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Abstract: Semi-natural grasslands are perennial ecosystems and an important part of agricultural
landscapes that are threatened by urbanization and agricultural intensification. However,
implementing national grassland conservation policies remains challenging because their inventory,
based on short-term observation, rarely discriminate semi-natural permanent from temporary
grasslands. This study aims to map grassland frequency at a national scale over a long period using
Moderate Resolution Imaging Spectroradiometer (MODIS) 250 m satellite time-series. A three-step
method was applied to the entire area of metropolitan France (543,940 km2). First, land-use and
land-cover maps—including grasslands—were produced for each year from 2006–2017 using the
random forest classification of MOD13Q1 and MYD13Q1 products, which were calibrated and
validated using field observations. Second, grassland frequency from 2006–2017 was calculated by
combining the 12 annual maps. Third, sub-pixel analysis was performed using a reference layer
with 20 m spatial resolution to quantify percentages of land-use and land-cover classes within
MODIS pixels classified as grassland. Results indicate that grasslands were accurately modeled
from 2006–2017 (F1-score 0.89–0.93). Nonetheless, modeling accuracy varied among biogeographical
regions, with F1-score values that were very high for Continental (0.94± 0.01) and Atlantic (0.90± 0.02)
regions, high for Alpine regions (0.86 ± 0.04) but moderate for Mediterranean regions (0.62 ± 0.10).
The grassland frequency map for 2006–2017 at 250 m spatial resolution provides an unprecedented view
of stable grassland patterns in agricultural areas compared to existing national and European GIS layers.
Sub-pixel analysis showed that areas modeled as grasslands corresponded to grassland-dominant
areas (60%–94%). This unique long-term and national monitoring of grasslands generates new
opportunities for semi-natural grassland inventorying and agro-ecological management.

Keywords: conservation; grassland ecosystems; random forest classifier; Land Parcel Information
System; big EO data; France

1. Introduction

Grasslands are one of the most extensive terrestrial ecosystems on Earth and a source of food for
livestock [1]. Definitions of “grassland” differ among disciplines and include a wide variety of land-use
and land-cover (LULC) types. Temporary grasslands, which are part of crop rotations, are composed
of seeded vegetation [2] and mostly have a life span of less than 5 years [3]. Conversely, permanent
grasslands that are not part of crop rotations can be defined as “land on which vegetation is composed
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of perennial or self-seeding annual forage species which may persist indefinitely” [2]. They include
semi-natural grasslands, which are defined as a “managed ecosystem dominated by indigenous or
naturally occurring grasses and other herbaceous species” [2]. From a legal point of view, permanent
grasslands in Europe have a life span of more than 5 years, with the knowledge that the longer the
grassland duration, the higher the proportion of spontaneous species [3]. In this sense, from an
ecological viewpoint, semi-natural grasslands can be considered as permanent grasslands that have
existed for at least 10 years [3]. Semi-natural grasslands efficiently support ecosystem services such
as biodiversity maintenance [4], water resources [5], carbon storage and forage supply [6]. They are
often related to agricultural systems with high nature value [7] but are threatened by urbanization and
agricultural intensification [6]. In this context, inventorying and monitoring semi-natural grasslands
is a major objective for conservation, in particular within the framework of European programs and
legislation such as the European Union (EU) Rural Development Program, Habitat Directive [8],
Water Framework Directive [9], Common Agricultural Policy (CAP) [10] and land use and forestry
regulation for 2021–2030 [11]. However, the lack of a comprehensive, inter-annual and parcel-scale
map of semi-natural grasslands makes their conservation challenging [12,13].

Several field databases describe grasslands across Europe. They include (i) Land Use and Coverage
Area Frame Survey (LUCAS) observations, which have described land use (including grasslands)
at sampling points surveyed every 3 years since 2001 [14]; (ii) the Land Parcel Information System
(LPIS), which has reported crop types (including “permanent” and “temporary” grasslands) on
thousands of parcel blocks every year since 2006 (i.e., adjacent parcels managed on the same farm)
based on farmers’ statements; and (iii) the European Vegetation Archive (EVA), which includes several
million phytosociological surveys [15]. The main disadvantage of these data is that they contain
only approximate geographical locations. Hence, using these field databases alone is not suitable
for mapping semi-natural grasslands extensively at the parcel scale [16]. For example, LUCAS and
LPIS data were used to model LULC changes, including those of “grasslands”, without discriminating
semi-natural grasslands at the scale of agricultural districts [17] or parcel blocks [18], respectively.
Similarly, EVA data were used to map semi-natural grasslands across Europe but at a broad scale using
a 10 × 10 km grid [19].

Unlike field databases, remote sensing databases are produced from continuous and repeated
observations of agricultural land and are essential for mapping and monitoring grasslands [1,20].
For example, the European CORINE Land Cover layer, which is produced every 6 years at a 1:100,000
scale by visual analysis of high spatial resolution Landsat or Sentinel images [21], was used to model
farms with high nature value in Europe using a 1 × 1 km grid [7] and semi-natural grasslands in
France using a 5 × 5 km grid [22]. Beyond these broad-scale maps based on the CORINE Land Cover
layer, many studies based on automatic and fine-scale analyses have demonstrated the contribution
of multi-temporal and high-spatial-resolution satellite data in discriminating grasslands from other
LULC types [16,23–25], characterizing forage quality [20], identifying agricultural practices [26] and
mapping floristic variation in semi-natural grasslands [27–29]. However, discriminating semi-natural
and temporary grasslands accurately remains a concern [23,30] due to the lack of temporal depth in
remote sensing time-series and because a one-year observation is insufficient to discriminate between
semi-natural and temporary grasslands [31]. For instance, the French national land use map as well as
the European high-resolution layer (HRL) for “grassland”, both derived from multi-temporal Sentinel
and Landsat data, combine semi-natural and temporary grasslands into a single “grassland” class.
The use of inter-annual time-series for the long-term monitoring of LULC types, including grasslands,
remains unexplored [32].

