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Abstract: In this work, the statistical fundaments of the recently proposed enhanced, multi-temporal
interferometric synthetic aperture radar (InSAR) noise-filtering (E-MTInSAR) technique is addressed.
The adopted noise-filtering algorithm is incorporated into the improved extended Minimum Cost
Flow (EMCF) Small Baseline Subset (SBAS) differential interferometric SAR (InSAR) processing
chain, which has extensively been used for the generation of Earth’s surface displacement time-series
in several different contexts. Originally, the input of the InSAR EMCF-SBAS processing toolbox
consisted of a sequence of multi-looked, small baseline interferograms, which were unwrapped using
the space-time EMCF phase unwrapping algorithm. Subsequently, the unwrapped interferograms
were inverted through the SBAS algorithm to retrieve the expected InSAR deformation products.
The improved processing chain has complemented the original codes with two additional steps.
In particular, a new multi-temporal noise-filtering algorithm for sequences of time-redundant
multi-looked DInSAR interferograms, followed by a proper interferogram selection step, has been
proposed. This research study is aimed at primarily assessing the performance of the E-MTInSAR
noise-filtering algorithm from a theoretical perspective. To this aim, the principles of directional
statistics and errors propagation are exploited. Experimental results, carried out by applying the
E-MTInSAR algorithm to a sequence of SAR data collected over the Los Angeles bay area, have been
used to corroborate the academic outcome of this research.

Keywords: DInSAR; deformation; noise filtering; small baseline; directional statistics; random
signal theory

1. Introduction

Multi-temporal Interferometric synthetic aperture radar (MTInSAR) techniques [1–11] are
nowadays well recognized as valuable and essential tools for the detection and monitoring of temporal
changes of Earth’s surface. These algorithms rely on the proper combination of sequences of differential
synthetic aperture radar (SAR) interferograms generated from multiple SAR acquisitions related to
areas on the ground not significantly affected by decorrelation noise artifacts [12,13]. To mitigate
the noise effects in the differential SAR interferograms, several noise-filtering techniques have been
proposed [14–26]. The majority of them work on single-channel interferograms by exploiting the
knowledge of the statistics of the single-look [16] and multi-look interferograms [17,18]. The most
commonly used noise filter is the boxcar filter [16], applied in the complex plane. Another frequently
used algorithm is provided by the Goldstein’s frequency-domain algorithm [14]. An adaptive version
of the Goldstein’s filter, relying on the use of spatial coherence information for dynamically setting the
filter’s weight, was also proposed by Baran [19]. These methods, however, do not take into account
the direction of the fringes because they operate using rectangular filtering boxes. To overcome such
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limitation, a self-adaptive filter based on local gradient slope estimation was also proposed by [15].
Several adaptations and essential improvements of the Lee filter have subsequently been proposed in
literature over the recent years [20–22]. Non-local noise filters, which take a mean of all pixels in an
interferogram, weighted by how similar the pixels are to a given radar target pixel, have also been
proposed, see for instance Reference [23]. MTInSAR approaches can be fundamentally classified in
the two broad groups of the permanent scatterers (PS) [1–4] and small baseline (SB) [5–9] methods,
although one hybrid solution that incorporates both PS and SB strategies has also been proposed [10].
PS algorithms select all interferometric SAR data pairs about a single common reference SAR scene,
i.e., the master image, without imposing any restrictions on the time span and the spatial separation
(baseline) among the orbits. In this case, the analyses are carried out directly on single-look data and
are focused on extracting information related to the ground displacement corresponding to single
dominant scatterers. Conversely, for what attains the SB methods, they are concentrated on detecting
and monitoring the ground displacement signals related to distributed targets (DS) on the ground,
which are more prone to be corrupted by spatial and temporal decorrelation phenomena [12,13].
To cope with this issue, efficiently, multiple-master InSAR data pairs, characterized by small temporal
and perpendicular baselines, are selected. The relevant differential SAR interferograms are, then,
computed and properly inverted to obtain information on the evolution of ground deformation
over time. In the framework of the methods addressing the DS targets signal characterization and
study, the SqueeSAR technique [11] and other alternative multi-temporal approaches have also
been proposed in the literature [24–27]. Among the SB techniques, a very popular algorithm is
the Small Baseline Subset (SBAS) approach [5] that allows retrieving line-of-sight (LOS)-projected
deformation maps of the ground surface. Furthermore, an improved SBAS processing chain, which
helps to considerably increase the deformation time-series retrieval capability of the original SBAS
procedure, has recently been proposed in the literature [26]. It complements the extended minimum
cost flow (EMCF) space-time phase unwrapping operations [28] with two innovative additional
processing steps. The former is the E-MTInSAR noise filtering technique, which exploits the inherent
temporal relationships among a sequence of time-redundant, multi-looked InSAR interferograms.
The latter is a proper interferogram selection step, which allows one to identify from the set of
noise-filtered multi-look interferograms a reduced network of time-redundant interferograms that
form a triangulation in the temporal/perpendicular baseline domain. The identified interferograms
are generated and exploited by the subsequent phase unwrapping operations that are carried out by
applying the efficient multi-temporal EMCF PhU technique [28].

This research article aims to study the statistical fundaments of the E-MTInSAR multi-channel
noise-filtering algorithm, which were only partly addressed in [26]. More specifically, E-MTInSAR
relies on the solution, on a pixel-by-pixel basis, of a non-linear optimization problem that permits one
to compute the (wrapped) phase vector that minimizes the (weighted) circular variance [29] of the
difference between the original (unfiltered) and the noise-filtered interferograms. This noise-filtering
procedure arises from the fundamental observation that multi-looked InSAR interferograms are not
fully time-consistent because they are generated through multilook operations that are independently
carried out on every single interferogram. As a consequence, the wrapped discrete curl of the computed
multi-looked phases, as they may be seen on a graph (in the time/perpendicular baseline domain)
whose nodes and edges identify the SAR acquisitions and the inherent interferograms, respectively, is
different from zero.

As experimentally demonstrated in [26], the “reconstructed” (e.g., from the obtained phase vector
related to every SAR acquisition) interferograms are significantly less affected by noise than the
original ones. Nonetheless, a group of the reconstructed interferograms may exhibit smaller spatial
coherence values than the ones relevant to the corresponding original interferograms, thus implying
that a partial corruption of the spatial coherence can occur during the minimization procedure.
In particular, this happens in correspondence with the interferograms that were initially significantly
coherent and, as extensively addressed in this research study, this is because the adopted optimization
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procedure tends to “inject” coherence from very coherent to incoherent interferograms, by exploiting
the time redundancy of the network of InSAR data pairs. This problem was addressed in [26]
and circumvented by introducing a subsequent post-processing stage, aimed at jointly preserving
the spatial coherence of high-coherent original interferograms and the improved coherence of the
reconstructed interferograms. At variance with SqueeSAR [11] and other alternative methods [24–27],
which require performing pixel-by-pixel analyses for the identification of the statistically homogenous
pixels (SHPs) and their subsequent averaging operations, the E-MTInSAR noise-filtering method has
the distinctive characteristic to use time-redundant sets of conventional multi-look interferograms,
also potentially pre-filtered with single-channel noise-filtering methods (e.g., using [14]). Nonetheless,
the adaptive multi-looking operations, see also [30], can be complemented within the developed
enhanced multi-temporal noise-filtering method to improve the performance of the EMCF-SBAS
processing chain, further.

