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Abstract: Terrestrial water storage (TWS) can be influenced by both climate change and anthropogenic
activities. While the Gravity Recovery and Climate Experiment (GRACE) satellites have provided
a global view on long-term trends in TWS, our ability to disentangle human impacts from natural
climate variability remains limited. Here we present a quantitative method to isolate these two
contributions with reconstructed climate-driven TWS anomalies (TWSA) based on long-term
precipitation data. Using the Haihe River Basin (HRB) as a case study, we find a higher human-induced
water depletion rate (−12.87 ± 1.07 mm/yr) compared to the original negative trend observed by
GRACE alone for the period of 2003–2013, accounting for a positive climate-driven TWSA trend
(+4.31 ± 0.72 mm/yr). We show that previous approaches (e.g., relying on land surface models) provide
lower estimates of the climate-driven trend, and thus likely underestimated the human-induced trend.
The isolation method presented in this study will help to interpret observed long-term TWS changes
and assess regional anthropogenic impacts on water resources.
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1. Introduction

Terrestrial water storage (TWS) is the sum of all forms of water storage over land surfaces,
which plays a key role in the global and regional hydrological cycle [1–3]. TWS varies on a wide range of
temporal and spatial scales, and exerts important effects upon the Earth’s climate system [4–6]. After the
launch of the Gravity Recovery and Climate Experiment (GRACE) satellites in 2002, many studies
have quantitatively estimated the TWS or groundwater storage (GWS) changes using GRACE data in
global and regional basins [7–10]. GRACE satellites can derive global monthly temporal gravity fields
with a spatial resolution of ~300 km, which can be further used to estimate water storage changes over
land when other mass change effects are removed from the gravity fields [11,12]. However, the lack
of in situ observations limits our knowledge of the relationship between natural climate variability,
and human activity impacts upon terrestrial water systems [13–16].

Water resources in basins are mainly influenced by climate changes and anthropogenic
activities [14]. Assessing changes in water storage on the global scale under the impact of climate

Remote Sens. 2019, 11, 3050; doi:10.3390/rs11243050 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-6172-2598
https://orcid.org/0000-0001-8873-0750
http://www.mdpi.com/2072-4292/11/24/3050?type=check_update&version=1
http://dx.doi.org/10.3390/rs11243050
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2019, 11, 3050 2 of 19

variability and human activity has drawn great attention to the growing water scarcity around the
world [15,17–23].

On one hand, the climatic fluctuations in ocean and atmosphere, such as El Niño–Southern
Oscillation (ENSO), resulting from the large-scale ocean–atmosphere interactions over the equatorial
Pacific [24], can strongly affect global water storage by influencing precipitation patterns [25–27].
During the warm phase of ENSO (i.e., El Niño), heavy rains generally occur in South America,
while droughts occur in Southeast Asia and Australia. On the contrary, during the cold phase of ENSO
(i.e., La Niña), heavy rains occur in Southeast Asia and Australia, while droughts occur in Southwestern
USA and the West Coast of South America. Other climatic fluctuations, e.g., Pacific Decadal Oscillation
(PDO), Indian Ocean Dipole (IOD) and North Atlantic Oscillation (NAO) also impact TWS anomalies
(TWSA) at different temporal and spatial scales [28,29]. On the other hand, due to the increasing water
resource management and consumption all around the world, impacts of anthropogenic activities
on water storage become more important, and should be taken into account in the hydrologic cycle
and modeling [30,31]. Impacts of direct human activities could be through water withdrawal [32–34],
the building of reservoirs [35,36], or land use and land cover change [37].

Some previous studies have focused on analyzing the relative contribution of TWSA from natural
and anthropogenic effects [13,14,17,38,39]. For instance, Yi et al. [39] estimated an anthropogenic TWS
depletion estimate of −187 ± 38 km3/yr in Asia by using a linear relationship between variations
in precipitation anomalies and water storage fluxes. Huang et al. [14] isolated the human-induced
TWSA by subtracting climate-driven TWSA simulated by models from GRACE-observed TWSA.
As GRACE can detect the total TWS changes affected by both climate variability and human activities,
whereas land surface model (LSM) simulations generally represent the climate-related TWS changes
in most cases. Felfelani et al. [13] quantified the human-induced TWSA by calculating the difference
between the two hydrological models, in which human impacts were considered in one model, but not
included in the other one. However, there are some limitations and uncertainties in terms of modeling
and forcing data. For example, Yi et al. [39] assumed that the anthropogenic component is constant
over time, and the climate-driven effect is zero from 1979 to 2015, and they analyzed both impacts
on the annual scale. A systematic difference between various precipitation-forcing data was also
highlighted [39]. Felfelani et al. [13] also found that the TWSA trend uncertainty caused by the errors
in forcing datasets was as high as the TWSA trend differences resulting from different hydrological
models. Moreover, global hydrological models and land surface models may exhibit large biases in
TWSA amplitude [8,20].

Here we quantify the contribution of climate-driven TWSA and its trend based on the reconstruction
of long-term climate-driven water storage variations using one decade of GRACE observations and
a more than four-decade precipitation dataset, and further evaluate the human-induced TWSA by
removing the climate-driven TWSA from the GRACE-derived TWSA. We employ the information
from the current GRACE record and avoid the difficulties of using hydrological models by using
a statistical approach. The upper and lower bounds of the climate-driven TWSA trend (TrendCD)
and human-induced TWSA trend (TrendHI) are estimated based on a relatively long time period of
reconstructed, climate-driven TWSA time series.

2. Materials and Methods

2.1. Study Area

The Haihe River Basin (HRB) is selected as a case study, which is located in North China
(~320,000 km2; Figure 1a). The HRB has a total population of ~124 million, including Beijing, Tianjin,
and most of the area of Hebei, which is the political, economic and cultural center of China (Figure A1).
As a major grain-producing region in China, it produces 10% of China’s total grains [40]. The major
crops in this area are winter wheat and summer maize.



Remote Sens. 2019, 11, 3050 3 of 19

Remote Sens. 2019, 11, x FOR PEER REVIEW 3 of 19 

 

Haihezha is only 0.82 km3/yr from 1960 to 2010 [41]. The water consumption is concentrated on the 
plain region, and it contains the main agricultural areas, industries and cities.  

Agriculture depends largely on groundwater exploitation in the HRB, which is similar to the 
High Plains in the USA and northwest India, and it has become the major groundwater depletion 
areas around the world [42]. The GWS suffers a prolonged declining trend of −17.8 ± 0.1 mm/yr 
during 1971–2015 in the North China Plain [43], which covers most of the region of the HRB. 

In recent years, with the launch of the GRACE satellite, the water depletion in the HRB has been 
a research hotspot, given its significant depletion rate and important role in China [43–49]. Most of 
the water depletion is caused by agricultural irrigation in the HRB [17,44,50]. Previous study has tried 
to quantify the climate-driven and human-induced TWSA in the HRB. For example, Yi et al. [39] 
found a human-induced TWSA trend of −8.4 ± 0.9 km3/yr in the HRB from 2003 to 2014 based on a 
linear regression of annual precipitation anomalies against GRACE-derived TWSA. In this study, we 
aim to isolate climate-driven and human-induced contributions to GRACE-derived TWSA in the 
HRB on the basis of the statistical reconstruction method. 

 
Figure 1. (a) Location and boundary of the Haihe River Basin in China, shown in dark gray. (b) 
Comparison between terrestrial water storage anomalies (TWSA) time series from the Gravity 
Recovery and Climate Experiment (GRACE) and from the ensemble mean of the reconstructed TWSA 
with the trend and seasonal signal removed. (c) Reconstructed, climate-driven TWSA time series from 
1967 to 2013, with the trend for 2003 –2013 shown as a red dashed line. 
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The GRACE mascon product is provided by the Center for Space Research (CSR); the University 
of Texas at Austin is used (http://www2.csr.utexas.edu/grace/). CSR mascons (CSR-M) are provided 
with a 0.5-degree spatial resolution. The C20 replacement, degree 1 corrections and the glacial 
isostatic adjustment (GIA) correction have been applied to CSR-M, similar as standard processing for 
spherical harmonic products. More details about the mascon product can be found in Save et al. [51]. 
This dataset has been used in several studies to derive global and regional TWSA estimates 
[10,20,33,49].  