Moderate Resolution Imaging Spectroradiometer (MODIS) data represent the best trade-off among
remote sensing data since they have (i) a high temporal resolution (to discriminate grasslands from
other LULC types), (ii) a decadal acquisition period (to discriminate permanent from temporary
grasslands) and (iii) a spatial resolution similar to parcel sizes. Since 2002, the two MODIS sensors have
observed the Earth with different overpass times, providing nominal global coverage every two days.
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The finest spatial resolution (250 m) bands on MODIS capture upwelling radiation in red (620–670 nm)
and near infrared (841–876 nm) wavelengths, which are optimal for identifying vegetated land surfaces.
Hence, many studies have shown the relevance of MODIS 250 m time-series for characterizing the
conservation status of semi-natural grasslands, such as the net primary production [33], impacts of
climate change on vegetation growth [34] and quantification of mowing events [35,36] or grazing
pressure [37]. However, these studies were performed on grasslands previously located from thematic
layers. Conversely, identifying semi-natural grasslands among other LULC types remains poorly
studied. Nonetheless, Nitze et al. [38] identified semi-improved grasslands over 10,000 km2 in the
Midlands Region of Ireland using a 9-year MODIS 250 m time-series, and Lasseur et al. [39] mapped
permanent alpine grasslands over 4,450 km2 using a 4-year MODIS 250 m time-series. Although these
two regional-scale studies are promising, their application at a national scale and consideration of a
wider diversity of environments remain to be demonstrated. In contrast, LULC mapping from MODIS
data has been widely studied: as examples, global LULC maps have been produced annually since
2001 from MODIS MCD43A4 products [40] but computed at twice the spatial resolution (500 m); or a
pan-European LULC map was derived for 2009 from an annual NDVI MODIS 250 m time series but
without discriminating between permanent and temporary grasslands [41]. In addition, using MODIS
data to monitor grasslands in heterogeneous landscapes is controversial: some authors argue that
MODIS’s spatial resolution (250 m) is too low compared to parcel sizes [1,16,24], while others stress that
MODIS data can be used to identify areas dominated by grasslands but do not demonstrate it [36,39].

Beyond the characteristics of remote sensing data, the selection of the classifier and the reference
data is crucial for successful LULC classification [42]. Semi-natural grasslands encompass a diversity
of habitats [19] whose spectral response varies greatly according to agricultural practices [26],
flood duration [43], snow duration [44], phenological stage [45] or percentage of bare soil cover [1].
Parametric classifiers, such as the maximum likelihood classifier, are generally of limited value for
identifying grasslands [1]. Conversely, the random forest (RF) classifier addresses multimodal classes
such as grasslands [1] and properly manages high-dimensional data such as MODIS time-series [46].
Nevertheless, the advantage of the RF classifier for grassland mapping over several years is often
restricted by the scarcity of field datasets that can be used for calibration [1,47]. In Europe, since LPIS
parcel data have identified crop type by parcel block since 2006, they may provide valuable reference
data for the calibration and validation of the RF classifier for LULC mapping [23].

This study used MODIS 250 m satellite time-series to map grassland frequency at a national
scale from 2006–2017. Three questions were addressed: (i) Can MODIS 250 m time-series combined
with the RF classifier discriminate grasslands from other LULC types at the national scale? (ii) Can a
decadal MODIS 250 m time-series identify semi-natural grasslands based on a grassland frequency
map? (iii) Is the 250 m spatial resolution of MODIS data adequate for identifying grasslands in
fragmented landscapes?

2. Materials and Methods

2.1. Study Site

The study focuses on metropolitan France (western Europe), which covers an area of ca. 550,000
km2 (Figure 1). National agricultural statistics indicate that, in 2016, grasslands covered nearly 23% of
the country [48], representing ca. 42% of the usable agricultural area, compared to 54% in 1970 [3].
France contains much of the diversity in semi-natural European grasslands in the Atlantic, Continental,
Mediterranean and Alpine biogeographical regions [49]. For finer delineation, biogeographical regions
in France have been divided into 22 “hydro-eco-regions” (HERs) based on the analysis of climatic,
geological and topographic layers [50]. The area and fragmentation of grasslands vary among HERs,
ranging from small contiguous parcels of a few ha in size separated by hedges in the northwestern
wooded landscapes of the Armorican massif (HER 12) or the Central massif (HER 21), to more extended
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but scattered parcels in the open-field landscapes in the Parisian basin (HER 9), to the extensive
mountain pasturelands several hundred ha in size in the Alps (HER 2).
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grassland) was used instead of single-class modeling (grassland) to prevent arbitrarily selecting a 
probability threshold for discretizing the grassland class and to quantify over-detection errors [51]. 

Figure 1. Study site and data description, showing (left) borders of the four European biogeographical
regions and 22 hydro-eco-regions (HER) covering France and (right) selection of crop and grassland
class samples within Moderate Resolution Imaging Spectroradiometer (MODIS) 250 m pixels and
parcels boundaries in (A) a hedged landscape, (B) an open-field landscape and (C) an Alpine landscape.

