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Abstract: A good understanding of how meteorological conditions exacerbate or mitigate air pollution
is critical for developing robust emission reduction policies. Thus, based on a multiple linear
regression (MLR) model in this study, the quantified impacts of six meteorological variables on PM2.5

(i.e., particle matter with diameter of 2.5 µm or less) and its major components were estimated over
the Yangtze River Basin (YRB). The 38-year (1980–2017) daily PM2.5 and meteorological data were
derived from the newly-released Modern-Era Retrospective Analysis and Research and Application,
version 2 (MERRA-2) products. The MERRA-2 PM2.5 was underestimated compared with ground
measurements, partly due to the bias in the MERRA-2 Aerosol Optical Depth (AOD) assimilation.
An over-increasing trend in each PM2.5 component occurred for the whole study period; however,
this has been curbed since 2007. The MLR model suggested that meteorological variability could
explain up to 67% of the PM2.5 changes. PM2.5 was robustly anti-correlated with surface wind speed,
precipitation and boundary layer height (BLH), but was positively correlated with temperature
throughout the YRB. The relationship of relative humidity (RH) and total cloud cover with PM2.5

showed regional dependencies, with negative correlation in the Yangtze River Delta (YRD) and
positive correlation in the other areas. In particular, PM2.5 was most sensitive to surface wind speed,
and the sensitivity was approximately −2.42 µg m−3 m−1 s. This study highlighted the impact of
meteorological conditions on PM2.5 growth, although it was much smaller than the anthropogenic
emissions impact.
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1. Introduction

Since its reform and opening up (1978 onward), with the rapid development of urbanization
and industrialization, China has become one of the most polluted areas [1–6]. PM2.5 (i.e., particle
matter with diameter of 2.5 µm or less) is an important metric for air pollution, which has attracted
considerable attention. When these particles are breathed in, they can lead to premature deaths [7–10].
In addition, they can effectively scatter and absorb solar radiation, thereby reducing atmospheric
visibility and producing significant climate impacts [11–19].
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A large number of studies have been performed to analyze potential causes of recent heavy
air pollution in China and its effective solutions. Most of them have suggested that the excessive
increase in anthropogenic emissions was the most important reason for PM2.5 growth in China [20–25].
For example, Guo et al. [21] found that during Asia-Pacific Economic Cooperation (APEC) China
2014, the air quality in Beijing was effectively improved mainly due to the emission control measures.
Furthermore, Ren et al. [22] confirmed that Beijing’ air pollution during the 2015 China Victory Day
Parade mainly came from traffic and cooking emissions. Additionally, Larkin [23] reported that rapid
urban sprawl led to a significant growth in NO2 and PM2.5 air pollution at 830 cities in East Asia from
2000 to 2010. All of these previous studies indicated that anthropogenic emissions were main sources
of PM2.5 growth in China.

However, air pollution was observed to have seasonal and interannual variations, although
anthropogenic emissions were continuously increasing. Obviously, these variations were caused by
local meteorological changes [3,26–34]. Empirical Studies on the sensitivities of PM2.5 concentrations
to meteorological conditions were exhibited in Table 1. Tai et al. [26] revealed that based on a
multiple linear regression (MLR) model, local meteorological factors could explain up to 50% of
daily PM2.5 variability in the USA from 1998 to 2008. Westervelt et al. [27] further emphasized the
maximum impact of temperature, wind speed and precipitation on PM2.5 concentrations at global scale.
Additionally, Harrison et al. [28] revealed that PM2.5 concentrations were more strongly correlated
with easterly winds from the European mainland than with the local traffic sources. Similarly, in three
European cities (Athens, London and Madrid), local meteorological conditions also had significant
impacts on particulate matters (PM2.5 and PM10) [29]. In Saudi Arabia, both PM10 and PM2.5 were
negatively related to relative humidity; however, they were positively correlated with wind speed and
temperature [30]. Recently, He et al [3] discovered that meteorological conditions were the primary
factors of daily variations in five major air pollutants (PM2.5, O3, NO2, SO2 and CO) during 2014–2015
in China. Wang et al. [31] further confirmed that an air stagnation event, characterized by weak wind
speed, no precipitation and high temperature, easily led to haze in China. Furthermore, in the Beijing
urban area, wind rose plots showed that low wind speeds of northeastern or southwestern winds
usually led to high black carbon (BC) concentrations [32]. In 68 major cities of China, Yang et al. [33]
reported that ground PM2.5 concentrations were associated with local meteorological conditions
at seasonal, yearly and regional scales. The impacts of PM2.5 pollution on atmospheric visibility,
occupational health and occupants’ behaviors were also estimated in China [34].

Even though extensive research has been carried out to explore the relationship between
meteorological conditions and air pollution, most of it has focused on the impact in daily PM2.5