We also use two other mascon solutions for intercomparison of reconstruction and trend 
estimation: one is the Jet Propulsion Laboratory mascons (JPL-M) [52], and the other is the Goddard 
Space Flight Center mascons (GSFC-M) [53]. The JPL-M data is also processed based on the Level-1 
GRACE observations, and the same corrections are applied as CSR-M. The JPL-M uses a priori 
constraints to estimate global monthly gravity fields in terms of 4551 equal-area, surface spherical-
cap mass-concentration functions to minimize the effect of measurement errors [52]. The gain factors 
are not applied in our study, since they are not suitable to quantify trends from the JPL-M [52]. GSFC-

Figure 1. (a) Location and boundary of the Haihe River Basin in China, shown in dark gray.
(b) Comparison between terrestrial water storage anomalies (TWSA) time series from the Gravity
Recovery and Climate Experiment (GRACE) and from the ensemble mean of the reconstructed TWSA
with the trend and seasonal signal removed. (c) Reconstructed, climate-driven TWSA time series from
1967 to 2013, with the trend for 2003–2013 shown as a red dashed line.

In this basin, the mean annual precipitation is ~530 mm/yr from 1961 to 2013. The runoff is mostly
generated in the mountainous regions; its mean runoff in the hydrologic control station of Haihezha is
only 0.82 km3/yr from 1960 to 2010 [41]. The water consumption is concentrated on the plain region,
and it contains the main agricultural areas, industries and cities.

Agriculture depends largely on groundwater exploitation in the HRB, which is similar to the High
Plains in the USA and northwest India, and it has become the major groundwater depletion areas
around the world [42]. The GWS suffers a prolonged declining trend of −17.8 ± 0.1 mm/yr during
1971–2015 in the North China Plain [43], which covers most of the region of the HRB.

In recent years, with the launch of the GRACE satellite, the water depletion in the HRB has been
a research hotspot, given its significant depletion rate and important role in China [43–49]. Most of the
water depletion is caused by agricultural irrigation in the HRB [17,44,50]. Previous study has tried to
quantify the climate-driven and human-induced TWSA in the HRB. For example, Yi et al. [39] found
a human-induced TWSA trend of −8.4 ± 0.9 km3/yr in the HRB from 2003 to 2014 based on a linear
regression of annual precipitation anomalies against GRACE-derived TWSA. In this study, we aim to
isolate climate-driven and human-induced contributions to GRACE-derived TWSA in the HRB on the
basis of the statistical reconstruction method.

2.2. GRACE Data

The GRACE mascon product is provided by the Center for Space Research (CSR); the University
of Texas at Austin is used (http://www2.csr.utexas.edu/grace/). CSR mascons (CSR-M) are provided
with a 0.5-degree spatial resolution. The C20 replacement, degree 1 corrections and the glacial isostatic
adjustment (GIA) correction have been applied to CSR-M, similar as standard processing for spherical
harmonic products. More details about the mascon product can be found in Save et al. [51]. This dataset
has been used in several studies to derive global and regional TWSA estimates [10,20,33,49].

We also use two other mascon solutions for intercomparison of reconstruction and trend estimation:
one is the Jet Propulsion Laboratory mascons (JPL-M) [52], and the other is the Goddard Space
Flight Center mascons (GSFC-M) [53]. The JPL-M data is also processed based on the Level-1
GRACE observations, and the same corrections are applied as CSR-M. The JPL-M uses a priori
constraints to estimate global monthly gravity fields in terms of 4551 equal-area, surface spherical-cap
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mass-concentration functions to minimize the effect of measurement errors [52]. The gain factors are not
applied in our study, since they are not suitable to quantify trends from the JPL-M [52]. GSFC-M uses
different least squares constraint strategies to develop its mascon solutions relative to JPL-M [53].

The GSFC solution uses many more and much smaller mascons than JPL-M to represent global
mass changes. We extract the mascon grids in our study area. The GRACE gridded data used in this
study covered a total period of 124 months (January 2003 to December 2013).

2.3. Precipitation Data

Gridded daily precipitation data over the study region are obtained from the China Meteorological
Administration (CMA) for the period of 1961–2013. The reconstruction period is from 1967 for
discarding six spin-up years as suggested by Humphrey et al. [54]. The gridded data were obtained
by partial thin plate smoothing splines interpolation of precipitation observations from 2472 weather
stations with daily temporal resolution and 0.5◦ × 0.5◦ spatial resolution over the whole of China,
and 258 weather stations were used in the HRB (Figure A1). These datasets were validated with gauge
observations by generalized cross-validation, Root Mean Square Error (RMSE), absolute error and
relative error [55]. Humphrey and Gudmundsson [56] highlighted that the quality of the reconstruction
is heavily dependent upon the quality of the input precipitation forcing. Two global precipitation
forcing datasets applied by Humphrey and Gudmundsson [56] are also used to compare with the CMA
precipitation dataset, including the European Centre for Medium-Range Weather Forecast (ECMWF)
re-analysis (ERA-Interim) dataset and the multi-source weighted-ensemble precipitation dataset
(MSWEP). We validate these three precipitation datasets with annual mean precipitation statistics from
the Haihe River Water Resources Bulletin (HRWRB) (http://www.hwcc.gov.cn/hwcc/wwgj/xxgb/szygb/).
The statistics from HRWRB are more reliable due to more precipitation data from local meteorological
stations included, but only annual mean precipitation statistics over the whole HRB are available.
The comparison with statistics from HRWRB indicates that the CMA precipitation data used in this
study are more reliable than those from ECMWF and MSWEP over the HRB (Text A1, Figure A2,
Table A1), consistent with previous findings from Pan et al. [57].

2.4. Land Surface Models

The Global Land Data Assimilation System (GLDAS) Noah is also used to estimate climate-related
TWSA. In GLDAS LSMs, the TWS is the sum of soil moisture content and snow water equivalent.
The GLDAS LSMs were developed by the National Aeronautics and Space Administration (NASA)
and the National Oceanic and Atmospheric Administration (NOAA). Constrained by ground- and
space-based observations, the GLDAS LSMs can simulate optimal fields of land surface states
and fluxes [58]. The data has a 1-degree spatial resolution over global land, with a monthly
temporal resolution.

Climate Prediction Center (CPC) global monthly soil moisture data is also used to estimate
climate-related TWSA [59]. The dataset has a 0.5-degree spatial resolution from 1948 to the present.
The CPC dataset contains monthly averaged soil moisture water height equivalents.

2.5. Climate-Driven Water Storage Variability

Humphrey et al. [54] proposed a data-driven statistical model where precipitation is filtered
using an exponential decay function that is optimized to yield the best correlation with the
GRACE-observed TWSA [60]. Here we conduct our study based on the reconstructed climate-driven
TWSA. However, we did not consider interannual temperature anomalies [33], since there are
non-significant correlation coefficients between interannual temperature and TWSA in the HRB [60].
Different methods with and without considering temperature anomalies [33,54], as well as a new
method proposed by Humphrey and Gudmundsson [56], were tested, but results indicate that

http://www.hwcc.gov.cn/hwcc/wwgj/xxgb/szygb/
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differences among these methods are negligible in the HRB (Text A2, Figure A3, Table A2, Table A3).
The climate-driven TWSA is formulated as follows:

TWSArec = β · Pτinter+subseas (1)

where TWSArec is the reconstructed, deseasoned and detrended TWS variations; Pτinter+subseas
corresponds to the deseasoned and detrended monthly precipitation. The parameters τ and β
are calibrated against the monthly TWSA derived from deseasoned and detrended GRACE-observed
TWSA. We apply this method on the basin scale, which is different from that of the grid scale considered
in Humphrey et al. [54].