2.2. Rationale of the Approach

The approach first uses RF modeling to identify grasslands each year among the other LULC
classes and then combines the annual LULC maps to characterize the spatio-temporal dynamics of
grasslands from 2006–2017 (Figure 2). Multi-class modeling (water, woods, urban, crop and grassland)
was used instead of single-class modeling (grassland) to prevent arbitrarily selecting a probability
threshold for discretizing the grassland class and to quantify over-detection errors [51].
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2.3. Data Collection

2.3.1. Satellite Data

The satellite data include MODIS MOD13Q1 and MYD13Q1 composites for the period 2006–2017
(12 years), providing a combined temporal resolution of 8 days [52]. MODIS data from 2003–2005
were not used due to the unavailability of reference data before 2006. These MODIS data were
downloaded for the whole of France in WGS84 (EPSG 4326) projection using the USGS Application
for Extracting and Exploring and Extracting Analysis Ready Samples (AppEEARS) [53]. We used the
red (620–670 nm) and near-infrared (841–876 nm) spectrum bands with a spatial resolution of 250 m.
We did not use vegetation indices such as normalized difference vegetation index (NDVI) or enhanced
vegetation index (EVI) since they do not increase modeling accuracy significantly [42]. To generate
annual grassland maps, MODIS satellite data were stacked by vegetative year, ranging from November
1 of year n to October 30 of year n+1.

Although MOD13Q1 and MYD13Q1 products are cloudless, some pixels had missing values
on specific dates, especially in winter, when the days are short and cloudy. To ensure continuous
time-series for all pixels, a time interpolation step was required. In this study, the nearest neighbor
interpolation method was applied, where missing (NA) values were replaced with the values of the
closest date. While the smoothing of the time series restores vegetation phenological profiles [54],
the use of raw data was preferred because (i) the dataset consists of a dense time series (8 days) with
therefore less missing data than in the 16-day series, (ii) it is still a challenge to discriminate noise
from natural variations in vegetation, and part of the information contained in raw time series is
lost after filtering [55], and (iii) the contribution of smoothing to the accuracy of LULC classification
remains marginal or even negative [56]. The range of pixel values varied with dates and spectral bands,
which could lead to the dominance of certain bands in the RF model. Hence, all MODIS pixel values
were standardized by setting the overall mean of each spectral band to 0 and the standard deviation
to 0.25.

2.3.2. Reference Data

Reference data came from LPIS and Copernicus HRL GIS files (Table 1). The LPIS vector data were
collected for each year from 2006–2017 to calibrate and validate modeling of the crop and grassland
classes. Unambiguous crop labels 1–15, 20–23 and 25 in the LPIS were assigned to the crop class,
while labels 18 (permanent grasslands, more than 5 years old [3]) and 19 (temporary grasslands, 5 years
old or less) were assigned to the grassland class (Table S1). In addition, the Copernicus HRL raster
data “Water & Wetness”, “Tree Cover Density” and “Imperviousness” were collected to calibrate and
validate modeling of the water, woods and urban classes, respectively. These layers, which show the
dynamics of LULC in the EU since the 2000s, are produced at a 20 × 20 m spatial resolution from
satellite data, such as Landsat-8 or Sentinel, with an overall accuracy above 80% [25]. The “Tree Cover
Density” and “Imperviousness” HRLs are expressed as a density of occupancy ranging from 0–1,
while the “Water & Wetness” HRL is composed of four classes: (1) permanent water, (2) temporary
water, (3) permanent wetness and (4) temporary wetness.
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Table 1. Satellite and reference data used per vegetative year to model land use and land cover (HRL:
high-resolution layer).

MOD13Q1
MYD13Q1

Land Parcel
Identification System

Water & Wetness
HRL

Tree Cover
Density HRL

Imperviousness
HRL

2005–2006 2006 2015 2012 2006
2006–2007 2007 2015 2012 2006
2007–2008 2008 2015 2012 2006
2008–2009 2009 2015 2012 2009
2009–2010 2010 2015 2012 2009
2010–2011 2011 2015 2012 2009
2011–2012 2012 2015 2012 2012
2012–2013 2013 2015 2012 2012
2013–2014 2014 2015 2012 2012
2014–2015 2015 2015 2015 2015
2015–2016 2016 2015 2015 2015
2016–2017 2017 2015 2015 2015

2.4. Data Processing

2.4.1. Sampling

The sampling step aimed to identify and select “pure” MODIS pixels for use as calibration and
validation samples for modeling grasslands. First, the footprint of each MODIS pixel was vectorized
and overlaid on the reference data. Then, samples were selected for each year from MODIS pixels
covering a homogeneous (i.e., single) LULC class (Figure 1). More precisely, the following rules defined
the homogeneity criterion:

(i) A sample of the grassland or crop class is a MODIS pixel strictly included within a parcel block that
contains only grassland or one crop type (i.e., it covers >80% of the pixel’s area), respectively [57];

(ii) A sample of the woods or urban class is a MODIS pixel with >85% of its area covered by a
density of “Tree Cover Density” or “Imperviousness” HRL >0.8, respectively. Indeed, since “Tree
Cover Density” and “Imperviousness” HRL products are expressed in density values from 0 to 1,
a threshold value (0.8) was set to discriminate between wooded (or urban) areas and non-wooded
(or non-urban) areas;

(iii) A sample of the water class is a MODIS pixel with >90% of its area covered by the (1) permanent
water class of the “Water & Wetness” HRL. Temporary water (2), permanent wetness (3) and
temporary wetness (4) classes were discarded because they can characterize either water areas
or grasslands.