variability for a short term, such as during a haze event. However, studies on the sensitivity
of air pollution to long-term meteorological changes are still limited, mainly due to a lack of
data [35,36]. The newly-released Modern-Era Retrospective Analysis and Research and Application,
version 2 (MERRA-2) product could provide daily PM2.5 and meteorological data after 1980 for
free, giving us an opportunity to quantify the long-term effect of meteorological conditions on
PM2.5 [37–40]. An important advancement of the MERRA-2 aerosol reanalysis product was that
it not only assimilated the bias-corrected 550nm-AODs from the space-based AVHRR (Advanced
Very High-Resolution Radiometer) and MODIS (Moderate Resolution Imaging Spectroradiometer)
instruments, but also assimilated the non-bias-corrected 550nm-AODs from the space-based MISR
(Multiangle Imaging Spectroradiometer) and the ground-based AERONET (Aerosol Robotic Network)
stations. Furthermore, five types of aerosols, including dust, sea salt, sulfate (SO4), black carbon (BC)
and organic carbon (OC), were also simulated based on the NASA Global Modeling and Assimilation
Office (GMAO) Earth system model (GEOS-5) and the Goddard Chemistry, Aerosol, Radiation and
Transport (GOCART) aerosol module. Notably, the MERRA-2 AOD assimilation in GEOS-5 involved
very careful cloud screening and homogenization of the observing system through neural net scheme,
thus providing high-quality AOD observations [37,38]. In general, the newly-released MERRA-2
atmospheric reanalysis was widely used for studying global climate change and regional environment
due to its high data quality, continuous spatial and temporal resolutions and diverse aerosol species.
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The Yangtze River Basin (YRB) was divided into four regions due to their diverse underlying
surfaces and aerosol sources, from east to west, followed by the Yangtze River Delta (YRD), Central
China (CC), Sichuan Basin (SB) and the source of the YRB (SYR) (Figure 1) [8,9,21]. Both YRD and CC
had an average elevation of no more than 50m and had frequent urbanization and industrialization
activities, resulting in high aerosol loadings [8,9]. However, the YRD might be similarly affected by sea
salt aerosols. In the SB, the unique basin topography would lead to a low wind speed, high relative
humidity and cloudy meteorological condition, which was different from its surrounding areas. It was
not conducive to the diffusion and dilution of aerosol particles [8]. By contrast, most of the SYR were
located in the Qinghai-Tibet Plateau, which had unique plateau weather and little anthropogenic
activities. Coarse particles were the major aerosol type; for example, occasional large areas of sand and
dust were transported here via surface winds in spring [31]. Overall, such diverse underlying surfaces,
aerosol sources and meteorological conditions were conducive to studying the sensitivities of different
PM2.5 components to local meteorological conditions. Therefore, the YRB was selected as the region of
interest in this study.

This study aimed to (1) verify the performance of MERRA-2 PM2.5 reanalysis; (2) make a good
knowledge of spatiotemporal distributions of each PM2.5 component over the YRB from 1980 to 2017;
and (3) reveal the quantified impacts of major meteorological factors (including surface wind speed,
surface temperature, precipitation, relative humidity, total cloud cover and boundary layer height)
on each PM2.5 component. The structure was organized as follows. Section 2 introduced data and
analytical methods. Section 3 analyzed MERRA-2 PM2.5 verification and spatiotemporal distributions.
The sensitivities of different PM2.5 components to meteorological variables were further discussed in
Section 4. Finally, conclusions were provided in Section 5.

Table 1. Empirical Studies of the impacts of meteorological conditions on PM2.5 (i.e., particle matter
with diameter of 2.5 µm or less) concentrations.

Study Areas Methods Meteorological
Variables

Pollution
Indicators Main Conclusions

United states
(1998–2008) [26]

Multiple linear
regression (MLR)

Surface temperature,
precipitation, total
cloud cover, wind

speed, wind
direction and relative

humidity

PM2.5, SO4,
OC, EC *

Daily meteorological
variables could explain
up to 50% changes of

PM2.5 in the USA.

Global scale
(2005–2016) [27]

Chemistry-climate
model

Surface temperature,
precipitation, total
cloud cover, wind

speed, relative
humidity and

pressure

PM2.5

PM2.5 concentrations
were most sensitive to
surface temperature,

wind speed and
precipitation.

United Kingdom
(2009) [28]

Regression
analyses

Wind speed and
direction

PM10, PM2.5,
NOx *

PM2.5 concentrations
exhibited a stronger

correlation with
easterly winds from

the European
mainland than with

the local traffic sources.

Three European
cities (2005–2015)

[29]

Principal
component and

regression
analyses

Wind velocity,
temperature, relative

humidity,
precipitation, solar

radiation and
atmospheric pressure

PM10, PM2.5

Local meteorological
conditions had a

significant impact on
air pollutions.
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Table 1. Cont.

Study Areas Methods Meteorological
Variables

Pollution
Indicators Main Conclusions

Europe, US,
China

(2013–2016) [30]
MLR

Air stagnation event
(i.e., daily 10-m wind

speed < 3.2 m s−1,
500-hPa tropospheric

wind speed < 13m
s−1 and no

precipitation)

PM2.5

Compared to
no-stagnation
conditions, air

stagnation events in
winter could increase
PM2.5 concentrations
in the United States,

Europe and China by
46%, 68% and 60%,

respectively.

Saudi Arabia
(2014–2015) [31] MLR

Relative humidity,
wind speed and

temperature
PM2.5, PM10

Both PM10 and PM2.5
were anti-correlated

with relative humidity,
but positively related

to wind speed and
temperature.

Beijing China
(2005–2013) [32] MLR Relative humidity

and wind speed
Black carbon

(BC)

High BC
concentrations were

usually related to poor
visibility and low wind

speed.

China
(2013–2014) [33]

Multivariate
analysis

Relative humidity,
wind speed, surface

pressure and
temperature

PM2.5

PM2.5 was significantly
correlated with
meteorological

conditions in China.

* SO4, OC, EC, NOx refer to sulfate, organic carbon, element carbon and nitrogen oxides, respectively.

2. Data and Methods

2.1. Data

The MERRA-2 atmospheric reanalysis product was newly released by the NASA Global Modeling
and Assimilation Office (GMAO) in 2017. Based on the NASA GMAO Earth system model version 5
(GEOS 5) and the Goddard Chemistry, Aerosol, Radiation and Transport (GOCART) aerosol module,
the gridded aerosol data of MERRA-2 were assimilated with satellite and ground observations. More
details on MERRA-2 PM2.5 treatment could be found in [37–40], and were briefly described here.
MERRA-2 PM2.5 concentrations were calculated by Equation (1):

PM2.5 = 1.375× SO4 + 1.6×OC + BC + Dust2.5 + SS2.5 (1)

Here, SO4, OC, BC, Dust2.5 and SS2.5 represented sulfate, organic carbon, black carbon, dust and
sea-salt particulate matter with a diameter of less than 2.5 µm from the GOCART aerosol module,
respectively. Notably, the nitrate particulate matter primarily emitted by vehicle exhaust and industrial
production was lacking in the MERRA-2 PM2.5 reanalysis, probably leading to biases when compared
with ground measurements. In order to verify the performance of the MERRA-2 PM2.5 product,
we compared MERRA-2 PM2.5 with two-year (2015–2016) daily mean PM2.5 ground observations from
476 state-controlled air quality monitoring stations over the YRB (Figure 1). By using the tapered
element oscillating microbalance method and/or the beta absorption method, these state-controlled
air quality monitoring stations provided hourly and 24-hour average concentrations of six major air
pollutants (including PM2.5, PM10, SO2, NO2, O3 and CO) after 2013 [40]. The systematic uncertainty
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of ground PM2.5 from these air quality monitoring stations was controlled within 15% in accordance
with the latest version of China’s environmental protection standards [40].