2.6. Quantifying the Contributions of Climate-Driven and Human-Induced TWSA Trends

As shown in Figure 1c, we reconstruct the long-term, climate-driven TWSA from January 1967
to December 2013. The linear trend of TWSA for the reference period or the reconstruction period
(i.e., 1967.01–2013.12) is zero, according to the definition of reconstruction [54], but the TWSA time
series for the study period (i.e., 2003.01–2013.12) have a trend of 4.56 ± 0.63 mm/yr (expressed as:
Trend2003–2013

196701–201312). It should be noted that the trend of reconstructed climate-driven TWSA for the study
period will vary corresponding to different reference periods (see Table 1 and Movie S1). We further
estimate an upper and lower bound of the climate-driven trend by considering as many possible
reference periods. The mean climate-driven trend is estimated as Equation (2).

Trend2003–2013
CD =

1
n

n∑
i=1

Trend2003–2013
ith–201312 (2)

where Trend2003–2013
CD is the mean climate-driven trend, ith is the start year/month of the reference

period (i.e., 1967.01, 1967.02, 1967.03, · · · , 1993.12), and n represents the number of considered reference
periods, equivalent to the number of months from January 1967 to a suitable time (i.e., December 1993
and n = 324, see Table 1). We select December 1993 to December 2013 as the last reference period,
so that the reconstruction period can be at least 20 years or longer. The superscript of Trend2003–2013

ith–201312,
i.e., 2003–2013, represents the study period to estimate the climate-driven trend. The subscript of
Trend2003–2013

ith–201312 represents the reference period used for reconstruction. The climate-driven trend
estimated under a longer reconstruction period tends to be more stable, as it is less influenced by
extreme precipitation anomalies in some years.

Table 1. Climate-driven TWSA trends for the period of 2003–2013 corresponding to different reference
periods (unit: mm/yr).

Number i Reference Period Trend

1 1967.01–2013.12 4.56 ± 0.63 (Trend2003–2013
196701–201312)

2 1967.02–2013.12 4.56 ± 0.63 (Trend2003–2013
196702–201312)

. . . . . . . . .
157 1980.01–2013.12 3.82 ± 0.63 (Trend2003–2013

198001–201312)
. . . . . . . . .

324 1993.12–2013.12 3.97 ± 0.63 (Trend2003–2013
199312–201312)

Mean 4.31 ± 0.72 (Trend2003–2013
CD )

Then, the human-induced TWSA trend is estimated as follows:

TrendHI= TrendGRACE−TrendCD (3)
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where TrendHI is the trend of human-induced TWSA, TrendGRACE is the total trend of GRACE-derived
TWSA, and TrendCD is the climate-driven trend estimate.

2.7. Error Estimation

The uncertainty of TWSA is estimated following the approach used in Landerer and Swenson [8]
and Scanlon et al. [10]. Details can be found in the supporting information in Scanlon et al. [10].
The uncertainty of Trend2003–2013

ith–201312 is estimated as the formal error of trend estimate by applying least
squares to fit a linear trend to the constructed climate-driven TWSA time series from 2003 to 2013 using
the reference period of ith-201312 [33,61]. The error of Trend2003–2013

CD is estimated as the combination
of the mean formal error of different Trend2003–2013

ith–201312 and the standard deviation (STD) of different trend
estimates considering all the different reference periods. The equation is as follows:

σTCD =

√
σ2

T + STD(Tts)2 (4)

where σTCD is the error of Trend2003–2013
CD , σT is the mean formal error of different Trend2003–2013

ith–201312,
and STD(Tts) represents the STD of different trend estimates.

The error of the Trend2003–2013
HI is estimated using conventional error propagation as Equation (5),

with σGRACE representing the error of the GRACE TWSA trend.

σTHI =
√
σ2

TCD + σ2
GRACE (5)

The uncertainties of annual climate-driven and human-induced TWSA are also estimated. We first
estimate the uncertainties of the monthly TWSA time series, then the uncertainty of reconstructed TWSA,
which is estimated by the root mean square error (RMSErec-obs) between reconstructed and GRACE
observations [54], and then variations of monthly TWSA (var) for every month which are estimated
from the STDs of 324 climate-driven TWSA time series (see Section 2.6). Thus, the uncertainties of
annual climate-driven TWSA can be estimated as follows:

σAnCD =

√√√√√
RMSE2

rec–obs +
1

12

12∑
i=1

var2

12
(6)

where σAnCD is the uncertainty of annual climate-driven TWSA.
The uncertainty of annual human-induced TWSA is estimated with conventional error

propagation considering both annual uncertainties of GRACE and climate-driven TWSA, similar to
Equation (5). It should be noted that the uncertainties provided in this study are provided as 68.3%
confidence intervals.

3. Results

3.1. Trend of Climate-driven and Human-Induced TWSA

As shown in Figure 1b, our reconstructed time series of TWSA agree well with the GRACE results,
with a high correlation coefficient (R) of 0.79 and Nash-Sutcliffe Efficiency (NSE) of 0.41. The RMSE of
two time series of TWSA is 1.6 cm (Table A2), in the same level of GRACE errors, which also indicates
the reliability of our reconstructed results.

As shown in Figure 1c, although the trend of reconstructed time series of TWSA from 1967 to
2013 is zero according to the definition of reconstruction method, there are significant fluctuations
on interannual to decadal time scales. We compute the trend of reconstructed climate-driven
TWSA for the period of 2003–2013 using different reference periods as explained by Equation (2) in
Section 2.6 (i.e., Trend2003–2013

196701–201312, Trend2003–2013
196702–201312, · · · ,Trend2003–2013

199312–201312). Further, the time series of
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human-induced trends of TWSA for the period of 2003–2013 are estimated by removing climate-driven
TWSA trends from GRACE-derived TWSA trends following Equation (3).

The GRACE-derived TWSA trend from January 2003 to December 2013 is −8.56 ± 0.79 mm/yr
(i.e., −2.74 ± 0.25 km3/yr), while the TrendCD ranges from 3.63 to 4.77 mm/yr depending on the
various reference periods (Figure 2, Text A3). The mean TrendCD is estimated to be 4.31 ± 0.72 mm/yr
(i.e., 1.38 ± 0.23 km3/yr). The TrendCD time series show some fluctuations over the different reference
periods, but their standard deviation is only 0.34 mm/yr. As shown in Figure 2a, when the reconstruction
period becomes longer than 37 years (i.e., the starting year ranges from 1967 to 1977), the trend estimates
tend to become more stable.
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Figure 2. (a) Time series of climate-driven and human-induced TWSA trend of 2003–2013 relative to
different reference periods. The light blue and orange shadows represent the uncertainties of these two
trend time series. (b) TWSA trend budget in the HRB (gray bar: total TWSA trend from GRACE; blue
bar: climate-driven TWSA trend; red bar: human-induced TWSA trend).

As a direct result of Equation (3), variations of TrendHI are symmetric to the TrendCD time series
(Figure 2a). The TrendHI is estimated to be −12.87 ± 1.07 mm/yr (i.e., −4.12 ± 0.34 km3/yr, Figure 2b),
which is stronger than the GRACE-derived TWSA trend.