In this work, the multi-channel E-MTInSAR algorithm is thoroughly reviewed in the purview of
the fundamentals of directional statistics [29] and discrete Calculus [31,32], with the aim to evaluate
its theoretical performance and discuss the statistical fundaments that elucidate the nature of the
improved spatial coherence of the reconstructed interferograms. The effectiveness of the proposed
noise-filtering technique, which was already experimentally demonstrated in [26], is here addressed
from the theoretical point of view. As clarified and further confirmed from a theoretical point of
view in this paper, the E-MTInSAR noise-filtering method has better performances when: (i) The time
redundancy [32] of the small baseline SB) interferograms into the interferometric network graph is
increased, (ii) the SAR satellites orbital tube is narrow and (iii) the average spatial coherence of the used
SB interferograms is moderately high. Accordingly, SAR images collected by constellations of satellite
platforms operating at C- and L-band sensors and with narrow orbital tubes (e.g., the Sentinels [33]
and ALOS-2 [34] constellations) are suitable. Therefore, further extended studies are required to assess
the quality of the retrievable Earth’s surface deformation products depending on the SAR image
resolution, used polarizations and operational wavelengths.

The paper is organized as follows. Section 2 summarizes the underlying rationale of
the E-MTInSAR noise-filtering algorithm, whereas Section 3 provides readers with a statistical
investigation on the properties of the designed phase estimator as well as a few insights on the
expected accuracy of the reconstructed noise-filtered interferograms. Experimental results carried out
by applying the E-MTInSAR algorithm to a sequence of advanced synthetic aperture radar (ASAR)
multi-looked InSAR interferograms over the case-study area in Southern California, spanning the
time interval between 2003 and 2010, are presented in Section 4. A discussion is provided in Section 5.
Conclusions and future perspectives are eventually addressed in Section 6.

2. The Rationale of the Enhanced Multi-Temporal Noise-Filtering Technique

The basic rationale of the E-MTInSAR noise-filtering technique implemented within the
EMCF-SBAS processing chain [26] is shortly summarized in this Section.

To introduce the mathematical framework of the algorithm, let us consider a set of N + 1 SAR
images obtained at ordered times t ≡ [t0, t1, . . . , tN ]

T , which are preliminarily co-registered with respect
to a common SAR image (e.g., the one acquired at time tmaster), and let b⊥ ≡ [b⊥0, b⊥1, . . . , b⊥N ]

T be the
vector of the perpendicular baseline associated to every SAR image, calculated considering the master
image as reference. From the available SAR images, a group of M interferometric SAR data pairs,
characterized by small perpendicular and temporal baselines, is preliminarily identified. Next, the
SB interferograms are multi-looked and (potentially) pre-filtered using any of the currently available
(e.g., the well-known Goldstein filter [14]) single-channel noise filtering techniques. Let Ψ(x, r) ≡
[ψ1(x, r), ψ2(x, r), . . . , ψM(x, r)]T be the vector of the (wrapped) SB interferograms, where (x, r) are the
radar coordinates of a generic pixel P of the imaged scene.

I want to remark that Ψ should be formally related to the vector of the (unknown)
absolute (unwrapped) phases associated with every single SAR acquisition, namely Φ(u)(x, r) ≡
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[
ϕ
(u)
0 (x, r), ϕ

(u)
1 (x, r), ϕ

(u)
2 (x, r), . . . , ϕ

(u)
N (x, r)

]T
with ϕ

(u)
0 (x, r) ≡ 0, by the following mathematical

relationship:
Ψ = W

[
∏ Φ(u)

]
(1)

where W [·] is the wrapping operator and ∏ is the [M × (N + 1)] discrete gradient operator of discrete
Calculus, which represents the incidence matrix related to the identified network of interferograms.
Note that, because the presented noise-filtering technique is based on pixel-by-pixel temporal analysis,
the dependence on the variables (x, r) has not been explicitly mentioned in (1), and will not be
mentioned hereinafter when considered superfluous. However, both the pre-processing, multi-looking
and noise-filtering operations are independently carried out on every single InSAR interferograms.
As a consequence, these operations are comprehensively responsible for the presence of an additive
(wrapped) phase term, namely D. Therefore, the computed interferograms can be correctly expressed
(see also Reference [35]), as follows:

Ψ = W
[
W
(

∏ Φ(u)
)
+ D

]
= W

[
Ψ′ + D

]
(2)

where Ψ′ is the (unknown) wrapped vector of time-consistent interferometric phases that we
would have been obtained if the independent, pre-processing operations of multi-looking (and
spatial noise-filtering) had not been performed. Indeed, the additive phase terms introduced by
these operations are generally not time-consistent, thus leading to the presence of some temporal
inconsistencies among the computed time-redundant interferograms, i.e., the unknown phase vector
D. By referring, again, to discrete Calculus theory [31,32], this means that the field of the computed SB
interferograms is not time-irrotational, and the wrapped discrete curl of the interferometric phase in
the time-domain is different from zero [26–35]. Thus:

W[ΩΨ] = W
[
Ω ∏ Φ(u) + ΩD

]
= W[ΩD] 6= 0 (3)

where Ω is the discrete curl operator [31]. Equation (3) represents the generalization of the phase
triangularity condition exploited by the SqueeSAR method [11]. The Enhanced Multi-temporal
Noise-Filtering (E-MTInSAR) technique utilizes the cyclic time inconsistencies existing among the
computed interferograms Ψ to generate a new set of time-consistent interferograms, namely Ψ̃ ≡[
ψ̃1, ψ̃2, . . . , ψ̃M

]T , which are less affected by phase noise artifacts [12]. This task is accomplished
by searching for the (unknown) vector of the wrapped phases related to SAR acquisitions, namely

Φ̃ = W
[
Φ̃

(u)] ≡ [ϕ̃0, ϕ̃1, ϕ̃2, . . . , ϕ̃N ]
T (where Φ̃

(u)
is the corresponding (unknown) vector of the

unwrapped phases) which minimizes the weighted circular variance [26] of the random phase vector
Θ ≡ [θ1, θ2, . . . , θM]T that represents the difference between the original and the reconstructed (i.e.,
from the retrieved acquisition phase vector Φ̃) interferograms. Mathematically, the following nonlinear
optimization problem has to be solved:

Φ̃ = argmin
{

ν
[
Φ̃
]}

= argmin

1−

∣∣∣∣∣∣∣∣∣
M
∑

k=1
ŵk exp[jθk]

M
∑

k=1
ŵk

∣∣∣∣∣∣∣∣∣

 (4)

where j =
√
−1 and θk = W

{
ψk −

[
ϕ̃IMk
− ϕ̃ISk

]}
, k = 1, 2, . . . , M are the phase residuals. Note also

that IMk and ISk are the indices of the relevant master and slave time acquisitions leading to the
formation of the k-th differential interferogram. Besides, the vector of weights Ŵ ≡ [ŵ1, ŵ2, . . . , ŵM]T

in (4) gives a figure of our confidence on the quality of the exploited M multi-looked interferograms.
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It is worth remarking that the reconstructed phase vector Ψ̃ is time-consistent. Indeed, because
the phases of the interferograms are reconstructed from the same set of phases related to the available
N + 1 SAR acquisitions, the following relation holds:

W
[
ΩΨ̃

]
= W

[
Ω ∏ Φ̃

]
= 0 (5)

where obvious mathematical relationships on the wrapping operator have been taken into account [35].
Section 3 provides readers with a comprehensive analysis of the statistical properties of the residual
random phase vector Θ ≡ [θ1, θ2, . . . , θM]T based on the fundamentals of directional statistics
theory [29]. As a result of the optimization procedure of Equation (4), a remarkable improvement of
the (average) spatial coherence values of the reconstructed multi-look interferograms (with respect
to the original ones) was experimentally evidenced in Reference [26]. Theoretical enlightenment
of the observed spatial coherence improvement is addressed in the following section. Conversely,
a group of very high-coherent interferograms can exhibit a decrease of the spatial coherence, thus
implying that a partial corruption of the coherence can also happen during the optimization operation.
To face this problem, some additional noise-filtering steps were initially proposed in Reference [26],
and implemented within the EMCF-SBAS processing chain. More precisely, to also preserve the spatial
coherence of the very coherent interferograms, a simple nonlinear combination between the original
and the reconstructed interferograms was carried out, thus further increasing the phase quality of
the whole set of M reconstructed interferograms. This research is aimed at studying the statistical
characteristics of the core E-MTInSAR algorithm and assessing the quality of the reconstructed
interferograms. Accordingly, the effect of the subsequent noise-filtering stages implemented within the
EMCF-SBAS processing chain will not be addressed in this work. As evident, future, extended analyses,
based on the processing of large sequences of independent InSAR interferograms are however required
to quantitatively evaluate the performance of the improved EMCF-SBAS InSAR processing toolbox.

3. E-MTInSAR Statistical Analysis

In this Section, the statistical description of the enhanced noise-filtered phase estimator shown in
Equation (4) is first inferred. Subsequently, some insights on the calculation of the matrix covariance of
the reconstructed interferograms are theoretically derived, thus emphasizing the role of the exploited
time-redundant network of InSAR interferograms and the benefit of pre-selecting only small baseline
(SB) interferograms during the optimization procedure.

3.1. Directional Statistics

As earlier anticipated in Section 2, the E-MTInSAR noise-filtering technique is based on the
solution of a non-linear optimization problem, which is independently computed for every radar pixel
of the imaged scene and consists of searching for the phase vector of wrapped phases Φ̃ that minimize
the (weighted) circular variance of the random (wrapped) phase vector Θ. The vector of weights
Ŵ ≡ [ŵ1, ŵ2, . . . , ŵM]T in (4) represents our confidence in the quality of the exploited, original M
(small baseline) multi-looked interferograms. To this aim, the spatial coherence factor of each relevant
interferograms is used. In particular, the latter is computed directly from the phase of the original
multi-looked interferograms, see [26], as follows:

ŵk =
1

(2NA + 1) · (2NR + 1)

∣∣∣∣∣ NA

∑
h=−NA

NR

∑
p=−NR

exp[jψk(x + h, r + p)]

∣∣∣∣∣, k = 1, 2, . . . , M (6)

where 2NA+1 and 2NR+1 represent the number of azimuth and range pixels within the used boxcar
averaging window, which is centered around the generic pixel of radar coordinates (x,r). Because
the amplitude and phase of SAR images can be assumed as independent random signals, it can be
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proven [13] that the coherence estimated via Equation (6) is an unbiased estimator of the actual spatial
coherence, which is defined as follows [13]:

ξk =

∣∣∣E[I∗IMk
·I∗ISk

]∣∣∣√
E
[∣∣IIMk

∣∣2] · E[∣∣IISk

∣∣2] (7)

where IIMk and IISk are the complex-valued master and slave images involved in the generation of
the k-th InSAR differential interferogram, respectively, and the symbol E[·] represents the statistical
expectation operator.

The basic principle of the proposed noise-filtering technique consists in the minimization of
the (weighted) circular variance [26,29], namely ν, of the random circular data Θ = [θ1, θ2, . . . , θM].
The circular variance is calculated as follows [29]:

ν = 1− ρ (8)

with ρ being the sampled (measured) weighted mean resultant length R of the circular data Θ ≡
[θ1, θ2, . . . , θM]T , which represents the amplitude of the following complex term:

Λ =

M
∑

k=1
ŵk exp[jθk]

M
∑

k=1
ŵk

= R exp
[
jθ
]
= C + jS (9)

where:

C =

M
∑

k=1
ŵk cos θk

M
∑

k=1
ŵk

, S =

M
∑

k=1
ŵk sin θk

M
∑

k=1
ŵk

, R =

√
C2

+ S2 (10)

Taking into account Equation (10), see also Figure 1, it is straightforward to prove (see Mardia’s
book [29] for additional details) that:

M
∑

k=1
ŵk sin

[
θk − θ

]
M
∑

k=1
ŵk

= 0

M
∑

k=1
ŵk cos

[
θk − θ

]
M
∑

k=1
ŵk

= R = ρ

(11)

Accordingly, Equation (8) can be conveniently re-written as follows:

ν = 1− ρ = 1−

M
∑

k=1
ŵk cos

(
θk − θ

)
M
∑

k=1
ŵk

(12)

It is worthwhile to note that the minimization of the circular variance of the random vector Θ
leads to the minimal dispersion of the directional data Θ with respect to the (weighted) mean direction
θ has also been proven.
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Figure 1. Pictorial representation of a directional data. Black stars identify the relevant phases, and the
red arrow represents the mean resultant vector Λ = C + jS.

In this research, one of the main goals is to evaluate the statistical characteristics of the directional
phase residuals after the non-linear optimization in Equations (4) and (12).

The first issue is the statistical description of the (weighted) resultant length R and the
(weighted) mean direction θ. For the sake of simplicity, let us initially assume that the used weights
ŵk, k = 1, 2, . . . , M are non-random terms (even though a generalization to the case of random
independent variables leads to the same global results), and calculate the statistical average and
the standard deviation of R and θ. Let us start by considering the first statistical moments of R [29]:

E
[
R
]
=

M
∑

k=1
ŵkE

[
cos
(
θk − θ

)]
M
∑

k=1
ŵk

var
[
R
]
=

M
∑

k=1
ŵ2

k E
[
cos2(θk − θ

)]
[

M
∑

k=1
ŵk

]2

(13)

It is realistic to assume that, after the application of the non-linear optimization procedure in (12),
the random residual phase terms Θ ≡ [θ1, θ2, . . . , θM]T can be seen as independent and identically
distributed (i.i.d) random variables. In the literature, the more important families of distribution for
data on a circle (i.e., directional data) are the uniform, cardiod, wrapped normal, wrapped Cauchy and
von Mises distributions [29,36,37]. From statistical inference, perhaps the most useful distributions
on the circle are the von Mises distributions [38]. Accordingly, in this research paper, I assume the
directional data Θ ≡ [θ1, θ2, . . . , θM]T have a von Mises distribution. This assumption might be tested
by considering the statistical tests provided in Reference [29]. The von Mises distribution has the
following probability density function (pdf) [38]:

VM(θ; µ, κ)→ pVM(θ; µ, κ) =
1

2π I0(κ)
exp[κ cos(θ − µ)] (14)

where I0(κ) is the modified Bessel function of the first kind and order zero, see [39]. The parameter µ is
the mean direction and κ is the concentration parameter. The distribution is unimodal and symmetrical
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about the direction θ = µ. For very small values of the concentration parameter κ, the von Mises
distribution approximates a uniform distribution whereas, for larger values of the concentration
parameter, it tends to become more concentrated at the point θ = µ, as shown in Figure 2.