In addition, the spatial and temporal distributions of MERRA-2 PM2.5 were further compared
with another PM2.5 reanalysis product released by the Atmospheric Composition Analysis Group of
NASA. Similarly, based on the GEOS-Chem chemical transport model, the satellite-retrieved PM2.5

concentrations (0.01◦ × 0.01◦) were estimated by combining column integrated AODs from MODIS
(Moderate Resolution Imaging Spectroradiometer), MISR (Multiangle Imaging Spectroradiometer)
and SeaWIFS (Sea-Viewing Wide Field of View Sensor) instruments [41,42]. Then, in order to
adjust the residual bias, the satellite-derived PM2.5 concentrations were calibrated by ground-based
observations using a geographically weighted regression (GWR). Hereafter, the PM2.5 reanalysis
product was abbreviated as GWR PM2.5 in this study. As shown in Figure A1, the annual mean GWR
PM2.5 concentrations were compared with ground PM2.5 measurements from 476 state-controlled air
quality monitoring stations over the YRB during 2015–2016. A high correlation coefficient (R = 0.76)
demonstrated a good consistency between GWR PM2.5 and ground PM2.5, which provided us enough
confidence to use the GWR PM2.5 product to verify the spatiotemporal distribution of MERRA-2 PM2.5.

Since both the non-bias-corrected AODs (MISR and AERONET) and the bias-corrected AODs
(MODIS and AVHRR) were assimilated in the MERRA-2 aerosol reanalysis, these above AOD datasets
were all not suitable for verifying the MERRA-2 AODs. Therefore, the daily ground AOD observations
from five China Aerosol Remote Sensing Network (CARSNET) sites in the YRB during 2013–2016, were
selected to be compared with their corresponding MERRA-2 AODs at 550 nm (Figure 1 and Table 2).
The CARSNET was a ground aerosol network with approximately 50 sites across China, established by
the China meteorological administrations and university research institutes [9,12]. It used Cimel sun
photometers to retrieve the Level-1.0 (unscreened) and Level-1.5 (cloud-screened) AOD data at eight
wavelengths (340, 380, 440, 500, 675, 870, 1020 and 1640 nm) every 15 minutes [9]. The total uncertainty
in the CARSNET AODs was about 0.01 to 0.02 [12]. The CARSNET AODs used in this study were all
cloud-screened data. As shown in Figure 1, from east to west, the five CARSNET sites were Lin’an
(rural site, 39 m above sea level), Wuhan (urban site, 15 m above sea level), Changde (rural site, 38 m
above sea level), Chengdu (urban site, 485 m above sea level) and Shangri-La (remote site, 3280 m
above sea level) [12].

The MERRA-2 atmospheric reanalysis product also provided grid-level (0.05◦ × 0.625◦) daily
mean meteorological variables data during 1980–2017 (Table 2). They were surface wind speed (m s−1),
surface temperature (K), surface precipitation (mm d-1), relative humidity (%), total cloud cover (%)
and boundary layer height (m).
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Figure 1. Distribution of ground air monitoring stations and China Aerosol Remote Sensing Network
(CARSNET) sites over the Yangtze River Basin (YRB). The YRB was divided into four regions, labeled
from 1 to 4, which are the Yangtze River Delta (YRD), Central China (CC), Sichuan Basin (SB) and
source of the YRB (SYR).
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Table 2. Summary of data used in this study.

Spatial Resolution Temporal
Coverage Data Source

PM2.5

MERRA-2 * 0.05◦ × 0.625◦ daily\1980–2017 http://disc.sci.gsfc.nasa.gov/mdisc/

GWR * 0.01◦ × 0.01◦ daily\1998–2017 http://fizz.phys.dal.ca/~{}atmos/
martin/?page_id=140

Ground \ daily\2015–2016 http://113.108.142.147:
20035/emcpublish/

AOD *
MERRA-2 0.05◦ × 0.625◦ daily\2013–2016 http://disc.sci.gsfc.nasa.gov/mdisc/

CARSNET * \ daily\2013–2016 \

Terra, Aqua 0.01◦ × 0.01◦ daily\2016 https://ladsweb.modaps.eosdis.
nasa.gov/search/

Meteorological
factors MERRA-2 0.05◦ × 0.625◦ daily\1980–2017 http://disc.sci.gsfc.nasa.gov/mdisc/

* AOD, MERRA-2, GWR, CARSNET refer to Aerosol Optical Depth, Modern-Era Retrospective Analysis and
Research and Application, version 2 product, Geographically Weighted Regression product and China Aerosol
Remote Sensing Network, respectively.

2.2. Methods

2.2.1. Comparison Analysis

According to [40], grid-level daily mean MERRA-2 PM2.5 concentrations were compared with
the corresponding ground measurements during 2015–2016 over the YRB by using a series of linear
regressions. The regression parameters include slope, y–intercept, correlation coefficient (R), root mean
square error (RMSE, Equation (2)), mean absolute error (MAE, Equation (3)) and the relative mean
bias (RMB, Equation (4)):

RMSE =

√
1
n

n

∑
i=1

(
PM2.5(MERRA−2)i − PM2.5(ground)i

)2
(2)

MAE =
1
n

1

∑
n

∣∣∣PM2.5(MERRA−2)i − PM2.5(ground)i

∣∣∣ (3)

RMB =
(

PM2.5MERRA−2/PM2.5ground

)
(4)

The MERRA-2 PM2.5 reanalysis was thought to be reasonably good if RMB ≥ 0.5 [27].