3.2. Interannual Variations of TWSA

To better illustrate the year-to-year variability of TWSA, monthly GRACE-derived, climate-driven
and human-induced TWSA are averaged to annual means (Figure 3a). The climate-driven
TWSA increased with fluctuations, while the human-induced TWSA continuously decreased,
indicating a continuous human-induced water mass loss. The climate-driven TWSA decreased from
2004 to 2007 and increased continuously after 2007, which is consistent with year-to-year precipitation
anomalies during the same time period (Figure A4). However, the human-induced TWSA shows
a long-term continuous decrease without significant interannual variability, indicating a stable negative
effect on water storage from anthropogenic activities (Figure 3a). As the leading factor of human
activities, the long-term extensive water consumption with a rate of ~26 km3/yr based on the statistics
from HRWRB causes the continuous decrease of human-induced TWSA (Figure A4).
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Further, the year-to-year terrestrial water fluxes (TWF) are calculated as the difference between
annual mean TWSA in two consecutive years. As shown in Figure 3b, the interannual GRACE
TWF are dominated by the climate-driven TWF. The climate-driven TWF between 2003 and 2004
is 16.80 ± 2.15 km3/yr, corresponding to the positive precipitation anomaly in 2003 and 2004. The
abnormal negative precipitation anomaly in 2006 (i.e., −79.14 mm relative to average precipitation of
1961 to 2013, Figure A4) corresponds to minimum TWF (−6.92 ± 2.15 km3/yr) between 2005 and 2006.
The human-induced TWF are all in negative values, ranging from −6.28 ± 3.06 to −1.09 ± 3.06 km3/yr.

4. Discussion

4.1. Comparison of Different GRACE Solutions and Methods

The method to separate contributions of climate-driven and human-induced activities in this
study is also applied by using JPL-M and GSFC-M. As shown in Table 2, the GRACE-derived TWSA
trend from JPL-M is significantly larger than those from CSR-M and GSFC-M. Scanlon et al. [10] also
found larger trends in JPL-M after a global evaluation of different GRACE solutions, especially in
medium and small basins (≤500,000 km2), which can be caused by the different processing strategy
and a priori constraints used in JPL-M [52,62]. The climate-driven trend estimates from CSR-M,
GSFC-M and JPL-M are 4.31 ± 0.72, 3.35 ± 0.66, and 5.66 ± 0.95 mm/yr, respectively. The mean value
of the three estimates is 4.44 mm/yr, and it is closer to the CSR-M estimate, which we used finally in
this study. Due to the positive trends of climate-driven TWSA during 2003–2013, the negative trends
of the human-induced TWSA are all larger than those of GRACE-derived total TWSA.



Remote Sens. 2019, 11, 3050 9 of 19

Table 2. Estimates of GRACE-derived, climate-driven, and human-induced TWSA trends in the HRB
from 2003 to 2013 based on different GRACE solutions and methods (unit: mm/yr).

GRACE-Derived TWSA
Trend

Climate-Driven TWSA
Trend

Human-Induced TWSA
Trend

Description (GRACE
Solution, Method)

−8.56 ± 0.79 4.31 ± 0.72 −12.87 ± 1.07 CSR-M, reconstruction
−9.86 ± 0.69 3.35 ± 0.66 −13.21 ± 0.96 GSFC-M, reconstruction
−14.20 ± 0.99 5.66 ± 0.95 −19.86 ± 1.37 JPL-M, reconstruction

−8.56 ± 0.79 1.09 ± 0.70 −9.65 ± 1.06 CSR-M, climate-driven
TWSA from Noah

−8.56 ± 0.79 2.48 ± 0.69 −11.04 ± 1.05 CSR-M, climate-driven
TWSA from CPC

−8.56 ± 0.79 2.49 ± 2.58 −11.05 ± 2.46 CSR-M, linear regression
(Yi et al. 2016)

−8.56 ± 0.79 4.33 ± 0.63 −12.89 ± 1.01 CSR-M, reconstruction
and linear regression

−8.56 ± 0.79 4.31 ± 0.71 −12.87 ± 1.07
CSR-M, reconstruction

(detrended annual
precipitation used)

We reproduce the method of Yi et al. [39] by assuming a simple linear relationship between
annual precipitation anomalies and annual TWF (Figure A5). The TrendHI estimated by this method is
−11.05 ± 2.46 mm/yr, agreeing reasonably well with our TrendHI estimate within uncertainties (Table 2).
Note that only precipitation anomalies and TWF on an annual scale can be used to establish a reasonable
linear relationship between them in this method. However, in our data-driven reconstruction method,
a more complicated decayed response of TWSA to daily precipitation is considered [54].

We also follow the method of Huang et al. [14], who take the LSM simulations as the climate-related
TWSA. The two climate-driven TWSA time series are relatively similar (Figure A6) in the HRB.
The corresponding TrendCD from the Noah and CPC models are 1.09 ± 0.70 and 2.48 ± 0.69 mm/yr,
respectively, during 2003–2013 (Table 2). The increased TWSA from LSMs are consistent with
the positive climate-driven TWSA trend reconstructed in this study. However, climate-driven
TWSA trends estimated by LSMs appear smaller than our estimates. This finding is consistent
with a recent study indicating that the amplitude of TWSA trends is systematically underestimated
in LSMs (Scanlon et al. 2018), partly because of missing storage compartments such as lakes
and aquifers which, on the other hand, are implicitly included in our data-driven reconstruction
method. Further, human-induced TWSA time series are estimated by subtracting model-simulated,
climate-driven TWSA from GRACE-derived TWSA. The corresponding TrendHI estimates based
on the Noah and CPC models are −9.65 ± 1.06 and −11.04 ± 1.05 mm/yr, respectively (Table 2),
which are smaller compared to our estimates using the data-driven reconstruction method due to the
underestimation of climate-driven TWSA in LSMs.

4.2. Impact of Annual Precipitation Trend

The intrinsic trend in annual precipitation could also contribute to the changes of TWS, as over
the Tibetan Plateau in China [17,63], northern North America, Tropical western Africa and Northern
Congo [17]. In this study, we assumed that the long-term climatological precipitation remains stable
over the reference period, so the trends of the time series of precipitation and climate-driven TWSA are
zero over the reference period. In fact, long-term annual precipitation trend may cause an increase or
decrease of TWS. In other words, the long-term climate-driven TWSA trend might not be zero.

We examined the trend of annual precipitation for different reference periods (i.e., 1967–2013,
1968–2013, · · · , 1993–2013) using the Mann-Kendall (M-K) trend test (Figure 4a). There are two
significant annual precipitation trends during 1980–2013 and 1992–2013 corresponding to the two low
values of Trend2003–2013

CD estimates (Figure 4a), which indicates the impact of annual precipitation trend
on the Trend2003–2013

CD estimation. The precipitation trend remains stable for the reference periods from
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1967–2013 to 1977–2013 (Figure 4a), so the Trend2003–2013
CD estimates are also stable during these reference

periods (Figure 2a). A simple linear regression was further performed between annual precipitation
trends (predictor) and Trend2003–2013

CD estimates (dependent variable) during different reference periods
(Figure 4b). The regression coefficient shows that the Trend2003–2013

CD is 4.33 ± 0.63 mm/yr when the
annual precipitation trend is zero (Table 2), which is consistent with our estimate. Here we assume
that the long-term, climate-driven TWSA trend is zero when the annual precipitation trend is zero.Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 19 
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trends during different reference periods and climate-driven trend estimates for 2003–2013. Noting that
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196701–201312 to Trend2003–2013
196712–201312 are averaged to an annual trend value; other years are averaged

in the same way in (b).

In addition, we also check the TrendCD and TrendHI estimates by removing the annual precipitation
trend before reconstruction. The trend of the annual precipitation during 1961–2013 is found to be
−0.87 mm/yr2 based on the M-K trend test, but not significant (p > 0.1). Nevertheless, we still consider
its contribution as follows. We first removed the annual precipitation trend by adding the corresponding
amount of precipitation in the daily precipitation time series, so the annual precipitation trend for
the period of 1961–2013 is close to zero after this processing. The detrended daily precipitation time
series are further used to reconstruct the climate-driven TWSA. Finally, the TrendCD and TrendHI

are estimated to be 4.31 ± 0.71 and −12.87 ± 1.07 mm/yr, respectively (Table 2). There is almost no
difference between these estimates and the foregoing trend estimates using the original precipitation.
Thus, we can conclude that the trend of annual precipitation has no obvious influence on our TrendCD

and TrendHI estimates in the HRB.
However, it is worth noting that special attention might be required when applying the

method to a region with a significant annual precipitation trend during the reconstruction period.
Technically, the potential impact of a precipitation trend can be tested by applying regression analysis
between annual precipitation trends and TrendCD estimates proposed in this study.