1 
 

 
Figure 2. Von Mises probability density function (pdf) for different values of the concentration
parameter κ.

By assuming that Θ ≡ [θ1, θ2, . . . , θM]T is a vector of i.i.d random variables with a von Mises
distribution with concentration parameter κ, the average expectation of the resultant weighted length
is as follows:

E
[
R
]
=

1
2π I0(κ)

2π∫
0

dθ cos(θ − µ) exp[κ cos(θ − µ)] =
I1(κ)

I0(κ)
= A(κ) = ρ (15)

Noteworthy, the expected (weighted) mean resultant length does not depend on the used weights.
This result could seem quite counter-intuitive; however, it proves that, as long as the population is
large enough (i.e., in this case, the number of interferograms M), the expected (weighted) circular
variance, see also [26], is the same as the conventional circular variance (with no weights). Conversely,
as clarified in the following, the statistics of the reconstructed phase components strictly depend on
the used weights.

A suitable expansion of the function A(·) in (15) is as follows [29]:

A(κ) ≈ 1− 1
2κ
− 1

8κ2 −
1

8κ3 + o
(

κ−3
)

(16)

As evident, depending on the (measured) value of the resultant mean length ρ, the distribution
of the phase Θ is more or less concentrated about its mean direction µ. In particular, large
values of ρ correspond to more concentrated distributions of the phase residuals about their mean
(weighted) direction.

Note also that as κ → +∞ , a Von Mises distribution approximates a wrapped normal (WN)
distribution. More precisely:

M(θ; µ, κ) ∼= WN(µ, A(κ))κ → +∞ (17)

Specifically, the wrapped normal distribution WN(µ, ρ) is obtained by wrapping the normal
distribution N

(
µ, σ2), of given mean and standard deviation values µ and σ2, respectively, onto the

circle, where ρ = exp
[
−σ2/2

]
. WN distribution has the following pdf [29]:

pφ(θ; µ, ρ) =
1√

−4π ln ρ

+∞

∑
k=−∞

exp

[
(θ − µ + 2kπ)2

4 ln ρ

]
(18)
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The calculation of the standard deviation of the (weighted) resultant length R is now in order. It is
straightforward to demonstrate that, at variance with the expected value, it rigorously depends on the
used weights. In fact:

var
[
R
]
=

ŵ2
RMS

Mŵ2 E
[
cos2(θ − θ

)]
(19)

where ŵ and ŵRMS represent the mean and root mean square (RMS) values of the used weights.
For von Mises distributions that are symmetrical about zero, namely E[Θ] = θ = µ = 0, which is a
reasonable assumption in our specific case, it can also be shown that:

Mvar
[
R
] ∼= ŵ2

RMS

ŵ2

[
1− A(κ)

κ
− A(κ)2 − 1

4Mκ2 + o
(

M−2
)]

(20)

The weights significantly modify the standard deviation of the (weighted) mean resultant length.
More importantly, it is worth remarking that the standard deviation of the circular variance, see
Equation (8), is the same as the standard deviation of the (weighted) resultant length. Accordingly,
Equation (20) shows that the adopted estimator in (4) and (12) is an unbiased and consistent estimator
of the resultant mean length of the phase population, e.g., its standard deviation tends to zero as the
number of samples M→ +∞ . Additionally, by extending the analyses provided in Reference [29]
to the (weighted) circular variance estimator in Equation (4) and (12), it can also be proven that the
estimator of the (weighted) mean resultant length is also an efficient estimator. Moreover, for a von
Mises distribution, the maximum likelihood estimate (MLE) of the concentration parameter κ is also
carried out as the solution of the following equation:

A(κ̂) = R = ρ (21)

Solutions of Equation (21) are listed for different ranges of values of the (measured) mean resultant
length ρ of the population. In particular, for ρ ≥ 0.85, the following relation holds:

κ̂ =
1

2(1− ρ)− (1− ρ)2 − (1− ρ)3 '
1

2(1− ρ)
(22)

Thus, leading one to the possibility of having an MLE estimate of the concentration parameter of
the distribution from the measured (optimal) value of the circular variance ν = 1− ρ (see Equations (9)
and (12) again).

3.2. Statistical Characterization of the E-MTInSAR Phase Estimator

At this stage, the statistical characterization of the (weighted) mean direction estimator is in order.
By the central limit theorem [40], it can be shown that the joint distribution of C and S is asymptotically
normal, and the joint distribution of R and θ is asymptotically bivariate.

By extending the work of Reference [29] (and references therein), the following relations are valid
for von Mises distributions that are symmetrical about zero (e.g., µ = 0, as it is expected in our case):

Mvar
[
θ
] ∼= ŵ2

RMS

ŵ2

 1
κA(κ)

+
3κ
[
1− 5A(κ)− A(κ)2

]
Mκ2 A(κ)3 + O

(
M−2

)
Mcov

[
θ, R

] ∼= 0

(23)

Therefore, the (weighted) mean resultant length and mean direction are asymptotically
uncorrelated. By using the MLE value of the concentration parameter κ, see Reference (22), and
after simple mathematical manipulations, it can be demonstrated that the variances of θ and R are
expressed as follows:
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var
[
R
] ∼= ŵ2

RMS(1− ρ)2

Mŵ2

var
[
θ
] ∼= 2ŵ2

RMS(1− ρ)

Mŵ2
ρ

(24)

The derivation of Equation (24) is based on the general assumption that the phase is distributed
with a von Mises pdf and using Equations (16) and (23) approximated to the first order. Figure 3
plots the variance of the (weighted) mean resultant length and mean direction of the random phase
signal Θ for different values of the number of interferograms M and the measured value of ρ.
Equation (24) shows that the variance of the (weighted) mean resultant length and (weighted) mean
direction can be calculated by the knowledge of the measured (weighted) circular variance value
1− ρ. An alternative derivation, which takes into account the actual characteristic of the random
vector Θ = Θ(ψ1, ψ2, . . . , ψM, ϕ̃1, ϕ̃2, . . . , ϕ̃N), representing the phase residuals between the original
(unfiltered) Ψ and the reconstructed (filtered) Φ̃ interferograms, is also provided.