The sample spatial density was very heterogeneous throughout France, which could lead to
over-representation of some regions in RF modeling. To overcome this issue, sub-sampling was used,
with only one sample being kept per mesh of 5 × 5 km per class and per year. For each sample of
year n, spectral values were extracted from the MODIS pixels of year n. The number of samples used
per year ranged from 21,703–24,565 for all LULC classes, of which 4394–5974 were of the grassland
class (Table S2). Then, for each year, the samples were divided randomly and equally per class into a
calibration and a validation dataset.

2.4.2. Random Forest Modeling

The RF modeling step identified areas covered by grassland each year. To this end, the five LULC
classes (water, urban, woods, crop and grassland) were modeled annually from 2006–2017. For each
year, a RF model was applied to the annual MODIS time-series and calibrated with the calibration
dataset using a 10-fold approach with three repeats [58]. The maximum number of trees (ntree) was
set to 500. Tuning was applied to define the optimal number of variables used for each branch of the
RF model tree (mtry) based on the highest Kappa value [59]. Independent validation was performed
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for each year by applying the RF model to the validation set and calculating three metrics: overall
accuracy, the Kappa index and the F1-score of the grassland class. To highlight spatial variation in
modeling accuracy, the F1-score of the grassland class was also calculated by biogeographical region.

2.4.3. Grassland Dynamics Analysis

The next step analyzed the spatio-temporal dynamics of grasslands by combining the annual LULC
maps derived from the RF modeling. To identify and correct illogical LULC transitions, we applied a
temporal filter using the approach developed by Clark et al. [60]. For example, it is impossible for a
pixel classified as crop one year to be classified as urban the next year and then to return to the crop
class two years later. Conversely, a pixel can change from grassland to crop and then back to grassland,
depending on the agricultural practices. To this end, we applied transition rules in a 3-year moving
window (year n, n+1, and n+2) for each pixel starting in 2006 and repeating it annually until 2017
(Table 2). In detail, the filter inspected each pixel to determine whether it had the same class in years n
and n+2; if so, and if the class in year n+1 created an illogical transition, then the class in year n+1 was
corrected to equal the class in year n. The filter was then advanced by one year in the time-series and
the corrected classes of previous years were considered when applying the transition rules.

Table 2. Transitional rules used in the temporal filtering. The filter was a 3-year moving window
through each map pixel, starting in 2006 and ending in 2017. “Yes” indicates a possible class transition
in year n+1, while “No” indicates an illogical class transition.

Years Class Year n+1

Urban Water Wood Crop Grassland

n and n+2

Urban Yes No No No No
Water No Yes No No No
Woods No No Yes No No
Crop No No No Yes Yes

Grassland No No No Yes Yes

A pixel’s grassland frequency was calculated by summing the number of years that it was classified
as grassland from 2006–2017, and the frequency values were then scaled to a [0–1] range to facilitate
result interpretation (12). To visualize this layer’s thematic contribution, its grassland classification
was compared to those of national, European and global LULC layers for the lower Couesnon marshes,
a Natura 2000 site near Mont-Saint-Michel (HER 12). This site is dominated by natural grassland
habitats [43]. In total, five GIS layers were collected:

(i) The components “231—Pastures”, “242—Complex cultivation patterns”, “321—Natural
grasslands” and “411—Inland marshes” of the 2018 CORINE Land Cover layer;

(ii) The “grassland” HRL of the 2015 Copernicus layers;
(iii) The “18—Permanent grasslands” and “19—Temporary grasslands” components of the 2016

LPIS layer;
(iv) The “211—Grasslands” component of the 2018 French national LULC layer (“OSO”) [23];
(v) The grassland frequency maps, calculated for the period 2006–2017 for each of the six MODIS

MCD12Q1 v6 products at 500 m spatial resolution (“IGBP”,”UDM”, “Annual LAI”, “Annual
BGC”, “Annual PFT”, and “LCCS 3”) [40].

2.4.4. Sub-Pixel Analysis

Since MODIS data have a coarse spatial resolution (250 m), the pixels classified as grassland have,
at a finer scale, LULC diversity that varies according to the landscape. The objective of the sub-pixel
analysis step was to quantify the LULC composition of MODIS pixels classified as grassland from a
fine-scale reference LULC layer. This reference layer was generated in raster format at 20 m resolution
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by combining (i) the parcels identified as crop and grassland (i.e., permanent and temporary grasslands)
classes in the 2016 LPIS, (ii) the areas classified as permanent and temporary water in the 2015 “Water
& Wetness” HRL, (iii) the urban areas classified with a density >0.8 in the 2015 “Imperviousness” HRL
and (iv) the woody areas classified with a density >0.8 in the 2015 “Tree Cover Density” HRL. Areas
without information in the reference layer (e.g., a woods density <0.8, agricultural parcels not described
by the LPIS) were described as mixed. For each pixel of the 20 m reference map, the majority LULC
class relative to the HRL Copernicus and LPIS layer has been assigned. The reference layer was then
intersected with the grassland layer modeled from the 2016 MODIS data corrected by the temporal
filter. MODIS 250 m pixels modeled as grassland with a mixed percentage >20% were discarded. The
LULC composition of MODIS pixels classified as grassland was measured as a percentage of MODIS
pixel area per HER.