5. Conclusions

In this study, we use a data-driven reconstruction method to quantify the contributions of climate
and anthropogenic activities to water storage changes. This method takes advantage of the information
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from GRACE and in situ precipitation data. The HRB, suffering a long-term water depletion, is
taken as a case study. Although the apparent rate of TWSA in the HRB measured by GRACE is
−8.56 ± 0.79 mm/yr over 2003–2013, we estimate a climate-driven TWSA trend of 4.31 ± 0.72 mm/yr
(i.e., 1.38 ± 0.23 km3/yr) due to the wet period in the past decade relative to the climate of the past half
century. Therefore, the human-induced TWSA trend is −12.87 ± 1.07 mm/yr (i.e., -4.12 ± 0.34 km3/yr)
for the period of 2003–2013, which indicates that the human-induced water depletion in the HRB is
more serious (i.e., ~50% larger) than that estimated by GRACE observations alone.

While annual climate-driven TWSA shows some fluctuations with a positive trend,
prolonged anthropogenic water abstractions lead to a continuous decrease in TWSA. Although the
climate-driven TWSA increase partially compensates the human-induced water depletion in the case of
the HRB, it should be noted that there might also be opposite cases in which a negative climate-driven
TWSA trend along with an existing anthropogenic TWSA depletion will exacerbate the total water loss
in some regions of the world.

The potential effect of the long-term annual precipitation trend in the HRB is also investigated,
with the results showing that it has almost no effect in the HRB. However, we recommend that
caution should be exercised in regions with the significant precipitation trend when applying the
reconstruction method.

The method presented in this study provides a way to isolate the individual contribution
of climate variability or human activities to decadal water storage changes observed by GRACE,
which would definitely benefit the interpretation of observed net changes in water storage and water
resources management. Our results indicate that although the climate-driven water storage varies
corresponding to the precipitation changes, the water storage variations due to anthropogenic activities
show a continuous decreasing rate in the HRB, which highlights the possible underestimation or
overestimation of actual human-induced water depletion in other regions of the world when GRACE
data alone was used to quantify regional water storage changes.
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Appendix A

Text A1. Comparison of Precipitation Forcing Data

Different precipitation forcing data are compared with each other, including daily precipitation
from China Meteorological Administration (CMA), the European Centre for Medium-Range Weather
Forecast (ECMWF) re-analysis (ERA-Interim) [64] and multi-source weighted-ensemble precipitation
dataset (MSWEP) [65]. We compared the four precipitation datasets on the annual scale with the
precipitation data from the Haihe River Water Resources Bulletin (HRWRB). The comparison is
evaluated with three indices: correlation coefficient (R), Mean Bias Error (MBE) and Root Mean Square

http://www.geodoi.ac.cn/WebCn/doi.aspx?Id=1298
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Error (RMSE) (Table A1). Results indicate that precipitation data from CMA are more reliable in the
HRB, which is in line with Pan’s conclusion [57].

Text A2. Comparison of Different Reconstruction Methods

Results with or without considering the interannual temperature in the reconstruction are shown in
Figure A3, which are applied in Humphrey et al. [54] and Zhong et al. [33], respectively. The interannual
temperature data are obtained from the ERA-Interim atmospheric reanalysis [64]. A new reconstruction
method proposed by Humphrey and Gudmundsson [56] is also taken into comparison. The results are
evaluated with three indices: the Nash-Sutcliffe efficiency (NSE) [66], RMSE and R (Table A2, Table A3).
The comparison results indicate that the impact of temperature is limited in the HRB. Considering
that there is non-significant R between the interannual temperature and TWSA, we choose the method
without considering the temperature.

Text A3. A Relatively Conservative Estimate of TrendCD and TrendHI

If we assume the climate-driven trend is zero for the longest reference period
(i.e., Trend2003–2013

196701–201312 = 0), then TrendCD is estimated to be 4.56 mm/yr. The subsequent trend
time series are used to estimate the upper and lower bounds of TrendCD (Figure 2a). Thus, the upper
and lower bounds are 3.63 and 4.77 mm/yr, respectively. This estimate is also close to the previous
estimate. Then the TrendHI estimate is −13.12 mm/yr, and its upper and lower bounds are −12.19 and
−13.33 mm/yr, respectively.
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Figure A3. Comparison between GRACE-derived TWSA and different reconstruction methods
based on Humphrey et al. [54], Humphrey and Gudmundsson [56] and Zhong et al. [33] for
(a) the calibration period from 2003–2013 and (b) the reconstruction period from 1985–2013.
Seasonal cycles and the long-term trend have been removed in GRACE-derived TWSA. The curves for
Recons-PT-Humphrey2017 and Recons-PT-Humphrey2019 have been offset for clarity.



Remote Sens. 2019, 11, 3050 14 of 19
Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 19 

 

 
Figure A4. Annual water consumption and annual precipitation anomalies in the Haihe River Basin 
from 2003 to 2013. 

 
Figure A5. (a) Correlations between terrestrial water fluxes (TWF) and precipitation anomalies, with 
different shifted months of precipitation; (b) The linear regression between TWF and annual 
precipitation. 

  

Figure A4. Annual water consumption and annual precipitation anomalies in the Haihe River Basin
from 2003 to 2013.

Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 19 

 

 
Figure A4. Annual water consumption and annual precipitation anomalies in the Haihe River Basin 
from 2003 to 2013. 

 
Figure A5. (a) Correlations between terrestrial water fluxes (TWF) and precipitation anomalies, with 
different shifted months of precipitation; (b) The linear regression between TWF and annual 
precipitation. 

  

Figure A5. (a) Correlations between terrestrial water fluxes (TWF) and precipitation anomalies,
with different shifted months of precipitation; (b) The linear regression between TWF and
annual precipitation.



Remote Sens. 2019, 11, 3050 15 of 19

Remote Sens. 2019, 11, x FOR PEER REVIEW 15 of 19 

 

 
Figure A6. (a) Climate-driven TWSA estimates from land surface models (CPC and Noah); (b) 
Human-induced TWSA estimates from subtracting GRACE TWSA by climate-driven TWSA. 

Table A1. Comparison of different precipitation-forcing datasets with precipitation statistics from the 
Haihe River Water Resources Bulletin on the annual scale. 

Method R MBE (mm) RMSE (mm) 
CMA 0.99 6.67 9.24 

ERA-Interim 0.37 21.85 76.86 
MSWEP 0.97 −69.63 70.92 

Table A2. Comparison of different methods with or without considering the temperature, and a new 
method from Humphrey and Gudmundsson [56] for the GRACE period. All results are compared 
with deseasoned and detrended GRACE observations from 2003 to 2013. 

Method NSE RMSE (mm) R 
This study 0.41 16.34 0.79 

Humphrey et al. [54] 0.40 16.38 0.79 
Humphrey and Gudmundsson [56] 0.45 16.09 0.80 

Table A3. Intercomparison of among reconstruction terrestrial water storage anomalies results based 
on the three methods from 1985 to 2013. 

Method NSE RMSE (mm) R 
This study vs Humphrey et al. [54] 1.00 1.24 1.00 

This study vs Humphrey and Gudmundsson [56] 0.96 6.50 0.98 
Humphrey et al. [54] vs Humphrey and Gudmundsson [56] 0.95 7.03 0.98 

  

Figure A6. (a) Climate-driven TWSA estimates from land surface models (CPC and Noah);
(b) Human-induced TWSA estimates from subtracting GRACE TWSA by climate-driven TWSA.