Starting from Equation (12), and using error source propagation rules [41], the standard deviation
of the circular variance estimator of Equation (12) can be calculated as follows:

σ2
ν = var[ν] = var

[
R
]
=

M

∑
i=1

(
∂ν

∂ψi

)2
σ2

ψi
+

N

∑
i=1

(
∂ν

∂ϕ̃i

)2
σ2

ϕ̃i
+

+
M

∑
i=1

M

∑
h=1,h 6=i

(
∂ν

∂ψi

)(
∂ν

∂ψh

)
·σψi ,ψh+

+
N

∑
m=1

N

∑
n=1,n 6=m

(
∂ν

∂ϕ̃m

)(
∂ν

∂ϕ̃n

)
·σϕ̃m ,ϕ̃n

(25)

where σ2
ψi

i = 1, 2, . . . , M and σ2
ϕ̃i

i = 1, 2, . . . , N are the standard deviation values of the original
interferograms and the optimal acquisition phases, respectively, as well as σψi ,ψh , i 6= h and
σϕ̃m ,ϕ̃n m 6= n are the corresponding phase co-variance terms. The (weighted) circular variance
ν = ν(ψ1, ψ2, . . . , ψM, ϕ̃1, ϕ̃2, . . . , ϕ̃N) depends on the phases of the original interferograms as well
as on the reconstructed (unknown) phases of the acquisition dates. It is worth remarking that the
non-linear optimization problem in Equation (12) searches for the minimal value of the circular
variance; accordingly, the estimated phase values related to every SAR acquisition correspond to
a stationary point onto the N-dimensional space of every possible solution, and, as a consequence,
∂ν/∂ϕ̃h = 0, h = 1, 2, . . . , N.

Accordingly, Equation (25) simplifies as:

σ2
ν =

M

∑
i=1

(
∂ν

∂ψi

)2
σ2

ψi
+

M

∑
i=1

M

∑
h=1,h 6=i

(
∂ν

∂ψi

)(
∂ν

∂ψh

)
·σψi ,ψh (26)
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1 
  

Figure 3. (a,b) Plots of the standard deviation of R with respect to the number of interferograms and ρ,
respectively. (b,c) Same as (a,b) but for the standard deviation of θ.
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As said, the interferograms are computed after the application of two independent steps: the
spatial multi-looking and a (potential) preliminary (single-channel) noise filtering step, performed on
every single interferogram (for instance the procedure presented in References [14,19]). Although the
originally computed interferograms have a given grade of dependence, since they are obtained by the
same sequence of SAR data, here I can assume, for the sake of simplicity, that the interferometric phases
are uncorrelated. This simplified assumption is widely adopted in the literature, even though very few
InSAR studies have addressed the problem of the correlation among a group of InSAR interferograms
that are computed from the same set of SAR data [42]. Accordingly, for statistical inference, I assume
that the original interferograms are independent, uncorrelated and with proper standard deviation
values. From the literature, it is known that if L is the number of independent looks used during the
spatial multi-look operation, and under proper hypotheses on the phase distribution, the standard
deviation of the original multi-look interferograms is expressed as follows [12,13]:

σ2
ψi
∼=

1− ξ2
i

2Lξ2
i

γi (27)

where the terms γi i = 1, 2, . . . , M synthetically account for the effects of the potentially used,
pre-processing spatial noise-filtered approach, and ξi i = 1, 2, . . . , M are the spatial coherence values
of the original interferograms, calculated in correspondence to the radar pixel under investigation.
Besides, L represents the number of equivalent looks employed during the multi-looking operation.
Moreover, spatial coherence values can be approximated with the estimates provided by Equation (6),
used as weights of the solved non-linear optimization problem. Hence, by assuming, in the first
instance, that phases are uncorrelated and independent, the co-variance phase terms in Equation (26)
vanish, and the following simplified relation holds:

σ2
ν
∼=

M

∑
i=1

(
∂ν

∂ψi

)2
σ2

ψi
=

M

∑
i=1

(
∂ν

∂ψi

)2 1− ŵ2
i

2Lŵ2
i

γi (28)

The calculation of the term ∂ν/∂ψii = 1, 2, . . . , M is now in order. Starting from Equation 12, after
little mathematical manipulations, it is straightforward to demonstrate that:

∂ν

∂ψi
=

∂

∂ψi

[
1− 1

Mŵ

M

∑
k=1

ŵk cos
(
ψk − ψ̃k − µ

)]
=

1
Mŵ

ŵi sin
(
ψi − ψ̃i − µ

)
(29)

In the stationary phase condition, i.e., by referring to the optimal circular data retrieved after the
solution of the non-linear optimization problem in Equation (4), it is reasonable to approximate the sin
functions in Equation (29) with their argument; thus, the following relation is obtained:

∂ν

∂ψi
=

1
Mŵ

ŵi sin
(
ψi − ψ̃i − µ

) ∼= ŵi

Mŵ

(
ψi − ψ̃i − µ

)
=

ŵi

Mŵ
(θi − µ) (30)

and by substitution of Equation (30) into Equation (28), the standard deviation of the phase estimator
used within the E-MTInSAR algorithm is finally derived:

σ2
ν
∼=

1

M2ŵ2

M

∑
i=1

ŵ2
i (θi − µ)2 1− ŵ2

i
2Lŵ2

i
γi
∼=

γ

2MLŵ2 varΘ
(

1− ŵ2
RMS

)
(31)

where γ is the average value of γi i = 1, 2, . . . , M and ŵRMS is the root mean square value of the
(estimated) coherence. If the resultant mean length ρ calculated over the optimal phase estimates (i.e.,
on the circular data Θ(optimal) resulting from the optimization procedure) is high, we can assume the
phase Θ = Θ(optimal) is distributed as a wrapped normal (WN), and we can calculate the standard
deviation of the residual phase as, see Equation (18), var[Θ] ∼= −2 ln ρ. However, if we take into
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account, for the sake of simplicity, only the noise decorrelation artifacts due to the perpendicular
baseline of the considered interferograms (i.e., the so-called spatial decorrelation), we also know that
spatial coherence ŵ ≡ [ŵ1, ŵ2, . . . , ŵM]T decreases as the perpendicular baseline of the interferograms,
namely δb⊥ ≡ [δb⊥1, δb⊥2, . . . , δb⊥M]T , increases [13]:

ŵi = 1− |δb⊥i|
δb⊥c

, i = 1, 2, . . . , M (32)

where δb⊥c is the critical baseline. Therefore, the standard deviation of the circular variation strictly
depends on the perpendicular baseline values of the InSAR interferograms used within the entire
non-linear optimization procedure. This result is one of the main outcomes of this research paper. The
selection of more coherent interferograms has a role in the robustness of the used phase estimator. To
infer the role of the perpendicular baselines, in this research, I have assumed that the perpendicular
baselines of the interferograms are distributed with an exponential pdf. The experimental results
carried out on real SAR data set (see Section 4) has demonstrated the suitability of this assumption.
Under this hypothesis, the InSAR perpendicular baselines have the following pdf [42]:

p|δb⊥ |(|δb⊥|) =
1
λ

exp
[
−|δb⊥|

λ

]
u(|δb⊥|) (33)

where λ is the parameter of the exponential distribution [40]. The average and the root mean square

values of the absolute perpendicular baseline of the interferograms are
∣∣∣∣ −δb⊥

∣∣∣∣ = λ and |δb⊥|RMS =

λ
√

2, respectively. By considering Equation (32), then, it is easy to calculate: ŵ = 1− [λ/b⊥c] and
ŵ2

RMS = 1 +
[
2λ2/δb2

⊥c
]
−
[
2λ/δb⊥c

]
. By substitution in Equation (31):

σ2
ν
∼= −

2γ ln ρ

ML δb⊥c
λ

(
1− λ

δb⊥c

) (34)

Figure 4 plots the standard deviation of ν versus the values of the average perpendicular baseline
λ for different values of ρ. In particular, I have assumed a critical baseline of 1000 m, a number of
independent looks equal to L=30 and I considered M=1128 (see Section 4) and γ.
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As evident, as the average perpendicular baseline λ approaches the critical baseline δb⊥c the
standard deviation of the used estimator tends to diverge, as expected.
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3.3. Theoretic Performance of the E-MTInSAR Noise Filtering Procedure

In this Subsection, I would like to give some introductory insights into the quality of the
reconstructed interferograms. The obtained outcomes can be generally extended in other research
fields, even very far from the one that is the subject of this research, where circular data (e.g., see [43–45])
are used and the estimator of Equation (4) is employed. Of course, additional experiments and further
studies are needed to have a closed-form solution for the problem of the statistical characterization of
the retrievable noise-filtered interferograms and the relevant DInSAR deformation products: This is a
matter for future investigations.

