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Abstract: On 9 July 2009, an Ms6.0 earthquake occurred in mountainous area of Yao’an in Yunnan
province of Southern China. Although the magnitude of the earthquake was moderate, it attracted
the attention of many Earth scientists because of its threat to the safety of the population and its
harm to the local economy. However, the source parameters remain poorly understood due to
the sparse distribution of seismic and GNSS (Global Navigation Satellite System) stations in this
mountainous region. Therefore, in this study, the two L-band ALOS (Advanced Land Observing
Satellite-1) PALSAR (Phased Array type L-band Synthetic Aperture Radar) images from an ascending
track is used to investigate the coseismic deformation field, and further determine the location, fault
geometry and slip distribution of the earthquake. The results show that the Yao’an earthquake was
a strike-slip event with a down-dip slip component. The slip mainly occurred at depths of 3–8 km,
with a maximum slip of approximately 70 cm at a depth of 6 km, which is shallower than the reported
focal depth of ~10 km. An analysis of the seismic activity and tectonics of the Yao’an area reveals that
the 9 July 2009 Yao’an earthquake was the result of regional stress accumulation, which eventually
led to the rupture of the northwestern most part of the Maweijing fault.

Keywords: Yao’an earthquake; InSAR; coseismic deformation; source parameters; slip distribution;
tectonics

1. Introduction

An Ms6.0 earthquake occurred in Yao’an of Yunnan province of Southern China on 9 July 2009.
The hypocenter was approximately located 25.33◦N, 101.03◦E at a depth of ~10 km. The earthquake
caused ~345 injuries and affected ~800,000 people, with direct economic losses of ~0.3 billion USD [1].

In recent years, many geophysical and geological studies have revealed various important aspects
of the Yao’an earthquake. The aftershock sequence and three-dimensional velocity structure of the
source were explored [2]. Pre-earthquake gravity changes lasting ~three years in the western part of the
epicenter were studied using mobile gravity data from 2005 to 2009 [3]. Cao and Mao comprehensively
probed the structural, focal mechanism and seismicity, and suggested that the 2009 earthquake is a
northwestern extension of the rupture of the fault responsible for the 2000 Yao’an Ms6.5 earthquake [4].
Variations of seismic surface wave velocity in Yunnan before the 2009 earthquake were investigated
using the ambient noise interferometry [5]. Li and Wang acquired seismic phase data of the earthquake
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sequence using the sliding fitting method, and reported that the seismic fault is a high angle dextral
strike slip fault with NW strike and NE dip [6]. Cao and Mao also investigated the characteristics
of the earthquake precursors and macroscopic anomalies and suggested that the Yao’an earthquake
corresponds well to the tectonic background of frequent earthquakes in Yunnan province [7].

Previous studies have applied different methods to determine the aftershock sequence [2], focal
mechanism [3], and the seismic phase data of the earthquake sequence of the Yao’an earthquake [6].
Additionally, the Earth’s structure of the Yao’an region has been studied, such as the three-dimensional
velocity structure of the source [2], gravity changes before the earthquake [3], deep structures [4],
seismic surface wave velocity [5], and earthquake precursors and macroscopic anomalies [7].
These investigations revealed preliminary geometric features and underground structures of the
earthquake. Overall, they are of importance for better understanding of the geodynamic context of the
region and the regional tectonics. However, some important issues still remain to be resolved, such
as the spatial characteristics of the coseismic deformation field, and the distribution of slip on fault.
Addressing these issues is of high significance for determining the mechanism of the Yao’an earthquake.

Coseismic deformation fields caused by the Yao’an earthquake are unknown because of the
sparseness of geodetic arrays in this remote area. Therefore, using satellite-based monitoring
techniques, such as InSAR (Interferometric Synthetic Aperture Radar), is very suitable in this case [8,9].
Interferometric Synthetic Aperture Radar has been well known for imaging coseismic displacements
and estimating source parameters since the 1992 Mw7.3 Landers earthquake ([10–15]). In this
study, the InSAR technique was used to measure the coseismic deformation characteristics of the
Yao’an earthquake. Under the constraints of the observed surface deformation patterns from InSAR,
source geometries were estimated and inversions were subsequently performed to retrieve the slip
distributions. Finally, the characteristics of the earthquake derived from InSAR inversion are discussed
along with the results of geological and geophysical, Coulomb stress modeling, and the regional
tectonics of frequent earthquakes in Yao’an area studies.

2. General Tectonic Background

The 2009 Ms6.0 Yao’an earthquake occurred in the southern part of the Yunnan block, part of the
Sichuan-Yunnan block [16]. This region is tectonically active and shows strong crustal deformation,
as well as differential tectonic deformation patterns [16]. The seismicity and tectonics of this area are
also complex [17,18].

