research.

Funding: This research was funded by the National Key Research and Development Program of China (grant
no. 2016YFC0802107),the National Natural Science Foundation of China (grant no. 41971350 and 41871367),
the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions (grant no.
CIT&TCD201704053), the Science and Technology Project of Ministry of Housing and Urban-Rural Development
of the People’s Republic of China (grant no. 2017-K4-002), the Scientific Research Project of Beijing Educational
Committee (grant no. KM201910016005), the Major Projects of Beijing Advanced innovation center for future
urban design (grant no. UDC2018031321), the Talent Program of Beijing University of Civil Engineering and



Remote Sens. 2019, 11, 2727 20 of 21

Architecture, and the Fundamental Research Funds for Central and Beijing Universities (X18051 and X18014), and
the BUCEA Post Graduate Innovation Project (PG2019055).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Liu, M. Robotic Online Path Planning on Point Cloud. IEEE Trans. Cybern. 2015, 46, 1217–1228. [CrossRef]
[PubMed]

2. Boulch, A.; Guerry, J.; Le Saux, B.; Audebert, N. Snapnet: 3D point cloud semantic labeling with 2D deep
segmentation networks. Comput. Graph. 2018, 71, 189–198. [CrossRef]

3. Hu, Q.; Wang, S.; Fu, C.; Yu, D.; Wang, W.T. Fine Surveying and 3D Modeling Approach for Wooden Ancient
Architecture via Multiple Laser Scanner Integration. Remote Sens. 2016, 8, 270. [CrossRef]

4. Ma, L.; Favier, R.; Do, L.; Bondarev, E.; De With, P.H.N. Plane segmentation and decimation of point clouds
for 3D environment reconstruction. In Proceedings of the IEEE Consumer Communications & Networking
Conference (CCNC), Las Vegas, NV, USA, 11–14 January 2013; pp. 43–49.

5. Xu, Y.; Heogner, L.; Tuttas, S.; Stilla, U. A voxel- and graph-based strategy for segmenting man-made
infrastructures using perceptual grouping laws: Comparison and evaluation. Photogramm. Eng. Remote Sens.
2018, 84, 377–391. [CrossRef]
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