First of all, I would like to remark that the measured optimal mean resultant length, namely
ρ = ρ(optional) ρ = ρ(optimal), also gives an indirect estimate of the standard deviation of the residual
phase, which was suitably assumed as independent and identically distributed. In particular, as earlier
demonstrated: var[Θ] ∼= −2lnρ. However, the residual phases Θ take into account both the original Ψ
and the reconstructed interferograms. Accordingly, as a first approximation, if we initially assume that
original Ψ and reconstructed Ψ̃ interferograms are mutually independent, it can be argued that [42]:

var(Θ) = var(ψh) + var
(
ψ̃h
)
= −2 ln ρ, h = 1, 2, . . . , M (35)

However, the original interferograms are not identically distributed and, as a consequence, the
same happens for the reconstructed interferograms. In particular:

var
(
ψ̃h
)
= var(Θ)− var(ψh) = −2 ln ρ−

γh
(
1− ŵ2

h
)

2Lŵ2
h

, h = 1, 2, . . . , M (36)

Under the hypothesis of independence, it is clear that the interferograms that were formerly
with low spatial coherence and large standard deviations correspond to reconstructed interferograms
with small standard deviations and higher coherence values, as also experimentally demonstrated in
Reference [26], and further corroborated by the experimental results shown in Section 4. Of course,
the hypothesis on the independence between the original and the reconstructed interferograms should
be relaxed assuming there is a specific correlation between them (see the theory on InSAR noise models
addressed in Reference [42], for instance). More precisely, if we assume, for the sake of simplicity,
that the original and reconstructed interferograms are jointly Gaussian with the correlation coefficient
η, we can then state that:

var(Θ) = var
(
ψh − ψ̃h

)
= var(ψh) + var

(
ψ̃h
)
− 2cov

(
ψh, ψ̃h

)
= −2 ln ρ, h = 1, 2, . . . , M (37)

and the following relation holds:

σ2
ψh

+ σ2
ψ̃h
− 2ησψh σψ̃h

= −2 ln ρ, h = 1, 2, . . . , M (38)

A more reliable estimate of the statistics of the reconstructed interferograms would require the
knowledge of the incidence matrix ∏ of the oriented graph G representing the InSAR data distribution,
which specifies the edge-node connectivity relations among the network of interferograms into the
temporal/perpendicular baseline plane. Therein, the nodes of the graph identify the used SAR data
and the edges the selected interferometric SAR data pairs. As an example, see the picture depicted in
Figure 5, where a possible distribution of four nodes and six edges is simulated.
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To infer the standard deviation of the reconstructed interferograms, the minimization of the
circular variance in Equation (12) represents, again, the starting point.

As said, the optimal phase estimates related to the available SAR acquisitions are those that
minimize the following mathematical operator:

ν = 1−

M
∑

i=1
ŵi cos

[
ψi −

(
ϕ̃IMi − ϕ̃ISi

)]
Mŵ

(39)

In correspondence to the stationary phase point, the following relations hold:

∂ν
∂ϕh

= 1
Mŵ

M
∑

i=1
ŵi sin

[
ψi −

(
ϕ̃IMi − ϕ̃ISi

)
− µ

]
· ∂

∂ϕh

[
ψi −

(
ϕ̃IMi − ϕ̃ISi

)
− µ

]
=

∼= 1
Mŵ

M
∑

i=1
ŵi
[
ψi −

(
ϕ̃IMi − ϕ̃ISi

)
− µ

]
· ∂

∂ϕh

[
ψi −

(
ϕ̃IMi − ϕ̃ISi

)
− µ

]
= 0, h = 1, 2, . . . , N

(40)

The derivative terms that are present in Equation (40) can assume values –1,0,1 depending on the
fact that the h-node of the oriented graph G, see for instance the example shown in Figure 6, is involved
in the i-th InSAR data pair (an edge of the graph G). In particular:

∂

∂ϕh

[
ψi −

(
ϕ̃IMi − ϕ̃ISi

)
− µ

]
=


−1 edge i exits from node h

+1 edge i enters in node h

0 otherwhise

(41)

If we indicate with Nout the number of edges that exit from the node h and with Nin the number
of edges that enter the node h, it is pretty easy to demonstrate that condition (40) is equivalent to:

Nout

∑
k=1

ŵouth,k

[
ψouth,k − ϕ̃outh,k + ϕ̃h

]
=

Nin

∑
k=1

ŵinh,k

[
ψinh,k + ϕ̃inh,k − ϕ̃h

]
, h = 1, 2, . . . , N (42)
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Equation (42) can also be re-organized as follows:

ϕ̃h

[
Nout

∑
k=1

ŵouth,k +
Nout

∑
k=1

ŵinh,k

]
−

Nout

∑
k=1

ŵouth,k ϕ̃outh,k −
Nin

∑
k=1

ŵinh,k ϕ̃inh,k =

=
Nin

∑
k=1

ŵinh,k ψinh,k −
Nout

∑
k=1

ŵouth,k ψouth,k

(43)

Using matrix formalism, Equation (43) can simply be written as:

A·Φ̃ = B·Ψ (44)
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By inspecting Equation (43) and using discrete calculus principles and graph theory [46], it can be
easily shown that the matrixes A and B can be expressed as follows:

A = ∏T ·(w ◦∏)

B = (w ◦∏)
(45)

where w is the vector (Mx1) of the weights used during the optimization procedure, and the symbol◦
stands for the Hadamard product. Figure 6 shows the expression of A and B matrices for the simplified
graph depicted in Figure 6. It is worth noting that if the weights are all unitary, the matrix A represents
the discrete Laplacian matrix [46] of the graph G; thus A = L. The matrix L has several interesting
properties and is mostly used in the research field of spectral clustering [46,47]. Here, I will only
mention the properties that are significant for the present research work.