2.2.2. Trend Analysis

Multi-year average trends (1980–2017) in PM2.5 and its major components (including SO4, BC,
OC, Dust2.5 and SS2.5) were assessed based on a linear regression. Furthermore, their corresponding
significant levels were calculated using the Mann-Kendall (MK) nonparametric method. They were
described by Equations (5)–(8):

S =
n−1

∑
i=1

n

∑
j=n+1

sgn
(
Xj − Xi

)
(5)

sgn
(
Xj − Xi

)
=


+1, i f

(
Xj − Xi

)
> 0

0, i f
(
Xj − Xi

)
= 0

−1, i f
(
Xj − Xi

)
< 0

(6)

Var(s) =
n(n− 1)(2n + 5)−∑

q
p=1 tp

(
tp − 1

)(
2tp + 5

)
18

(7)

http://disc.sci.gsfc.nasa.gov/mdisc/
http://fizz.phys.dal.ca/~{}atmos/martin/?page_id=140
http://fizz.phys.dal.ca/~{}atmos/martin/?page_id=140
http://113.108.142.147:20035/emcpublish/
http://113.108.142.147:20035/emcpublish/
http://disc.sci.gsfc.nasa.gov/mdisc/
https://ladsweb.modaps.eosdis.nasa.gov/search/
https://ladsweb.modaps.eosdis.nasa.gov/search/
http://disc.sci.gsfc.nasa.gov/mdisc/
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Z =


S−1√
Var(S)

, i f S > 0

0, i f S = 0
S+1√
Var(S)

, i f S < 0

(8)

where S is the statistical value, Var (S) is the variance of the statistical value S and Xj and Xi represent
the annual mean concentrations of the total PM2.5 or its major components in the jth and ith years,
respectively. The trend was significant (i.e., p-value < 0.05) only when the standardized test statistics
|Z| > |Z(1 − α/2)|.

2.2.3. Multiple Linear Regression

In order to assess the comprehensive impact of various meteorological factors on PM2.5, the
following multiple linear regression (MLR) model was used:

y = β0 +
6

∑
i=1

βixi + εi (9)

where the dependent variable y refers to daily mean PM2.5 concentrations (including PM2.5, SO4,
OC, BC, Dust2.5 and SS2.5) in each 0.05◦ × 0.625◦ grid, β0 is a constant term, xi is the daily mean
meteorological factor described in Section 2.1 and εi is the interaction term. Moreover, the slope
coefficient βi can be interpreted as the sensitivity of PM2.5 to changes in one meteorological factor,
assuming that the other meteorological variables remain fixed. This was determined via a least-square
adjustment [26,27].

3. Results

3.1. Ground-Based Verification of MERRA-2 PM2.5

3.1.1. Regional and Seasonal Comparisons between MERRA-2 and Ground PM2.5

Comparisons of daily mean PM2.5 concentrations derived from MERRA-2 and 476 ground sites
over the YRB are presented in Figure 2. The comparison over the YRD (Figure 2b) was superior to other
regions of the YRB, with higher R (0.58) and RMB (0.90) values. By contrast, the SB (Figure 2d) produced
the worst performance, with the lowest R (0.31) and RMB (0.55) values. The unique basin topography
was prone to cloudy weather, which may restrict the assimilation of MERRA-2 PM2.5 products [37].
Generally, MERRA-2 produced lower daily mean PM2.5 concentrations (4.77–23.26 µg m−3) and the
bias was more outstanding for high ground PM2.5 (>75 µg m−3). For instance, MERRA-2 PM2.5

concentrations were entirely less than ground observations when PM2.5 > 75 µg m−3. The lack of
nitrate in the MERRA-2 PM2.5 reanalysis would explain the underestimation [37,40]. In addition,
to a certain extent, the bias caused by MERRA-2 AOD assimilation might be another reason for
the MERRA-2 PM2.5 underestimation, which will be verified in detail in the next section. Notably,
in Figure 2d, no matter how large the ground PM2.5 concentrations were, MERRA-2 PM2.5 remained
small. The reason might be that the unique basin terrain was prone to cloudy weather in the SB, and
thus probably led to cloud screening bias for MERRA-2 aerosol reanalysis [8,9,40].
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Figure 3 depicts the seasonal cycles of PM2.5 concentrations from MERRA-2 reanalysis data and 
ground measurements. The seasonal comparison between the MERRA-2 and ground PM2.5 was 
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including the YRD, CC, SB and SYR, with 87, 233, 95 and 60 state-controlled air quality monitoring 

Figure 2. Scatter density maps between MERRA-2 and ground-based daily mean PM2.5 concentrations
over the (a) YRB, (b) YRD, (c) CC, (d) SB and (e) SYR for the period of Jan. 2015–Dec. 2016.
The parameter N represents the number of matchups, R is the correlation coefficient, RMSE is the root
mean square error, RMB is relative mean bias and MAE is the mean absolute error. The color bars
represent the density of the matchups.