Table A1. Comparison of different precipitation-forcing datasets with precipitation statistics from the
Haihe River Water Resources Bulletin on the annual scale.

Method R MBE (mm) RMSE (mm)

CMA 0.99 6.67 9.24
ERA-Interim 0.37 21.85 76.86

MSWEP 0.97 −69.63 70.92

Table A2. Comparison of different methods with or without considering the temperature, and a new
method from Humphrey and Gudmundsson [56] for the GRACE period. All results are compared with
deseasoned and detrended GRACE observations from 2003 to 2013.

Method NSE RMSE (mm) R

This study 0.41 16.34 0.79
Humphrey et al. [54] 0.40 16.38 0.79

Humphrey and Gudmundsson [56] 0.45 16.09 0.80

Table A3. Intercomparison of among reconstruction terrestrial water storage anomalies results based
on the three methods from 1985 to 2013.

Method NSE RMSE (mm) R

This study vs Humphrey et al. [54] 1.00 1.24 1.00
This study vs Humphrey and Gudmundsson [56] 0.96 6.50 0.98

Humphrey et al. [54] vs Humphrey and
Gudmundsson [56] 0.95 7.03 0.98

References

1. Syed, T.H.; Famiglietti, J.S.; Rodell, M.; Chen, J.; Wilson, C.R. Analysis of terrestrial water storage changes
from GRACE and GLDAS. Water Resour. Res. 2008, 44. [CrossRef]

http://dx.doi.org/10.1029/2006WR005779


Remote Sens. 2019, 11, 3050 16 of 19

2. Yeh, P.J.F.; Swenson, S.C.; Famiglietti, J.S.; Rodell, M. Remote sensing of groundwater storage changes in
Illinois using the Gravity Recovery and Climate Experiment (GRACE). Water Resour. Res. 2006, 42. [CrossRef]

3. Strassberg, G.; Scanlon, B.R.; Chambers, D. Evaluation of groundwater storage monitoring with the GRACE
satellite: Case study of the High Plains aquifer, central United States. Water Resour. Res. 2009, 45. [CrossRef]

4. Famiglietti, J.S. Remote Sensing of Terrestrial Water Storage, Soil Moisture and Surface Waters. In The State of
the Planet: Frontiers and Challenges in Geophysics; American Geophysical Union: Washington, DC, USA, 2013;
pp. 197–207. [CrossRef]

5. Radice, A.; Longoni, L.; Papini, M.; Brambilla, D.; Ivanov, V.I. Generation of a Design Flood-Event Scenario
for a Mountain River with Intense Sediment Transport. Water 2016, 8, 597. [CrossRef]

6. Albano, R.; Mancusi, L.; Abbate, A. Improving flood risk analysis for effectively supporting the
implementation of flood risk management plans: The case study of “Serio” Valley. Environ. Sci. Policy 2017,
75, 158–172. [CrossRef]

7. Feng, W.; Shum, C.K.; Zhong, M.; Pan, Y. Groundwater Storage Changes in China from Satellite Gravity:
An Overview. Remote Sens. 2018, 10, 674. [CrossRef]

8. Landerer, F.W.; Swenson, S.C. Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res.
2012, 48. [CrossRef]

9. Chen, J.L.; Wilson, C.R.; Tapley, B.D.; Yang, Z.L.; Niu, G.Y. 2005 drought event in the Amazon River basin as
measured by GRACE and estimated by climate models. J. Geophys. Res. Solid Earth 2009, 114. [CrossRef]

10. Scanlon, B.R.; Zhang, Z.Z.; Save, H.; Wiese, D.N.; Landerer, F.W.; Long, D.; Longuevergne, L.; Chen, J.L.
Global evaluation of new GRACE mascon products for hydrologic applications. Water Resour. Res. 2016, 52,
9412–9429. [CrossRef]

11. Tapley, B.D.; Bettadpur, S.; Ries, J.C.; Thompson, P.F.; Watkins, M.M. GRACE measurements of mass
variability in the Earth system. Science 2004, 305, 503–505. [CrossRef]

12. Wahr, J.; Molenaar, M.; Bryan, F. Time variability of the Earth’s gravity field: Hydrological and oceanic effects
and their possible detection using GRACE. J. Geophys. Res. Solid Earth 1998, 103, 30205–30229. [CrossRef]

13. Felfelani, F.; Wada, Y.; Longuevergne, L.; Pokhrel, Y.N. Natural and human-induced terrestrial water storage
change: A global analysis using hydrological models and GRACE. J. Hydrol. 2017, 553, 105–118. [CrossRef]

14. Huang, Y.; Salama, M.S.; Krol, M.S.; Su, Z.B.; Hoekstra, A.Y.; Zeng, Y.J.; Zhou, Y.X. Estimation of
human-induced changes in terrestrial water storage through integration of GRACE satellite detection
and hydrological modeling: A case study of the Yangtze River basin. Water Resour. Res. 2015, 51, 8494–8516.
[CrossRef]

15. Alley, W.M.; Healy, R.W.; LaBaugh, J.W.; Reilly, T.E. Flow and storage in groundwater systems. Science 2002,
296, 1985–1990. [CrossRef]

16. Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; van Beek, R.; Wada, Y.; Longuevergne, L.; Leblanc, M.;
Famiglietti, J.S.; Edmunds, M.; et al. Ground water and climate change. Nat. Clim. Chang. 2012, 3, 322–329.
[CrossRef]

17. Rodell, M.; Famiglietti, J.S.; Wiese, D.N.; Reager, J.T.; Beaudoing, H.K.; Landerer, F.W.; Lo, M.H.
Emerging trends in global freshwater availability. Nature 2018, 557, 651–659. [CrossRef]

18. Gleeson, T.; Wada, Y.; Bierkens, M.F.; van Beek, L.P. Water balance of global aquifers revealed by groundwater
footprint. Nature 2012, 488, 197–200. [CrossRef]

19. Famiglietti, J.S. The global groundwater crisis. Nat. Clim. Chang. 2014, 4, 945. [CrossRef]
20. Scanlon, B.R.; Zhang, Z.; Save, H.; Sun, A.Y.; Muller Schmied, H.; van Beek, L.P.H.; Wiese, D.N.; Wada, Y.;

Long, D.; Reedy, R.C.; et al. Global models underestimate large decadal declining and rising water storage
trends relative to GRACE satellite data. Proc. Natl. Acad. Sci. USA 2018, 115, E1080–E1089. [CrossRef]

21. Tapley, B.D.; Watkins, M.M.; Flechtner, F.; Reigber, C.; Bettadpur, S.; Rodell, M.; Sasgen, I.; Famiglietti, J.S.;
Landerer, F.W.; Chambers, D.P.; et al. Contributions of GRACE to understanding climate change. Nat. Clim.
Chang. 2019, 9, 358–369. [CrossRef]

22. Yuan, R.Q.; Chang, L.L.; Gupta, H.; Niu, G.Y. Climatic forcing for recent significant terrestrial drying and
wetting. Adv. Water Resour. 2019, 133, 103425. [CrossRef]

23. Zhang, Z.J.; Wang, C.; Zhang, H.; Tang, Y.X.; Liu, X.G. Analysis of permafrost region coherence variation in
the Qinghai–Tibet Plateau with a high-resolution TerraSAR-X image. Remote Sens. 2018, 10, 298. [CrossRef]