The graph Laplacian matrix of a graph is defined as:

L=Dg−Ad (46)

where Dg and Ad are the degree matrix and the adjacency matrix of the network, respectively, see [46]
for details. More importantly, the matrix L is: (i) Symmetric and positive semi-definite, (ii) its smallest
eigenvalues is zero, and the corresponding eigenvector is the constant one vector; (iii) it has all
real-valued eigenvalues. Because at least one of the eigenvalues is equal to zero, the Laplacian matrix
is not invertible. However, a generalized inverse is defined using the following matrix decomposition:

L+=UΛ+U′ (47)
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where U is the matrix containing all eigenvectors as columns and Λ+ is the diagonal matrix with the
eigenvalues on its diagonal. Interested readers can find further details on the inverse of the Laplacian
graph matrix in [47]. Another example, for a simple triangular oriented grid, is shown in Figure 7. I
would also like to point out that, in the simplified case that all the weights are unitary, the following
relation holds:

W
[
∏T ·∏ Φ̃

]
= W

[
∏T ·Ψ̃

]
= W

[
∏T ·Ψ

]
= W

[
∏T ·∏ Φ + ∏T ·D

]
(48)

where the properties of the wrapping operator have been used. Indeed, the relation in Equation
(44) involves (wrapped) phase terms but matrix multiplication can be only performed on absolute
(unwrapped) phase quantities. However, this does not represent a severe drawback, at least when the
weights are unitary, because wrapped and unwrapped phases differ by multiple-integer matrixes of
2π. Accordingly, by using Equation (44), the expression (48) is valid.
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Analysis of Equation (48) evidences another essential result of this research paper: When the phase
noise vector term D is not present, i.e., when the original interferograms are fully time-consistent, the
reconstructed and the original interferograms are necessarily the same. This outcome is not surprising,
and it demonstrates that the condition expressed by Equation (3) is required for the application of the
developed noise-filtering method.

Generally speaking, the condition (see Equation (48)):

W
[
∏T Ψ̃

]
= W

[
∏T Ψ

]
(49)

means that, under the hypothesis that original interferograms are uncorrelated, the (wrapped) discrete
divergence of the reconstructed interferograms, namely W

[
∏T Ψ̃

]
, equals the (wrapped) divergence

of the original interferograms, namely W
[
∏T Ψ

]
.

Equation (45) and the property (49) of the reconstructed interferograms may be exploited to
calculate the covariance matrix of the reconstructed interferograms. In particular, for the sake of
simplicity, let us refer to the (unwrapped) quantities. In this case, assuming that all weights are unitary,
the covariance matrix of the optimal phase vector related to the SAR acquisition is related to the
covariance matrix of the original interferograms as expressed below:

L·CΦ̃·L
T = ∏T ·CΨ·∏→ CΦ̃ =

(
L+·∏T

)
·CΨ·

(
L+·∏T

)T
(50)
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Finally, if we assume that original interferograms were all uncorrelated, independent and
identically distributed with standard deviation σ2

ψ, the co-variance matrix of the reconstructed phases
related to each SAR acquisition, see Equation (50), is as follows:

CΦ̃
∼= σ2

ψ

(
L+·∏T

)
·
(

L+·∏T
)T

(51)

The outcome expressed by Equations (50) and (51) is significant, even it is not definitive.
This research paper represents a step forward to Reference [26]. Additional efforts are required
to extend the result of Equation (51) in a broader context, with the aim to identify how to select
and use the original interferograms to maximize the performance of the E-MTInSAR noise-filtering
technique. In this framework, the role of the weights in Equation (45) has to be taken into account for
future analyses.

4. Experimental Results

In this Section, I present the experiments performed on real data to address the theoretical issues
discussed in the previous sections.

This study benefits from the availability of a sequence of SAR images acquired over a portion of
the South California area by the ASAR sensor onboard the ENVISAT satellite of ESA. In particular,
the SAR dataset is composed of 48 images (ascending passes, Track 120, VV polarization) collected
from October 29, 2003, to September 22, 2010. SAR data were co-registered with respect to the reference
SAR image acquired on October 3, 2007, which was taken as reference. The amplitude of a sample
image of the case-study area is shown in Figure 8. By considering as reference the selected SAR master
image, the perpendicular baseline of every SAR image has also been calculated. The distribution
of the available SAR images in the time/perpendicular baseline domain is depicted in Figure 9.
The experiments were initially performed by considering the entire set of M = 1128 differential SAR
interferograms, without imposing any constraints on the temporal and perpendicular baseline of the
used DInSAR data pairs. As discussed in Section 3, the distribution of the perpendicular baselines of
the identified group of interferograms is inferred to be distributed with an exponential probability
density function.Remote Sens. 2018, FOR PEER REVIEW  19 of 28 
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Even though a robust analysis of the statistical distribution of the InSAR baseline SAR data pair
would require the availability of several SAR datasets collected by the same (or different) SAR systems,
I initially focused on the available SAR distribution, and I tested the absolute value of the InSAR
perpendicular baselines has an exponential pdf, see Equation (33). To this aim, the average value of
the distribution was first calculated, namely a value of about 393.241 m was found. Accordingly, the
cumulative distributive function of the reference exponential distribution was derived and compared
to the empirical distribution function, see Figure 10. Then, the Kolmogorov Smirnov (K–S) test [43] was
applied. The objective was to test the hypothesis H0 against the hypothesis. K–S is a non-parametric
test that relies on the estimate of the distance between the empirical and the cumulative theory
distributions of a known distribution. In particular, the following quantity is calculated:

q = max
x

[|F(x)− F0(x)|] (52)

The test accepts the hypothesis H0 with a given significance level. In the case of the South
California case-study test-site, the K–S test was accepted with a significance level of 0.01.
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Figure 10. Comparison between the theoretical (black line) and the estimated cumulative distribution
function (cdf) (red line) of the perpendicular baseline SAR data distributions of the South
California dataset.

Once identified, the M differential interferograms were generated. To this purpose, precise
satellite information and a three-arc digital elevation model (DEM) of the area were used to remove
the topographic phase components. Computed interferograms were independently multi-looked
(20 azimuth and 4 range looks, respectively) and also pre-filtered using the approach described
in [14]. The E-MTInSAR noise-filtering method was initially applied to the whole set of interferograms.
As extensively discussed in Reference [26], it was expected that some interferograms were significantly
depurated by noise artifacts, as indirectly testified by the increased level of coherence. On the contrary,
a few of the very good interferograms were expected to be degraded by the filter. Four interferograms,
characterized by different values of the perpendicular baseline, have been selected and shown in
Figure 11, before and after the application of the noise-filtering algorithm.

It is evident that the interferograms with moderate-to-low coherence were significantly improved,
at the partial expenses of the quality of the original, very high coherent interferograms. As said,
a post-processing step is applied in the improved EMCF-SBAS processing chain, but here the focus
has exclusively been on showing only the interferograms reconstructed by the core E-MTInSAR
noise-filtering procedure.