Figure 3 depicts the seasonal cycles of PM2.5 concentrations from MERRA-2 reanalysis data
and ground measurements. The seasonal comparison between the MERRA-2 and ground PM2.5

was calculated as follows. First, according to Figure 1, the YRB was divided into four sub-regions
including the YRD, CC, SB and SYR, with 87, 233, 95 and 60 state-controlled air quality monitoring
stations, respectively. Then, based on the arithmetic averaging method, the seasonal average
ground-based PM2.5 concentrations in each sub-region were calculated by the daily average PM2.5 from
state-controlled air quality monitoring stations. Finally, the daily mean grid values of MERRA-2 PM2.5

where the ground site was located were extracted from the MERRA-2 satellite images. Similarly, the
seasonal average MERRA-2 PM2.5 concentrations in each sub-region were calculated by the arithmetic
averaging method. Results showed that both PM2.5 products had similar seasonal variations in all
regions, with high values in winter and low values in summer. Additionally, the bias also exhibited
seasonal dependence. MERRA-2 PM2.5 matched better with ground observations in summer, when
the biases were only 4.16 µg m−3 (YRD), −1.07 µg m−3 (CC), −9.55 µg m−3 (SB), −5.39 µg m−3 (SYR)
and −2.31 µg m−3 (YRB). The largest biases were observed in winter, reaching −15.83 µg m−3 (YRD),
−27.45 µg m−3 (CC), −43.73 µg m−3 (SB), −19.77 µg m−3 (SYR) and −27.67 µg m−3 (YRB). Similar
comparison results were also reported over America [37] and the North China plain [40].
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Figure 3. Monthly variations in PM2.5 concentrations derived from MERRA-2 (red dashed lines)
reanalysis and ground sites (blue dashed lines) over the (a) YRB, (b) YRD, (c) CC, (d) SB and (e) SYR
for the period of Jan. 2015–Dec. 2016. The shading represents the standard deviation of MERRA-2 (red)
and ground-based PM2.5 (gray).

3.1.2. Impact of AOD Assimilation

Here, the effect of MERRA-2 AOD assimilation on the PM2.5 simulation was estimated. Since
there were no CARSNET AOD observations in the MERRA-2 aerosol assimilation, we compared daily
mean MERRA-2 AOD with those ground measurements from five CARSNET sites of the YRB during
2013-2016 (Figure 4). As shown in Figure 4a, although MERRA-2 AOD was in good agreement with
CARSNET AOD (R = 0.82), approximately 19% of MERRA-2 AOD were still underestimated, especially
when CARSNET AOD > 1.0. This was further confirmed by Figure 4b. The high MERRA-2 AOD values
in Wuhan and Chengdu (>0.8) were all below their corresponding CARSNET observations. By contrast,
Shangri-La with low mean AOD (<0.2) exhibited a good performance. Compared with the remote
site of Shangri-La, Wuhan and Chengdu were two urban CARSNET sites with more complex aerosol
sources and more diverse underlying surfaces, probably restraining the assimilation of the MERRA-2
AOD reanalysis [37,40]. Overall, the underestimation of MERRA-2 PM2.5 was partly attributed to the
negative bias of MERRA-2 AOD used in the GOCART model.
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Figure 4. Scatter plot of daily averaged (a) and annual mean AOD (b) between MERRA-2 and
CARSNET AOD at five ground sites of the YRB during 2013–2016. In (b), the vertical and horizontal
bars refer to the standard deviations of the annual mean MERRA-2 and CARSNET AOD, respectively.

Figure 5 depicts AOD daily variations from Aqua, Terra, CARSNET and MERRA-2 products
at Wuhan. As shown in Figure 5a, SO4 dominated the aerosol types of Wuhan for the whole year.
All AOD products showed similar daily variations, i.e., high values approximately occurred between
the 50th and the 150th days. In addition, both satellite (Aqua and Terra) and ground (CARSNET) AOD
observations were higher than MERRA-2 AODs. Additionally, is worth noting that neither the satellites
nor sun-photometer provided continuous AOD observations, especially during a heavy pollution
episode (Figure 5b). This would make the assimilation of MERRA-2 AOD impossible, implying that
the GOCART model for simulating aerosols in MERRA-2 needed further improvement.
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Figure 5. (a) Daily variations in AOD from satellite retrievals (Aqua and Terra), ground observations
(CARSNET) and MERRA-2 reanalysis at Wuhan in 2016. The contributions of each aerosol species
derived from MERRA-2 reanalysis are also shown. (b) Daily variations in AOD during a heavy
pollution episode.

3.2. Spatiotemporal Distribution of MERRA-2 PM2.5 Components

3.2.1. Annual Mean Distribution in MERRA-2 PM2.5 Components

PM2.5 components varied by region due to differences in anthropogenic emissions and
meteorological conditions. The spatial distributions of annual mean MERRA-2 PM2.5 components
were illustrated in Figure 6. In Figure 6a, high PM2.5 concentrations were observed over the YRD,
CC and SB, while low values were concentrated in the SYR. A similar spatial pattern of PM2.5 was
also confirmed by the GWR PM2.5 (Figure A2). Previous studies reported that GWR PM2.5 reanalysis
yielded good performance relative to ground observations [41,42]. Therefore, we used it here to verify
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the spatial distribution of MERRA-2 PM2.5 reanalysis. According to the ambient air quality standard
established by the World Health Organization (WHO), the annual mean PM2.5 concentration should
not exceed 10 µg/m3 [23]. Approximately 67.49% and 78.27% of the pixels in the YRB exceeded the
threshold for MERRA-2 and GWR, respectively (Figure A2). This fact suggested that it was necessary
to clarify the composition of PM2.5 and its influencing factors over the YRB.

In terms of each PM2.5 component, sulfate PM2.5 (SO4) occupied an average of 39.87% of the PM2.5

concentration, and its high values were concentrated in YRD, CC and SB. Similarly, high carbonaceous
PM2.5 concentrations (BC and OC) were also observed in those regions, accounting for 8.02% and
28.32% of the PM2.5 concentrations, respectively. Emissions from power plants, vehicle exhaust and
biomass burning could certainly explain the high PM2.5 concentrations in those areas. For dust PM2.5

(Dust2.5), it accounted for 22.75% of the PM2.5 on average. In particular, high Dust2.5 concentrations
appeared in the northern part of the YRB, which primarily came from local arid sources. Another region
with high Dust2.5 concentrations was the SYR, possibly due to dust transportation from the Taklimakan
desert in summer [7,8,43]. MERRA-2 sea salt PM2.5 (SS2.5) constituted the lowest proportion of the
total (approximately 1.02%), and rarely penetrated into land.Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 27 
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Figure 6. Annual mean distributions of each MERRA-2 PM2.5 component, including (a) the PM2.5,
(b) Sulfate PM2.5, (c) Black Carbon PM2.5, (d) Organic Carbon PM2.5, (e) Dust PM2.5 and (f) Sea Salt
PM2.5 over the YRB during 1980–2017.