24. Trenberth, K.E.; Stepaniak, D.P. Indices of El Nino evolution. J. Clim. 2001, 14, 1697–1701. [CrossRef]

http://dx.doi.org/10.1029/2006WR005374
http://dx.doi.org/10.1029/2008WR006892
http://dx.doi.org/10.1029/150GM16
http://dx.doi.org/10.3390/w8120597
http://dx.doi.org/10.1016/j.envsci.2017.05.017
http://dx.doi.org/10.3390/rs10050674
http://dx.doi.org/10.1029/2011WR011453
http://dx.doi.org/10.1029/2008JB006056
http://dx.doi.org/10.1002/2016WR019494
http://dx.doi.org/10.1126/science.1099192
http://dx.doi.org/10.1029/98JB02844
http://dx.doi.org/10.1016/j.jhydrol.2017.07.048
http://dx.doi.org/10.1002/2015WR016923
http://dx.doi.org/10.1126/science.1067123
http://dx.doi.org/10.1038/nclimate1744
http://dx.doi.org/10.1038/s41586-018-0123-1
http://dx.doi.org/10.1038/nature11295
http://dx.doi.org/10.1038/nclimate2425
http://dx.doi.org/10.1073/pnas.1704665115
http://dx.doi.org/10.1038/s41558-019-0456-2
http://dx.doi.org/10.1016/j.advwatres.2019.103425
http://dx.doi.org/10.3390/rs10020298
http://dx.doi.org/10.1175/1520-0442(2001)014&lt;1697:LIOENO&gt;2.0.CO;2


Remote Sens. 2019, 11, 3050 17 of 19

25. Fasullo, J.T.; Boening, C.; Landerer, F.W.; Nerem, R.S. Australia’s unique influence on global sea level in
2010–2011. Geophys. Res. Lett. 2013, 40, 4368–4373. [CrossRef]

26. Phillips, T.; Nerem, R.S.; Fox-Kemper, B.; Famiglietti, J.S.; Rajagopalan, B. The influence of ENSO on global
terrestrial water storage using GRACE. Geophys. Res. Lett. 2012, 39, L16705. [CrossRef]

27. Ni, S.N.; Chen, J.L.; Wilson, C.R.; Li, J.; Hu, X.G.; Fu, R. Global Terrestrial Water Storage Changes and
Connections to ENSO Events. Surv. Geophys. 2018, 39, 1–22. [CrossRef]

28. Anyah, R.O.; Forootan, E.; Awange, J.L.; Khaki, M. Understanding linkages between global climate indices
and terrestrial water storage changes over Africa using GRACE products. Sci. Total Environ. 2018, 635,
1405–1416. [CrossRef]

29. Yao, C.L.; Luo, Z.C.; Wang, H.H.; Li, Q.; Zhou, H. GRACE-Derived Terrestrial Water Storage Changes in
the Inter-Basin Region and Its Possible Influencing Factors: A Case Study of the Sichuan Basin, China.
Remote Sens. 2016, 8, 444. [CrossRef]

30. Doll, P.; Müller Schmied, H.; Schuh, C.; Portmann, F.T.; Eicker, A. Global-scale assessment of groundwater
depletion and related groundwater abstractions: Combining hydrological modeling with information from
well observations and GRACE satellites. Water Resour. Res. 2014, 50, 5698–5720. [CrossRef]

31. Savenije, H.H.G.; Hoekstra, A.Y.; van der Zaag, P. Evolving water science in the Anthropocene. Hydrol. Earth
Syst. Sci. 2014, 18, 319–332. [CrossRef]

32. Scanlon, B.R.; Zhang, Z.Z.; Reedy, R.C.; Pool, D.R.; Save, H.; Long, D.; Chen, J.L.; Wolock, D.M.; Conway, B.D.;
Winester, D. Hydrologic implications of GRACE satellite data in the Colorado River Basin. Water Resour. Res.
2015, 51, 9891–9903. [CrossRef]

33. Zhong, Y.L.; Zhong, M.; Feng, W.; Zhang, Z.Z.; Shen, Y.C.; Wu, D.C. Groundwater Depletion in the West
Liaohe River Basin, China and Its Implications Revealed by GRACE and In Situ Measurements. Remote Sens.
2018, 10, 493. [CrossRef]

34. Bhanja, S.N.; Mukherjee, A. In situ and satellite-based estimates of usable groundwater storage across India:
Implications for drinking water supply and food security. Adv. Water Resour. 2019, 126, 15–23. [CrossRef]

35. Wang, L.; Kaban, M.K.; Thomas, M.; Chen, C.; Ma, X. The Challenge of Spatial Resolutions for GRACE-Based
Estimates Volume Changes of Larger Man-Made Lake: The Case of China’s Three Gorges Reservoir in the
Yangtze River. Remote Sens. 2019, 11, 99. [CrossRef]

36. Chao, B.F.; Wu, Y.H.; Li, Y.S. Impact of artificial reservoir water impoundment on global sea level. Science
2008, 320, 212–214. [CrossRef]

37. Lv, M.X.; Ma, Z.G.; Li, M.X.; Zheng, Z.Y. Quantitative Analysis of Terrestrial Water Storage Changes Under
the Grain for Green Program in the Yellow River Basin. J. Geophys. Res. Atmos. 2019, 124, 1336–1351.
[CrossRef]

38. Fasullo, J.T.; Lawrence, D.M.; Swenson, S.C. Are GRACE-era Terrestrial Water Trends Driven by
Anthropogenic Climate Change? Adv. Meteorol. 2016, 2016, 4830603. [CrossRef]

39. Yi, S.; Sun, W.K.; Feng, W.; Chen, J.L. Anthropogenic and climate-driven water depletion in Asia.
Geophys. Res. Lett. 2016, 43, 9061–9069. [CrossRef]

40. Guo, Y.; Shen, Y.J. Quantifying water and energy budgets and the impacts of climatic and human factors in
the Haihe River Basin, China: 1. Model and validation. J. Hydrol. 2015, 528, 206–216. [CrossRef]

41. Ministry of Water Resources of the People’s Republic of China (MWR). River Sediment Bulletin of China;
Ministry of Water Resour. of the PRC, Ed.; China Water Power Press: Beijing, China, 2013; p. 85.

42. Siebert, S.; Burke, J.; Faures, J.; Frenken, K.; Hoogeveen, J.; Döll, P.; Portmann, F.T. Groundwater use for
irrigation-a global inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. [CrossRef]

43. Gong, H.L.; Pan, Y.; Zheng, L.Q.; Li, X.J.; Zhu, L.; Zhang, C.; Huang, Z.Y.; Li, Z.P.; Wang, H.G.; Zhou, C.F.
Long-term groundwater storage changes and land subsidence development in the North China Plain
(1971–2015). Hydrogeol. J. 2018, 26, 1417–1427. [CrossRef]

44. Feng, W.; Zhong, M.; Lemoine, J.M.; Biancale, R.; Hsu, H.T.; Xia, J. Evaluation of groundwater depletion
in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based
measurements. Water Resour. Res. 2013, 49, 2110–2118. [CrossRef]

45. Huang, Z.Y.; Pan, Y.; Gong, H.L.; Yeh, P.J.F.; Li, X.J.; Zhou, D.M.; Zhao, W.J. Subregional-scale groundwater
depletion detected by GRACE for both shallow and deep aquifers in North China Plain. Geophys. Res. Lett.
2015, 42, 1791–1799. [CrossRef]

http://dx.doi.org/10.1002/grl.50834
http://dx.doi.org/10.1029/2012GL052495
http://dx.doi.org/10.1007/s10712-017-9421-7
http://dx.doi.org/10.1016/j.scitotenv.2018.04.159
http://dx.doi.org/10.3390/rs8060444
http://dx.doi.org/10.1002/2014WR015595
http://dx.doi.org/10.5194/hess-18-319-2014
http://dx.doi.org/10.1002/2015WR018090
http://dx.doi.org/10.3390/rs10040493
http://dx.doi.org/10.1016/j.advwatres.2019.02.001
http://dx.doi.org/10.3390/rs11010099
http://dx.doi.org/10.1126/science.1154580
http://dx.doi.org/10.1029/2018JD029113
http://dx.doi.org/10.1155/2016/4830603
http://dx.doi.org/10.1002/2016GL069985
http://dx.doi.org/10.1016/j.jhydrol.2015.06.039
http://dx.doi.org/10.5194/hess-14-1863-2010
http://dx.doi.org/10.1007/s10040-018-1768-4
http://dx.doi.org/10.1002/wrcr.20192
http://dx.doi.org/10.1002/2014GL062498