The Sichuan–Yunnan block is enclosed by several faults, such as the Lijiang–Xiaojinhe, Anninghe,
Xiaojiang, and Red River faults, as shown in Figure 1. The strike-slip rates of these major faults have
been studied through geological observations. The right-lateral strike slip rates of the Lijiang–Xiaojinhe,
Red River faults are 3.8 ± 0.7 mm/year and 3.5 ± 1.5 mm/year, respectively [18–20]. The left-lateral
strike slip rates of the Anninghe and Xiaojiang faults are about 6.5 ± 1.0 mm/y and 10 ± 2.0 mm/year,
respectively [21,22]. The occurrence of frequent earthquakes is also typically associated with these
active faults. For example, historical earthquake records reveal that almost 20 earthquakes (M > 6)
have occurred along the Xiaojiang fault zone over the past 500 years [21,23–25]. Recent earthquakes
occurring within the Sichuan–Yunnan block include the 2000 Ms6.5 Yao’an, 2001 Ms6.0 Yongsheng,
2003 Ms6.2 Dayao, and 2009 Ms6.0 Yao’an earthquakes. The 2009 Ms6.0 Yao’an earthquake occurred
along the Maweiqing fault, which is located on southwestern Yunnan block, parallel to the Red River
fault [6].

In addition to the strong crustal deformation and seismic activities, volcanism is also frequent
in this region. Geological and geophysical studies have shown that eruptions occurred around
the southwestern Yunnan block around the Quaternary period [17,26], which were controlled by
faults [27–29].
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Figure 1. (a) Tectonic location of the Yao’an and its surroundings in China, as well as the major plate 
boundaries in and near mainland China. The red box indicates Yao’an and its adjacent tectonic belts 
(b). The white solid lines represent major active faults [30]. The small red circles represent major cities. 
The red star indicates Yao’an. The focal mechanism balls represent the 2009 Yao’an Ms6.0 earthquake 
and 2000 Yao’an Ms6.5 earthquake (GCMT). The characters in italics represent the major faults of the 
region, such as Ganzi-Yushu (1), Xianshuihe (2), Longriba (3), Longmenshan (4), Anninghe (5), 
Zemuhe (6), Xiaojinghe (7), Lijiang–Xiaojinhe (8), Jinshajiang (9), Nujiang (10), Red River (11), 
Lancangjiang (12), Nahua-Chuxiong (13), and Maweijing (14). The block surrounded by the black 
dotted line is Sichuan-Yunnan block (SYB), which is also called Chuandian Block. The rhombic block 
enclosed by the black thin solid line is the Yunnan block (YNB), which is also called Diandong Block. 

3. Interferometric Synthetic Aperture Radar Data and Analysis 

In this study, two overlapping frames of L-band ALOS PALSAR images from an ascending track 
acquired on 19 October 2008 and 22 July 2009 were selected. Detailed parameters of the produced 
interferogram (Figure 2) are shown in Table 1. 

The two-pass InSAR approach using ALOS PALSAR data was applied to generate the 
interferogram containing ground surface deformation during the seismic event based on GAMMA 
software [31]. The Shuttle Radar Topography Mission (SRTM) 1-arcsec (~30 m) data were used to 
remove topographic phase from the interferogram. An adaptive filtering method was used to reduce 
phase noise. Phase unwrapping was performed using the minimum cost flow algorithm [32]. 
Residual orbit errors and ionosphere-related noises were corrected by a 2nd order polynomial based 
on the assumption that the InSAR phase in the far field is negligible [33,34]. 

Figure 2 shows the interferogram, mapping the coseismic deformation pattern for the 9 July, 
2009 event. Two significant small-scale, oval-shaped deformation lobes are observable. The oval-
shaped signals display both positive and negative displacement reaching up to 7 cm along the line-
of-sight (LOS). The up lobe and down lobe represent displacement moving away from and towards 
the satellite, respectively. Based on spatial and temporal coincidence with the seismic event from 

Figure 1. (a) Tectonic location of the Yao’an and its surroundings in China, as well as the major plate
boundaries in and near mainland China. The red box indicates Yao’an and its adjacent tectonic belts
(b). The white solid lines represent major active faults [30]. The small red circles represent major cities.
The red star indicates Yao’an. The focal mechanism balls represent the 2009 Yao’an Ms6.0 earthquake
and 2000 Yao’an Ms6.5 earthquake (GCMT). The characters in italics represent the major faults of the
region, such as Ganzi-Yushu (1), Xianshuihe (2), Longriba (3), Longmenshan (4), Anninghe (5), Zemuhe
(6), Xiaojinghe (7), Lijiang–Xiaojinhe (8), Jinshajiang (9), Nujiang (10), Red River (11), Lancangjiang
(12), Nahua-Chuxiong (13), and Maweijing (14). The block surrounded by the black dotted line is
Sichuan-Yunnan block (SYB), which is also called Chuandian Block. The rhombic block enclosed by the
black thin solid line is the Yunnan block (YNB), which is also called Diandong Block.