3.2.2. Seasonal Variation in MERRA-2 PM2.5 Components

Figures 7 and 8 showed the spatial and seasonal differences of each PM2.5 component. A significant
seasonal variation of PM2.5 was observed over the YRB, especially over the YRD, CC and SB.
On average, its highest concentration of 26.63 µg m−3 occurred in winter and the lowest, 18.47
µg m−3, appeared in summer (Table 3). This was associated with the prevailing local monsoon
climate [31]. In summer, windy and rainy weather was conducive to scavenging PM2.5 particles from
the atmosphere, whereas the dry weather affected by the Mongolian anticyclone in winter prevented
the diffusion of aerosol particles. The increase in emissions caused by heating in winter could certainly
be another reason for the high PM2.5 concentration [31]. For each PM2.5 component, seasonal variations
in SO4, BC and OC were consistent with those of PM2.5. Nevertheless, SS2.5 witnessed little seasonal
changes over the YRB. Dust2.5 concentration was highest in spring (8.63 µg m−3), and most occurred
in northern parts of the YRB. This was related to frequent sandstorm events in spring [35,36].
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Table 3. Annual and seasonal mean values of each PM2.5 component over the YRB during 1980–2017,
in units of µg m−3.

PM2.5 SO4 BC OC Dust2.5 SS2.5

Annual 23.43 6.80 1.88 4.74 5.33 0.24
MAM 26.00 6.75 1.68 4.85 8.63 0.26

JJA 18.47 5.47 1.44 4.16 3.45 0.23
SON 22.63 7.13 1.98 4.45 4.37 0.24
DJF 26.63 7.83 2.42 5.50 4.88 0.23
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3.2.3. Long-Term Trends of MERRA-2 PM2.5 Components

Figure 9 exhibited the interannual variability of each MERRA-2 PM2.5 component over the YRB
during 1980–2017. A significant increasing trend of 11.4E-4 µg m−3 yr−1 was observed in PM2.5 for
the whole period. Notably, the growth trend of PM2.5 was effectively curbed after 2007. To reduce the
uncertainty in the MERRA-2 PM2.5 trend, we also compared it with the interannual variability of GWR
PM2.5 from 1998 to 2017 (Figure A3). The results showed that both PM2.5 products had similar growth
trends, and there was a significant turning point from increasing to decreasing around 2007–2009.
Similarly, He et al. [10] revealed that an over-increasing trend in MERRA-2 AOD over the YRB was
curbed after 2008. The reason was probably due to the effective implementation of energy conservation
and emission reduction policies in China [10]. Comparable trends were also found in SO4, BC and OC,
confirming that reduction in anthropogenic emissions was the dominant factor for the improvement in
air quality. In addition, Dust2.5 and SS2.5 witnessed slightly increasing trends of 7.42E-5 µg m−3 yr−1

and 1.63E-5 µg m−3 yr−1 after 1980, respectively. Nevetheless, whether meterological factors impacted
air quality requires further analysis.
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Figure 9. Annual mean trends in MERRA-2 PM2.5 and its five major components over the YRB from
1980 to 2017, in units of µg m−3.

The annual mean trends of each MERRA-2 PM2.5 component at grid level were estimated by
a linear regression, and their corresponding significant levels were further calculated based on the
MK method (Figure 10). Overall, a significant increasing trend in PM2.5 (0.7 µg m−3 yr−1) was
observed over the YRD, CC and SB. However, GWR exhibited a significant decreasing trend in PM2.5

in the mountains of the northern YRB (Figure A4), which was not observed in MERRA-2 PM2.5.
Recent studies demonstrated that the decreasing PM2.5 trend in those regions might be a response
to the implementation of forest ecology projects over the middle and upper reaches of the YRB since
the 1990s [44]. In terms of each PM2.5 component, SO4, BC and OC witnessed significant increases,
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especially over the YRD, CC and SB. By contrast, significant growth trends in Dust2.5 and SS2.5 occurred
over the SYR and the eastern coastal regions, respectively.
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4. Discussion

To quantify the impact of meteorological variables on PM2.5 changes, the slope coefficients βi
between daily mean PM2.5 concentrations and six meteorological factors from 1980 to 2017 were
calculated using the multiple linear regression (MLR) model (Equation (9)). Assuming that all other
meteorological variables remained fixed, these slope coefficients actually represented the sensitivities
of PM2.5 to unit changes in each meteorological factor. In the MLR process, there should be no
multicollinearity between the independent variables (i.e., meteorological factors), otherwise they
would be eliminated [26,27]. In the correlation matrix (Table A1), even though there were several
correlations of more than 0.5, most of them failed to pass the 95% significance test, indicating that
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each meteorological variable was not significantly related to any other. Therefore, we concluded that
collinearity was minimal and the MLR analysis could be performed. Figure 11 showed the adjusted
coefficients of determination (adjusted-R2) at grid level. Higher adjusted-R2 values indicated that
the MLR model performed better. The highest adjusted-R2 values (~0.67) were mostly concentrated
over the SYR, indicating that the local meteorological conditions could explain up to 67% of the
daily PM2.5 changes. By comparison, the values were lowest over the YRD and CC, where less
than 20% of the daily PM2.5 changes were due to meteorological variations. Over those regions,
anthropogenic emissions from frequent industrialization and urbanization may be the major reason
for high PM2.5 concentrations. In Figure A5, adjusted-R2 values showed seasonal variations, with high
values (adjusted-R2 > 0.5) in spring and summer over the SYR, suggesting that the local meteorological
conditions could account for more than 50% of PM2.5 changes. This may be closely related to the
summer monsoon climate [26,27]. However, the relatively low adjusted-R2 values (adjusted-R2 < 0.2)
dominated most areas of the YRB in autumn and winter. This may be due to an increase in
anthropogenic emissions such as winter heating, which weakened the impact of meteorological
conditions on air pollution in winter [26].
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frequency of 29%, leading to serious air pollutions especially in winter [31]. However, a significant 
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Section 3.2). It was probably due to the strong wind speed dependence of dust particles, further 
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Figure 11. Coefficients of determination (R2) of the MLR model between PM2.5 and the six
meteorological variables.