All analyses were performed with R software (version 3.4.3) [28] using the “caret” [59], “raster” [61],
“velox” [62] and “rgdal” [63] packages.

3. Results

3.1. Identification of Grasslands

The accuracy of RF modeling of the five LULC classes from 2006–2017 was high, regardless of
the year considered (overall accuracy ranging from 0.93 to 0.96, Kappa index ranging from 0.91 to
0.94), especially for the grassland class (F1-score ranging from 0.89 to 0.93) (Table 3). Temporal filtering
increased the accuracy of the five LULC classes slightly (+ 0–0.02 for overall accuracy, + 0–0.02 for
the Kappa index), specifically of the grassland class (+ 0–0.02 for the F1-score). Analysis of the 12
annual confusion matrices highlighted confusion among the grassland, crop and woods classes. More
precisely, most under-detections of the grassland class (producer’s accuracy 87.8% ± 2.3) were due to
confusion with the crop (6.5% ± 1.6) and woods (5.1% ± 1.0) classes, as were most of the over-detections
(user’s accuracy 93.8% ± 1.0) (crop 3.2% ± 0.6, woods 1.0% ± 0.2) (Table S7)

Table 3. Overall accuracy, Kappa index and F1-score for the grassland class per year before and after
temporal filtering (the highest value for each year and each accuracy metric is in bold).

Year
Overall Accuracy Kappa Index F1-Score

Before
Filtering

After
Filtering

Before
Filtering

After
Filtering

Before
Filtering

After
Filtering

2006 0.96 NA 0.94 NA 0.94 NA
2007 0.95 0.96 0.94 0.94 0.93 0.93
2008 0.92 0.93 0.89 0.91 0.89 0.90
2009 0.93 0.95 0.91 0.92 0.90 0.91
2010 0.93 0.94 0.90 0.92 0.89 0.90
2011 0.93 0.94 0.91 0.92 0.90 0.91
2012 0.93 0.94 0.90 0.92 0.88 0.89
2013 0.93 0.95 0.91 0.92 0.90 0.91
2014 0.93 0.94 0.90 0.92 0.89 0.90
2015 0.94 0.94 0.92 0.92 0.90 0.90
2016 0.93 0.95 0.91 0.93 0.88 0.90
2017 0.94 NA 0.91 NA 0.89 NA

From a geographical perspective, the modeling accuracy of the grassland class differed by
biogeographical region, with an excellent mean F1-score for the Continental (0.94 ± 0.01) and Atlantic
(0.90 ± 0.02) regions, a very good score for the Alpine (0.86 ± 0.04) region and a moderate score
(0.62 ± 0.10) for the Mediterranean region. Specifically, grasslands were slightly under-detected
(producer’s accuracy 88% ± 3.0) in the Atlantic region, mainly due to confusion with the crop class
(9.0% ± 2.2), and rarely over-detected (user’s accuracy 91.8% ± 1.6), again mainly due to the crop class
(3.1% ± 0.7) (Table S8). The modeling accuracy for grasslands was similar for the Continental region,
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with little under-detection error (producer’s accuracy 92.2% ± 1.4), mainly due to confusion with the
woods class (5.0% ± 0.9), and little over-detection error (user’s accuracy 96.0% ± 0.6), mainly due to
confusion with the crop class (3.6% ± 0.9) (Table S9). The classes confused differed for the Alpine region,
with a slightly higher under-detection error for grasslands (producer’s accuracy 79% ± 5.0), mainly due
to confusion with the woods class (18.7% ± 4.4), and little over-detection error (user’s accuracy
94.0% ± 2.0), mainly due to confusion with the water class (2.7% ± 2.8) (Table S10). Conversely, the
Mediterranean region had distinct results, with a high under-detection error for grasslands (producer’s
accuracy 49.4% ± 11.9), mainly due to confusion with the urban (6.6% ± 3.1), woods (17.7% ± 3.8) and
crop (25.0% ± 8.5) classes, but little over-detection error (user’s accuracy 86.9% ± 5.0), mainly due to
confusion with the crop class (3.8% ± 1.9) (Table S11).

3.2. Characterization of Grassland Frequency

The map of grassland frequency in France derived from annual LULC maps from 2006–2017
illustrates areas where grassland frequency was high, such as hedged landscapes in the Armorican
massif (HER 12), the Ardennes (HER 22) and the Central massif (HER 21), and mountain pastures in
the Pyrenees (HER 2) and the Alps (HER 1) (Figure 3). Conversely, grassland frequency was low on
large cereal plains, such as Alsace (HER 18), the Paris basin (HER 9) and the Aquitaine basin (HER 14).
In detail, the map also indicated spatial imbrication of permanent (frequency >0.8) and temporary
(frequency <0.5) grasslands in the Normandy bocage (HER 12, Figure 3A) and the residual occurrence
of permanent grasslands along valleys in the open-field landscape of the Coteaux calcaires de l’Est
(HER 10, Figure 3B).
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Year 
Calibration Points Validation Points 

All LULC Classes Grassland Class All LULC Classes Grassland Class 
2006 878 198 840 173 
2007 826 170 847 181 
2008 837 167 823 156 
2009 818 156 837 142 
2010 841 154 798 132 
2011 853 151 809 147 
2012 835 146 829 144 
2013 851 149 834 139 
2014 817 130 830 131 
2015 844 121 800 107 
2016 758 88 751 100 
2017 796 94 738 87 

Table S7. Annual confusion matrices between modeling the five LULC derived from the MODIS 
time-series (rows) and the validation samples (columns) for the whole of France from 2006–2017. 
Entries are percentage cell counts per column (i.e., number of reference samples per class). 