In Figure 12 the number of coherent pixels (a threshold coherence of 0.5 has been applied) as a
function of the perpendicular baseline of the considered interferograms is depicted. In this experiment,
all the InSAR data pairs were used for the inversion. I would like to remark that experimental
results are in general agreement with the theory addressed in Section 4 and with the experiments
presented in previous works [26,48]. Similarly, to what was provided initially in Reference [26], I also
repeated the same test by progressively discarding from the entire group of SAR interferograms those
exhibiting perpendicular baseline values larger than a given threshold. In particular, I selected five
groups of SB interferograms by using thresholds on the interferometric perpendicular baseline values
of 300 m, 400 m, 500 m, 600 m, and 800 m, respectively. As a reference for the calculation of the
general performance of the algorithm, I also assumed the set of SB interferograms selected imposing a
maximum perpendicular baseline value of 300 m.
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Figure 11. Comparison between the original (left) and the reconstructed interferograms of the South
California case-study area. The relevant SAR data pairs are: (a)–(a’) 22 December 2004–9 June 2010
(perpendicular baseline of 696 m); (b)–(b’) 29 August 2007–26 March 2008 (perpendicular baseline of
120 m); (c)–(c’) 29 August 2007–12 December 2007 (perpendicular baseline of 623 m).
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Figure 13 shows the comparison between the numbers of coherent pixels identified in the different
tests. In particular, for each run of the algorithm with different InSAR graphs, the difference between
the numbers of coherent pixels detected at the given run, and those obtained by considering the entire
InSAR network graph composed by 1128 SAR data pairs was computed. As evident, as the baseline
threshold decreases and sets of SB interferograms are selected the number of coherent pixels increases.
This testifies that the standard deviation of the original interferograms has a role in the optimization
procedure, as indicated by the sample covariance matrix relationship expressed by Equations (50) and
(51). Finally, Figure 14 plots the number of the whole coherent pixels of the set of SB interferograms
corresponding to the test carried out by using a perpendicular baseline threshold of 300 m (which has
been used as a reference).
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Figure 13. Comparison of the achieved results, in terms of numbers of coherent pixels, obtained by
using reduced InSAR network. Plot (a–d) show the difference of the coherent pixels in the study area
between the reference test (with a perpendicular baseline threshold of 300 m) and each of the four tests
(with perpendicular baseline thresholds of 400 m, 500 m, 600 m, 800 m, respectively).
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Further extended theory investigations and experimental analyses are, however, required to have
direct confirmation of the validity of the theoretical outcomes of this research study. In particular,
some new InSAR noise models have to be developed to incorporate these new kinds of multi-temporal
noise-filtered interferograms.

As originally provided in Reference [26], I repeated the same experiment by progressively
discarding from the entire group of SAR interferograms, those exhibiting perpendicular baseline
values larger than a given threshold. In particular, I selected five groups of SB interferograms with a
threshold on the perpendicular baseline of 300 m, 400 m, 500 m, 600 m, 800 m and without considering
any constraints, respectively.

Figure 15 shows a comparison between the average spatial coherence of the original (unfiltered)
and the reconstructed (filtered) sequence of multi-looked interferograms for the selected case-study



Remote Sens. 2019, 11, 363 24 of 28

area. Globally, the average coherence increased about 5%. This paper is, at most, focused on the
presentation of the statistics fundaments of the core E-MTInSAR algorithm, instead of the general
performance of the improved EMCF-SBAS processing chain. Interested readers can find additional
details on the improved EMCF-SBAS InSAR toolbox, as well as an overview of some experimental
results in the literature, see for instance [48–50].
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the maximum absolute value of the perpendicular baseline of the interferometric SAR data pairs. Red
boxes identify the area where a significant improvement of the average spatial coherence is obtained.

5. Discussion

This research paper addresses the theoretical basis of the E-MTInSAR noise-filtering algorithm,
relying on the use of directional statics [29]. Even though the algorithm is complemented within
the improved EMCF-SBAS processing chain, here, the interest is more focused on the performance
of the core non-linear optimization procedure of Equation (4) and the retrieval of the reconstructed
noise-filtered multi-look interferograms. As already stated in a previous publication [26], the distinctive
characteristic of the adopted noise-filtering technique is the use of the temporal relationships
among a time-redundant set of “conventional” differential multi-looked interferograms. Previous
multi-temporal noise-filtered solutions, such as SqueeSAR [11], CaeSAR [27] and other alternative
methods [24,25] have already addressed this problem. They rely on the validity of the distributed
scattering hypothesis under which the probability density function (pdf) of the complex-valued
SAR image may be regarded as being a zero-mean multivariate circular normal distribution, and
appropriate analyses are required to identify DS targets for which these hypotheses are valid.
Conversely, the adopted noise-filtered method does not need any specific assumption on the statistical
distribution of the multi-looked phases of DS targets, which are challenging to be inferred, especially
when additional pre-processing, single-channel noise-filtering steps (e.g., the Goldstein’s filter [14])
are also preliminarily applied to the generated interferograms. Nonetheless, the identification of
statistically homogenous pixels (SHPs) and the implementation of a suitable adaptive multi-looking
step, as suggested in Reference [30], might be considered as a further evolution of the E-MTInSAR
algorithm. This research study has demonstrated from a mathematical and statistical perspective that:
(i) The phase estimator in Equation (12) is consistent and the measured (optimal) weighted circular
variance value gives a direct figure of the standard deviation of the circular variance estimator in
Equation (12); (ii) the standard deviation of the circular variance estimator adopted in Equation (12)
critically depends not only on the number of used interferograms, namely M, but also on the absolute
value of the perpendicular baseline of these interferograms, in particular, as the average absolute
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perpendicular baseline approaches the critical baseline the estimator diverges; (iii) the actual standard
deviation of the reconstructed, noise-filtered interferograms strictly depends on the phase stability of
the original interferograms, the overall graph network of used interferograms, see Equations (50) and
(51), and the presence of the time-inconsistencies, namely the signal D, in the original interferograms.
Equation (51) opens up the possibility to evaluate the global performance of the algorithm in terms
of phase stability of the reconstructed interferograms. Potentially, it can be used to assess, from a
theoretical point of view, the performance of the InSAR products, e.g., displacement time-series and
mean displacement velocity maps, of the multi-temporal interferometric processing chain, such as the
improved EMCF-SBAS, where the E-MTInSAR noise-filtering approach is implemented. This requires,
however, further efforts because it is needed to deeply study the statistical dependence of sequences
of time-redundant sets of differential SAR interferograms. Only a few studies are available in the
literature on this very challenging issue, which would allow determining the error budget of the
above-mentioned InSAR products, on a pixel-by-pixel basis, by merely knowing the Laplacian matrix
of the InSAR graph representing the network of used interferograms. The outcomes of this research
are also suitable to be extended in other research contexts where multi-temporal/multi-dimensional
circular data [43–45] are used.

6. Conclusions and Future Perspectives

This research provided new insights into the theory at the base of the enhanced multi-temporal
noise-filtering method, which was initially proposed as a further improvement of the EMCF-based
SBAS processing chain [26]. This research permitted studying the statistical behavior of the adopted
estimator for the unknown phases related to every SAR acquisitions. Furthermore, the theoretical
relationship between the covariance matrix of the original and the reconstructed noise-filtered
interferograms has been derived. The validity of these equations has been proven by referring to the
fundamentals of directional statistics [29] and discrete calculus [32]. In the light of the application of the
E-MTInSAR technique in a real scenario, several questions are still open and require answers. Of great
significance, in particular, is the evaluation, from a theory perspectives, of the optimal perpendicular
baseline threshold used for selecting the group of SB interferograms employed for surface deformation
maps retrieval. Experimentally, using reduced, time-redundant sets of SB interferograms is more
convenient and globally guarantees better performances. The identification of such optimal thresholds
requires, as outlined in the previous section, the application of graph theory selection-based strategies.
These approaches for the identification of the most suitable graph of InSAR interferograms might also
be complemented with the interferogram selection algorithm proposed in [26]. Furthermore, one of
the next steps of this research is to evaluate the general performance of the improved EMCF-SBAS
processing tool [26] and, in particular, to get an estimate of the precision and accuracy of the DInSAR
products, i.e., deformation time-series and ground mean deformation velocity maps.
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