Remote Sens. 2019, 11, 3050 18 of 19

46. Tang, Q.H.; Zhang, X.J.; Tang, Y. Anthropogenic impacts on mass change in North China. Geophys. Res. Lett.
2013, 40, 3924–3928. [CrossRef]

47. Moiwo, J.P.; Tao, F.L.; Lu, W.X. Analysis of satellite-based and in situ hydro-climatic data depicts water
storage depletion in North China Region. Hydrol. Process. 2013, 27, 1011–1020. [CrossRef]

48. Wang, J.; Jiang, D.; Huang, Y.; Wang, H. Drought analysis of the Haihe river basin based on GRACE terrestrial
water storage. Sci. World J. 2014, 2014, 578372. [CrossRef] [PubMed]

49. Zhao, Q.; Zhang, B.; Yao, Y.B.; Wu, W.W.; Meng, G.J.; Chen, Q. Geodetic and hydrological measurements
reveal the recent acceleration of groundwater depletion in North China Plain. J. Hydrol. 2019, 575, 1065–1072.
[CrossRef]

50. Hu, X.L.; Shi, L.S.; Zeng, J.C.; Yang, J.Z.; Zha, Y.Y.; Yao, Y.J.; Cao, G.L. Estimation of actual irrigation amount
and its impact on groundwater depletion: A case study in the Hebei Plain, China. J. Hydrol. 2016, 543,
433–449. [CrossRef]

51. Save, H.; Bettadpur, S.; Tapley, B.D. High-resolution CSR GRACE RL05 mascons. J. Geophys. Res. Solid Earth
2016, 121, 7547–7569. [CrossRef]

52. Wiese, D.N.; Landerer, F.W.; Watkins, M.M. Quantifying and reducing leakage errors in the JPL RL05M
GRACE mascon solution. Water Resour. Res. 2016, 52, 7490–7502. [CrossRef]

53. Luthcke, S.B.; Sabaka, T.J.; Loomis, B.D.; Arendt, A.A.; McCarthy, J.J.; Camp, J. Antarctica, Greenland and
Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution. J. Glaciol. 2013, 59,
613–631. [CrossRef]

54. Humphrey, V.; Gudmundsson, L.; Seneviratne, S.I. A global reconstruction of climate-driven subdecadal
water storage variability. Geophys. Res. Lett. 2017, 44, 2300–2309. [CrossRef]

55. Zhao, Y.F.; Zhu, J. Assessing Quality of Grid Daily Precipitation Datasets in China in Recent 50 Years.
Plateau Meteorol. 2015, 34, 9. [CrossRef]

56. Humphrey, V.; Gudmundsson, L. GRACE-REC: A reconstruction of climate-driven water storage changes
over the last century. Earth Syst. Sci. Data 2019, 11, 1153–1170. [CrossRef]

57. Pan, Y.; Zhang, C.; Gong, H.L.; Yeh, P.J.F.; Shen, Y.J.; Guo, Y.; Huang, Z.Y.; Li, X.J. Detection of human-induced
evapotranspiration using GRACE satellite observations in the Haihe River basin of China. Geophys. Res. Lett.
2017, 44, 190–199. [CrossRef]

58. Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.J.; Arsenault, K.; Cosgrove, B.;
Radakovich, J.; Bosilovich, M.; et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004,
85, 381–394. [CrossRef]

59. Fan, Y.; van den Dool, H. Climate Prediction Center global monthly soil moisture data set at 0.5◦ resolution
for 1948 to present. J. Geophys. Res. Atmos. 2004, 109. [CrossRef]

60. Humphrey, V.; Gudmundsson, L.; Seneviratne, S.I. Assessing Global Water Storage Variability from GRACE:
Trends, Seasonal Cycle, Subseasonal Anomalies and Extremes. Surv. Geophys. 2016, 37, 357–395. [CrossRef]

61. Chen, J.L.; Li, J.; Zhang, Z.Z.; Ni, S.N. Long-term groundwater variations in Northwest India from satellite
gravity measurements. Global. Planet. Chang. 2014, 116, 130–138. [CrossRef]

62. Ran, J.; Ditmar, P.; Klees, R.; Farahani, H.H. Statistically optimal estimation of Greenland Ice Sheet mass
variations from GRACE monthly solutions using an improved mascon approach. J. Geod. 2018, 92, 299–319.
[CrossRef]

63. Zhong, M.; Duan, J.B.; Xu, H.Z.; Peng, P.; Yan, H.M.; Zhu, Y.Z. Trend of China land water storage redistribution
at medi- and large-spatial scales in recent five years by satellite gravity observations. Chin. Sci. Bull. 2009,
54, 816–821. [CrossRef]

64. Balsamo, G.; Albergel, C.; Beljaars, A.; Boussetta, S.; Brun, E.; Cloke, H.; Dee, D.; Dutra, E.; Muñoz-Sabater, J.;
Pappenberger, F.; et al. ERA-Interim/Land: A global land surface reanalysis data set. Hydrol. Earth Syst. Sci.
2015, 19, 389–407. [CrossRef]

65. Beck, H.E.; van Dijk, A.I.J.M.; Levizzani, V.; Schellekens, J.; Miralles, D.G.; Martens, B.; de Roo, A.
MSWEP: 3-hourly 0.25 degrees global gridded precipitation (1979–2015) by merging gauge, satellite, and
reanalysis data. Hydrol. Earth Syst. Sci. 2017, 21, 589–615. [CrossRef]

66. Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles.
J. Hydrol. 1970, 10, 282–290. [CrossRef]

http://dx.doi.org/10.1002/grl.50790
http://dx.doi.org/10.1002/hyp.9276
http://dx.doi.org/10.1155/2014/578372
http://www.ncbi.nlm.nih.gov/pubmed/25202732
http://dx.doi.org/10.1016/j.jhydrol.2019.06.016
http://dx.doi.org/10.1016/j.jhydrol.2016.10.020
http://dx.doi.org/10.1002/2016JB013007
http://dx.doi.org/10.1002/2016WR019344
http://dx.doi.org/10.3189/2013JoG12J147
http://dx.doi.org/10.1002/2017GL072564
http://dx.doi.org/10.7522/j.issn1000-0534.2013.00141
http://dx.doi.org/10.5194/essd-11-1153-2019
http://dx.doi.org/10.1002/2016GL071287
http://dx.doi.org/10.1175/BAMS-85-3-381
http://dx.doi.org/10.1029/2003JD004345
http://dx.doi.org/10.1007/s10712-016-9367-1
http://dx.doi.org/10.1016/j.gloplacha.2014.02.007
http://dx.doi.org/10.1007/s00190-017-1063-5
http://dx.doi.org/10.1007/s11434-008-0556-2
http://dx.doi.org/10.5194/hess-19-389-2015
http://dx.doi.org/10.5194/hess-21-589-2017
http://dx.doi.org/10.1016/0022-1694(70)90255-6


Remote Sens. 2019, 11, 3050 19 of 19

67. Yue, L.W.; Shen, H.F.; Zhang, L.P.; Zheng, X.W.; Zhang, F.; Yuan, Q.Q. High-quality seamless DEM generation
blending SRTM-1, ASTER GDEM v2 and ICESat/GLAS observations. ISPRS J. Photogramm. Remote Sens.
2017, 123, 20–34. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.isprsjprs.2016.11.002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	GRACE Data 
	Precipitation Data 
	Land Surface Models 
	Climate-Driven Water Storage Variability 
	Quantifying the Contributions of Climate-Driven and Human-Induced TWSA Trends 
	Error Estimation 

	Results 
	Trend of Climate-driven and Human-Induced TWSA 
	Interannual Variations of TWSA 

	Discussion 
	Comparison of Different GRACE Solutions and Methods 
	Impact of Annual Precipitation Trend 

	Conclusions 
	
	References