2006 Reference  
Modeling Urban Water Woods Crop Grassland User’s accuracy 

Urban 90.8 1.3 0.0 0.4 0.4 96.5 
Water 0.2 97.0 0.2 0.0 0.2 97.0 
Woods 2.2 0.4 97.8 0.5 3.0 97.0 
Crop 6.3 0.9 0.4 96.8 2.9 95.1 

Grassland 0.6 0.4 1.6 2.3 93.5 94.7 
Producer’s accuracy 90.8 97.0 97.8 96.8 93.5  

Pixel counts  973   466   4,269  3,434   2,988   
       

2007 Reference  

Figure 3. Frequency of grassland years from 2006–2017 across France derived from 250 m MODIS
satellite data, ranging from 1 (permanent grasslands) to zero (non-grassland areas). Values on the map
show the mean and standard deviation of F1-scores for each biogeographical region. Inset maps show
detail of (A) the Normandy bocage and (B) the Coteaux calcaires de l’Est.

The grassland frequency map for the lower Couesnon Natura 2000 site consistently showed
that it had a high frequency of grassland, although edges of the marshes were unclear due to the
low spatial resolution of the MODIS data (Figure 4). In comparison, the CORINE Land Cover layer
adequately identified the natural grasslands of the lower Couesnon, but ambiguously classified
them as “231—Pastures”, “242—Complex cultivation patterns” or “411—Inland marshes” and not as
“321—Natural grasslands”. The grassland HRL under-detected most natural grasslands, especially
those that are flooded several months each year, and did not discriminate between temporary and
natural grasslands. The LPIS correctly classified natural grasslands as “18—Permanent grasslands”,
but with incomplete mapping, since the western end of the marshes (48.54◦N, 1.54◦W)—not under
the EU CAP—is missing. Finally, the national land cover layer “OSO” best identified grasslands, but
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its classification (“211—Grasslands”) could not discriminate between semi-natural and temporary
grasslands. The comparison of the grassland frequency maps derived from the MCD12Q1 v6 products
with the Google Earth image and CORINE Land Cover map (Figure 4) points out—beyond the coarse
spatial resolution of the MCD12Q1 v6 products—a very strong under-detection of grasslands of the
IGBP, UMD, Annual FTP and LCCS 3 maps, and a strong under-detection and strong over-detection of
grasslands for the Annual LAI and Annual BGC maps.
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3.3. Land Cover Percentages in MODIS Pixels Classified as Grassland

Comparing the 2016 LULC classification at 250 m spatial resolution to the reference layer at 20 m
spatial resolution resulted in the selection of 1,612,318 MODIS pixels—ca. 18% of the total area of
France (Figure 5). In the MODIS pixels classified as grassland throughout France in 2016, the grassland
class was dominant on all HERs (60%–94%), followed by the crop (0%–25%), mixed (4%–10%) and
woods classes (0%–4%). The water and urban classes were negligible (<1%) (Figure 6).Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 21 
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Figure 5. Illustration of MODIS pixels classified as grassland in four biogeographical regions (BGR) in
2016 and selected for sub-pixel analysis. Boxes A, B, C, and D refer to representative sub-sites of each
of the four bio-geographical regions.

Nonetheless, analysis by biogeographical region identified differences in grassland area among
HERs. The Alpine region had the highest percentages of grassland area, both in the Pyrenees (HER 1)
and the Alps (HER 2) (77% and 94%, respectively). The percentage of crop area was low (8%) in the
Pyrenees and negligible (<1%) in the Alps. The Atlantic region had less grassland dominance and a
relatively high percentage of crop area. Specifically, the Landes (HER 13) and Aquitaine coteaux (HER
14) had the lowest percentage of grassland area (62% and 60%, respectively) but the highest percentage
of crop and wooded areas (25% and 4%, respectively). Conversely, the percentage of grassland area
was higher in the Armorican massif (HER 12) and Sologne (HER 20) (78% each). The Continental
region had a high percentage of grassland area, especially in the Central massif (HER 3, 17 and 21; 82%,
81% and 85%, respectively) and the Ardennes (HER 22; 80%). The percentage of crop area was low
(8%–15%), except in Alsace (HER 18) and the Saône plain (HER 15) (20% and 22%, respectively). The
percentage of wooded area was generally low (0%–2%), except in the Jura (HER 5) and Vosges (HER
4) mountains (4% and 3%, respectively). MODIS pixels classified as grassland in the Mediterranean
region had a high percentage of grassland area (76%–83%), while the percentage of crop area was
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moderate (9%–15%). The wooded area was smallest (<1%), excluding the Cévennes massif (HER 8)
(4%).Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 21 
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4. Discussion

4.1. Can MODIS 250 m Time-Series Combined with the RF Classifier Discriminate Grasslands from Other
LULC Types at the National Scale?