4.1. Sensitivity of PM2.5 Components to Surface Wind Speed

Figure 12 depicts correlations of each PM2.5 component with surface wind speed, as measured by
the MLR regression coefficient (β1) in Equation (9). Red grids represent positive correlations, whereas
green grids are negative correlations. In Figure 12a, the PM2.5 is significantly anti-correlated with
surface wind speed throughout the YRB. High wind speeds facilitated circulation and dilution of
aerosol particles, leading to a consistent decrease in PM2.5. Negative correlations between PM2.5

concentrations and surface wind speeds were also observed in the United States of America [26],
Europe [27–29,31] and China [32–34]. Yang et al. [33] discovered a negative wind-PM2.5 correlation
throughout China except Hainan Island. Compared with the USA and Europe, China had the worst
atmospheric dispersion conditions with annual stagnation frequency of 29%, leading to serious air
pollutions especially in winter [31]. However, a significant positive correlation occurred in the SYR,
where a plenty of dust particles were concentrated (see Section 3.2). It was probably due to the
strong wind speed dependence of dust particles, further confirmed by the Dust2.5-wind regression in
Figure 12e. Similarly, in Saudi Arabia (an arid region), both PM2.5 and PM10 were positively related to
wind speed [30]. Additionally, in Figure A6 and Table A2, most of the YRB experienced an average
decrease of 0.05 m s−1 per year in wind speed from 1980 to 2017. Based on the MLR model, the average
PM2.5-wind regression coefficient was approximately −2.42 µg m−3 m−1 s, leading to an average
increase of 0.12 µg m−3 per year in PM2.5 over the YRB. However, all other meteorological variables
remained fixed (Table A2).
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Figure 12. Multiple linear regression coefficients (β1) of each PM2.5 component with surface wind
speed (Wind), in units of µg m−3 m−1 s. (a–f) refer to the regression coefficients of PM2.5, SO4, BC, OC,
Dust2.5 and SS2.5 with surface wind speed, respectively.

4.2. Sensitivity of PM2.5 Components to Surface Temperature

In Figure 13, surface temperature (T) was significantly positively correlated with each PM2.5

component across the YRB. Similar results were also reported on global [27] and regional [26] scales.
Westervelt et al. [27] discovered a robust positive relationship between surface temperature and
PM2.5 throughout the continents and oceans except East and South Asia. This positive correlation
may be related to temperature-dependent reaction rates and changes in oxidant abundance, that
is, the oxidation of aerosol precursors (such as sulfur dioxide) could be enhanced with higher
temperature [27]. However, in China, Yang et al. [33] revealed that surface temperature was negatively
related to PM2.5 in autumn but positivity correlated with PM2.5 in winter. Dawson et al. [45] found an
averaged negative effect of temperature on PM2.5 east of the USA, primarily due to the volatilization of
nitrate at high temperature. Since nitrate aerosols were not assimilated in the MERRA-2 PM2.5

reanalysis, there was little negative relationship between PM2.5 and temperature over the YRB.
In addition, Figure A6 and Table A2 showed an average increase of 0.03 K per year in temperature from
1980 to 2017. Based on the MLR model between temperature and the PM2.5 (Figure 13a), the average
sensitivity of 0.11 µg m−3 K−1 could lead to PM2.5 growth of up to 0.003 µg m−3 per year. Overall,
the temperature effect on PM2.5 (0.11 µg m−3 K−1) was weaker than the influence of wind speed
(−2.42 µg m−3 m−1 s) over the YRB (Table A2).
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4.3. Sensitivity of PM2.5 Components to Precipitation

Figure 14 shows the slope coefficients between each PM2.5 component and precipitation. Each
PM2.5 component was significantly anti-correlated with precipitation in most areas of the YRB,
primarily due to wet scavenging [26–35]. However, a positive relationship was observed in the
SYR, where dust particle was the main air pollutant (see Section 3.2) and precipitation did not occur
frequently [46–48]. Even if there was a small amount of precipitation over the SYR, it may have only
increased the relative humidity, resulting in the growth of hygroscopic particles [27]. Precipitation
changes were typically more positive than negative from 1980 to 2017, along with an annual trend of
0.02 mm day−1 (Figure A6 and Table A2). Overall, based on the MLR model of PM2.5 and precipitation
(Figure 14a), the average sensitivity of −0.34 µg m−3 mm−1 day could lead to a decrease of 0.007 µg
m−3 per year for PM2.5, which was comparable to the effect of temperature on PM2.5 (Table A2).
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4.4. Sensitivity of PM2.5 Components to Relative Humidity

Figure 15 shows the slope coefficients for each PM2.5 component and relative humidity (RH).
As can be seen in Figure 15a, PM2.5 was positively correlated with RH in most areas of the YRB, with the
exception of the YRD. Throughout the YRB, significant positive correlations with RH were also found
in SO4, BC and OC, likely due to the dependence of sulfate and carbonaceous PM2.5 formation on
RH [26,27]. In contrast, Dust2.5 had an anti-correlation with RH, which probably explained the negative
association of PM2.5 with RH in the YRD. Yang et al. [33] found a positive correlation between PM2.5

and RH in north China and a negative correlation in south China. A negative PM2.5-RH regression
was also estimated over the Pearl River Delta Region [34]. They considered that when RH was greater
than 80%, rainfall often occurred, leading to a decrease in PM2.5 in the atmosphere [34]. In this study,
YRD had a temperate monsoon climate, which made precipitation events occur in most days with
high RH (>80%), especially in summer. Thus, there was a negative PM2.5-RH regression over the
YRD. However, with the relatively low slope coefficient for total PM2.5 and RH (0.05 µg m−3 %−1),
the sensitivity of PM2.5 to RH was small (Table A2).
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observed mostly over the middle and lower reaches of the YRB. In those regions, clouds could 
partially prevent aerosol precursors (such as sulfur dioxide) from oxidizing, and thus, reduced 
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cover was approximately −0.07 µg m−3 %−1 (Figure 16(a) and Table A2).  

Figure 15. Multiple linear regression coefficients (β4) of each PM2.5 component with relative humidity
(RH), in units of µg m−3 %−1. The blank grids indicate invalid values. (a–f) refer to the regression
coefficients of PM2.5, SO4, BC, OC, Dust2.5 and SS2.5 with relative humidity, respectively.

4.5. Sensitivity of PM2.5 Components to Total Cloud Cover

In Figure 16, anti-correlations between each PM2.5 component and the total cloud cover were
observed mostly over the middle and lower reaches of the YRB. In those regions, clouds could
partially prevent aerosol precursors (such as sulfur dioxide) from oxidizing, and thus, reduced PM2.5

concentrations in the atmosphere [27]. However, positive regressions between each PM2.5 component
and the total cloud cover occurred in the SYR, possibly due to the enhancements in in-cloud production
of sulfate aerosols. Overall, the average sensitivity of PM2.5 to the total cloud cover was approximately
−0.07 µg m−3 %−1 (Figure 16a and Table A2).
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4.6. Sensitivity of PM2.5 Components to Boundary Layer Height

In Figure 17, the relationship of each PM2.5 component with boundary layer height (BLH) was
robustly negative throughout the YRB. The reason may be that a well-developed BLH was conducive
to the diffusion and dilution of PM2.5 particles [31]. Recently, Wang et al. [31] reported that BLH
was lower than the normal during heavy pollution in Beijing, China. During 1980–2017, the YRB
experienced a significant decrease of −0.98 m per year in BLH, especially over the YRD, CC and SB
(Figure A6). Based on the MLR model between BLH and PM2.5 (Figure 17a and Table A2), the average
sensitivity of 0.006 µg m−3 m−1 could lead to PM2.5 growth of up to 0.006 µg m−3 per year.
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5. Conclusions

Based on the MLR model, the sensitivities of PM2.5 and its major components to meteorological
variables were quantified using daily mean MERRA-2 PM2.5 and meteorology reanalysis data over the
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YRB from 1980 to 2017. First of all, in order to verify the accuracy of the MERRA-2 PM2.5 reanalysis,
it was compared with ground-based measurements derived from 476 air quality monitoring sites in the
YRB. The results suggested that MERRA-2 PM2.5 was underestimated relative to their corresponding
ground observations throughout the YRB. In addition to the lack of nitrate aerosols in GOCART, the bias
in MERRA-2 AOD assimilation could also partly explain the underestimation of MERRA-2 PM2.5.

The YRB witnessed severe air pollution, with its annual mean PM2.5 concentration of 23.43 µg m−3.
In particular, approximately 67.49% of the pixels in the YRB exceeded the annual mean threshold of
10 µg m−3 recommended by the WHO. The high PM2.5 concentrations were observed over the YRD,
CC and SB in winter, while the low values occurred in the SYR in summer. For each PM2.5 component,
SO4, BC and OC showed similar spatiotemporal distributions with PM2.5 concentration. The temperate
monsoon climate could account for the seasonal and spatial variations of PM2.5 concentrations in the
YRB. However, Dust2.5 had the highest concentrations of 8.63 µg m−3 over the SYR and the northern
areas of the YRB in spring, which came from local arid sources. Most of the SS2.5 were concentrated in
the eastern coastal areas and there was no significant seasonal variation. Over-increasing trends (1980
onward) in all PM2.5 components were confirmed in the YRB; however, they were curbed after 2007.

Based on the MLR model, we found the highest adjusted-R2 (0.67) in the SYR, suggesting that
the six meteorological variables could explain up to 67% of the daily PM2.5 changes in that region.
Furthermore, each PM2.5 component was significantly anti-correlated with surface wind speed and
precipitation throughout the YRB. High wind speeds and precipitations facilitated the circulation and
dilution of PM2.5 from the atmosphere. Nevertheless, a positive wind-PM2.5 regression was observed
in the SYR, probably due to the dependence of Dust2.5 on wind. Furthermore, SYR witnessed a positive
relationship between precipitation and PM2.5, which was likely associated with an increase in relative
humidity (RH). Additionally, boundary layer height (BLH) was robustly anti-correlated with each
PM2.5 component. However, the impact of BLH on PM2.5 (−0.006 µg m−3 m−1) was far less than
those of wind speed (−2.42 µg m−3 m−1 s) and precipitation (−0.34 µg m−3 mm−1 day). In contrast,
surface temperature was positively correlated with each PM2.5 component across the YRB, and the
sensitivity of PM2.5 to temperature was approximately 0.11 µg m−3 K−1. This was possibly due to
the enhancement in oxidation of aerosol precursors at high temperatures. The RH-PM2.5 regression
showed regional dependencies, with negative correlation in the YRD and positive correlation in the
other areas. A negative relationship between total cloud cover and PM2.5 occurred in the middle
and lower reaches of the YRB. However, the sensitivities of PM2.5 to RH (0.05 µg m−3 %−1) and total
cloud cover (0.07 µg m−3 %−1) were relatively small. Overall, this study highlighted the impact
of meteorological conditions on PM2.5, even though it was relatively minor in comparison with the
anthropogenic emissions effect [27]. When assessing the effects of emission reductions and further
formulating mitigation policies, the unfavorable atmospheric diffusion conditions should not be
ignored in China.
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