Overall, the RF classification of MODIS 250 m time-series accurately mapped grasslands each
year from 2006–2017 at the scale of France (F1-score 0.89–0.93). These results confirm the advantage of
using the RF classifier to discriminate between grasslands [1], which in France are of different types
(temporary, wet, mesic, dry or alpine) and thus have different spectral patterns, as well as to manage
high-dimensional data (2 spectral bands × 46 dates per year) [46]. For comparison, the overall accuracy
of the RF classification applied at the national scale (0.93–0.96) is similar to that obtained using annual
MODIS time-series at the regional scale for the Midlands Region of Ireland (0.92) [38] or the Grenoble
Alpine region (0.88) [39]. Due to the very high temporal resolution of MODIS images (46 dates/year),
the general error rate of classification between grassland and crop classes was low (± 5%) (Table S7).
However, the confusion between grassland and crop classes, which was the main source of error at the
national scale, reflects the strong similarity in spectral patterns between certain crops and temporary
grasslands sown throughout the year [26]. Moreover, the dates of the reference data for the Water &
Wetness HRL (2015) and Tree Cover Density HRL (2012 and 2015) differ up to 10 years from the dates
of MOD13Q1 and MYD13Q1 products (2006–2017). Although forests, rivers and water bodies are
relatively stable over time, changes in LULCs could have occurred between 2006 and 2015, which may
lead to classification errors.

The use of “pure” pixels for validation may lead to a slight overestimation of the classification
accuracy. However, the use of “mixed” pixels would probably underestimate the classification
accuracy. In any case, given the large number of samples used per year (± 12,000), the sample
quality (farmers’ declarations), sample independence (from training samples) and their homogeneous
distribution throughout the territory (sub-sampling 5 × 5 km), the estimated classification accuracy is
considered reliable.

At the regional scale, while grasslands were classified with great accuracy in the Atlantic and
Continental biogeographical regions (F1-score 0.90 and 0.94, respectively)—which cover most of
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France—more errors were observed in the Alpine (F1-score 0.86) and Mediterranean (F1-score 0.62)
regions. In the Alpine region, confusion was observed mainly between the grassland and woods classes
(± 18%). This could be because many parcels described as “grassland” in this region in the LPIS include
moorland facies with a strong mixture of grassland and woods, which are difficult to discriminate using
remote sensing [23]. The Mediterranean region was the least accurately modeled, with a significant
under-detection of grasslands. The facies of many Mediterranean grasslands are similar to those of
scrubland with a low percentage of ground cover and sometimes the presence of many shrubs [64].
This would explain why some Mediterranean grasslands were under-estimated due to confusion
with the urban and woods classes (Table S11). The confusion between crops and grasslands in the
Mediterranean region can be explained by the high proportion of vineyards and orchards that have
herbaceous vegetation between the rows of vines or fruit trees. The highly distinctive landscape of the
Mediterranean region requires a specific RF model with an adapted nomenclature [65].

The quality of MODIS products used in this study could also explain some of the errors in
the grassland classification. The modeling was based on the red and NIR bands of the MOD13Q1
and MYD13Q1 products, which may lead a lower modeling accuracy of grasslands in the Alpine
biogeographical region compared to those achieved in the Atlantic and continental lowland regions,
since these two spectral bands are sensitive to terrain distortions. However, we chose to use the red
and NIR bands rather than the NDVI and EVI of the MOD13Q1 product, because these vegetation
indices have some limitations: (i) they reduce spectral dimension from two features (red and NIR
bands) to one (NDVI or EVI), which can reduce class separability; (ii) the EVI is computed using
the 500 m blue band, which can generate artifacts in images at 250 m spatial resolution; (iii) the
NDVI index saturates in high values, while grasslands have high reflectance values in spring and
summer. Besides, MOD13Q1 and MYD13Q1 products—which are 16-day composite products—contain
inconsistencies in pixel values related to differences in incidence angles and albedo values between
the images used to create the composite products. These spectral biases can generate errors in
LUCL classification—especially in winter, when atmospheric disturbances are more important. More
consistent spectral products with observations every 8 days—time series of globally distributed spectral
MODIS NBARs (nadir bidirectional reflectance distribution function adjusted surface reflectance)—are
available [66]. However, the low spatial resolution of this product (500 m) would not be appropriate
for the detection of the majority of grasslands that were detected using the MOD13Q1 and MYD13Q1
products (250 m).

Sampling can also explain the regional differences in the accuracy of the RF model. Despite the
application of 5 × 5 km grid sub-sampling, the Atlantic and Continental regions had more samples than
the Alpine and Mediterranean regions since they cover the largest area in France (Tables S3, S4, S5 and
S6). As a result, the RF model, which is calibrated with the highest Kappa index [59], discriminated
between grasslands in the Atlantic and Continental regions better, since their larger number influenced
overall accuracy more than the smaller number of grasslands in the Alpine and Mediterranean regions.
The accuracy of RF models is also strongly influenced by the quality of the sampling [46,67]. One of
the challenges when analyzing data with moderate spatial resolution, such as MODIS, is selecting
enough samples that correspond to “pure” pixels. Samples selected from “mixed” MODIS pixels have
a negative influence on classification accuracy [68]. For this reason, we carefully selected only MODIS
pixels covering >80% of the same LULC class. This strong sample selection was possible because the
LPIS contains a large amount of reference data (i.e., more than 200,000 polygons across France for each
year since 2006). Applying this approach outside the EU would be more difficult due to the scarcity
of availability of field databases [1,47]. However, using expert-rule classification methods based on
annual NDVI time profiles could be an alternative solution to discriminate grasslands from other
LULC types in regions where field data are not widely available [47,69].

The grassland maps included in the global MCD12Q1 v6 products were obviously less accurate
than the one obtained from MOD13Q1 and MYD13Q1 composites. While the six LULC maps of the
MCD12Q1 v6 product were generated by a single RF model applied throughout the planet using about
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3,000 reference samples selected by visual interpretation of very high spatial resolution images [40],
the MODIS 250 m LULC map was computed at a national scale with one RF model calibrated using
about 12,000 reference samples validated in the field. We visually compared these LULC maps on a
Natura 2000 site. A thorough statistical comparison performed at a national scale would deserve a
dedicated study. The reference data—i.e., pure MODIS pixels at 250 m spatial resolution—produced
over the period 2006–2017 from LPIS are publicly available [57] and can be integrated for future global
LULC classification.

4.2. Can a Decadal MODIS 250 m Time-Series Identify Semi-Natural Grasslands Based on a Grassland
Frequency Map?

The grassland frequency map was derived from MODIS 250 m satellite time-series from 2006–2017.
To our knowledge, this is the first study conducted to identify “permanent” grasslands using satellite
remote sensing for such a long period (12 years); in comparison, Garcia-Feced et al. [6] and Lasseur
et al. [39] monitored grasslands over a 5 or 4-year period, respectively. Given the temporal depth of
the analysis (12 years), grasslands identified as permanent (i.e., a frequency close to 1) have a high
probability of being semi-natural [2]. Nevertheless, certain 12-year permanent grasslands may be
long-term “temporary” grasslands that have not yet restored the floristic composition of semi-natural
grasslands [3]. Adding new MODIS images to the time-series (>2017) would yield a longer time-series
(20 years) that could address this uncertainty.

The two major limitations of current national and international LULC maps for monitoring
semi-natural grasslands are their (i) coarse spatial resolution and (ii) low thematic resolution,
which hinder clear correspondence between semi-natural and temporary grasslands [13]. The national
grassland frequency map addresses these limitations and improves knowledge about semi-natural
grasslands in two ways. First, its 250 m resolution identifies semi-natural grasslands more accurately
than maps produced from LPIS or CORINE Land Cover at a spatial resolution of 5 km [22] or from the
EVA database at a spatial resolution of 10 km [19]; second, it uses long-term monitoring to discriminate
between semi-natural and temporary grasslands, which is something that LULC maps derived from
annual time-series analysis of remote sensing data do not do [23,25,30].

However, this grassland frequency map should be read carefully. While interpreting the extreme
values (0 and 1) is straightforward, this is less true for intermediate values. First, the analysis does not
consider damage to semi-natural grasslands from 2006–2017 that would affect the grassland frequency.
For example, a semi-natural grassland converted into an urban area in 2011 would be classified as
grassland only from 2006–2010 and would have a frequency of ca. 0.5. Second, although annual
grassland modeling was highly successful (F1-score 0.89–0.93), the few errors generated each year may
have accumulated when calculating grassland frequency as a aggregation of annual LULC maps [39,70].
Given these issues, the grassland frequency map should be used to help pre-locate semi-natural
grasslands rather than as an inventory per se. For example, pre-locating semi-natural grasslands
could improve implementation of restoration strategies for agricultural systems and biodiversity in
Europe [6].

4.3. Is the 250 m Spatial Resolution of MODIS Data Adequate for Identifying Grasslands in Fragmented
Landscapes?

Results of the sub-pixel analysis for 2016 reveal that MODIS images at 250 m spatial resolution
successfully identified grassland-dominated areas. These results confirm that MODIS images can detect
grasslands in homogeneous landscapes [36,39], such as mountain pastures, and in more fragmented
landscapes such as the Armorican massif. Although grassland percentage predominated in all HERs
(60%–94%), it may be more appropriate to use the term “grassland landscape” rather than “grassland”.
A MODIS pixel classified as grassland generally included 15% of crop area. Conversely, it is likely that
some “isolated” and small semi-natural grasslands were classified as crop or woods. Although these
results are based on a large sample (ca. 18% of the area of France), they may be biased slightly by (i)
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the quality and spatial resolution of the reference layers (HRL, LPIS), which do not represent small
elements of LULC (e.g. hedges, small water bodies, roads), and (ii) the low—but existing—rates of
modeling error (producer’s accuracy 87.8%, user’s accuracy 97.8%).

5. Conclusions

Analysis of MODIS 250 m time-series from 2006–2017 (12 years) for the whole of France revealed
the presence of permanent grasslands. This map is a new aid for pre-locating semi-natural grasslands at
the national scale. Results demonstrate that a single RF model correctly discriminates between different
types of grassland in the Atlantic, Continental and Alpine biogeographical regions, but identifying
semi-natural grasslands in the Mediterranean region requires a specific RF model and nomenclature.
Although the spatial resolution of MODIS data is coarse compared to parcels sizes, sub-pixel analysis
highlights that areas modeled as grassland correspond to grassland-dominant areas. Perspectives of
this approach include (i) characterizing grasslands by temporally analyzing their inter-annual spectral
profiles using deep-learning approach, (ii) identifying grasslands at a finer scale using Sentinel-1/2
time-series and (iii) monitoring grasslands over a longer period and for the whole of Europe.
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biogeographical region used to calibrate and validate random forest models (LULC: land-use and land-cover),
Table S6 Number of reference points per year for the Mediterranean biogeographical region used to calibrate and
validate random forest models (LULC: land-use and land-cover), Table S7 Annual confusion matrices between
modeling the five LULC derived from the MODIS time-series (rows) and the validation samples (columns) for the
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