3. Interferometric Synthetic Aperture Radar Data and Analysis

In this study, two overlapping frames of L-band ALOS PALSAR images from an ascending track
acquired on 19 October 2008 and 22 July 2009 were selected. Detailed parameters of the produced
interferogram (Figure 2) are shown in Table 1.

The two-pass InSAR approach using ALOS PALSAR data was applied to generate the
interferogram containing ground surface deformation during the seismic event based on GAMMA
software [31]. The Shuttle Radar Topography Mission (SRTM) 1-arcsec (~30 m) data were used to
remove topographic phase from the interferogram. An adaptive filtering method was used to reduce
phase noise. Phase unwrapping was performed using the minimum cost flow algorithm [32]. Residual
orbit errors and ionosphere-related noises were corrected by a 2nd order polynomial based on the
assumption that the InSAR phase in the far field is negligible [33,34].

Figure 2 shows the interferogram, mapping the coseismic deformation pattern for the 9 July 2009
event. Two significant small-scale, oval-shaped deformation lobes are observable. The oval-shaped
signals display both positive and negative displacement reaching up to 7 cm along the line-of-sight
(LOS). The up lobe and down lobe represent displacement moving away from and towards the satellite,
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respectively. Based on spatial and temporal coincidence with the seismic event from GCMT (Global
Centroid Moment Tensor) catalogue, we infer that the local, oval-shaped signal was caused by the
earthquake that occurred on 9 July 2009.
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Figure 2. Coseismic interferogram (a) and resampled image (b) of the 2009 Yao’an earthquake.

Table 1. Parameters of the SAR (Synthetic Aperture Radar) interferogram used in this study.

Imaging
Time

Observation
Satellite

Observation
Model

Radar
Frequency

Polarization
Mode

Perpendicular
Baseline Track No.

19/10/2008 ALOS
PALSAR

Stripmap
(Fine-beam) L-band HH 728 m 48222/07/2009

4. Source Modeling and Inversion Analysis

Earthquakes occur when the stress exceeds the frictional resistance of the fault, resulting in fault
dislocation. In order to further understand the tectonics of the Yao’an region, a reasonable source model
based on InSAR observations is required. Taking computation efficiency and inversion feasibility into
consideration, we first used a quadtree sampling approach [35] to produce a manageable data set
of appropriate spatial resolution. However, this fails to capture the main deformation pattern at a
sufficiently high resolution. Instead, we sample the near-field area with a dense regular spacing grid
and the far-field area with a sparse regular spacing grid. The modeling was executed in two steps.
First, the fault is regarded as a uniform slip plane to establish a uniform model, and then the best-fit
fault parameters are obtained. Second, the fault is further divided into several patches to establish a
distribution model based on the fault geometry from the uniform model, and the slip on each patch is
estimated with a slip distribution model.

4.1. Uniform Slip Model

Based on the results of previous geological and geophysical investigations, we can obtain the
approximate geometric structure of the fault, i.e., the location, length, strike angle, and dip angle [1,2,6].
The results of these investigations will be used to determine intervals for parameter inversion (Table 2).
Referring to the pattern of the observed deformation, we assume that fault could be interpreted
as a single rectangular plane with a uniform slip embedded in a homogeneous, isotropic, elastic
half-space [36]. The single rectangular plane could be defined according to nine parameters: Length,
width, depth, strike, dip, slip magnitude (dip- and strike-slip along the fault) and location (two
parameters). To find the optimal parameters and their uncertainties, the nine parameters were
determined by minimizing the squared misfits between the observed and predicted LOS deformations
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using the downhill simplex method and Monte Carlo simulations [37]. Here, the root mean square
error (RMSE) was employed as the prediction-fit criterion. Table 2 shows the modeled parameters
determined from 106 independent runs of the open-source Geodetic Bayesian Inversion Software
(https://comet.nerc.ac.uk/downloadgbis/).

The observed, modeled, and residual interferograms of the uniform model are shown in Figure 3.
The uniform model fits the observed interferogram reasonably well. Table 2 shows the optimal
solutions of the nine parameters and their standard deviation values. According to the uncertainties of
the parameters and the good consistency between the simulation and observation, we consider that the
parameters of the inversion are reasonable. The optimal rectangular plane is vertical and strikes along
the northwest-southeast, and both of which are fixed in the follow-on inversion of distributed slip.

Table 2. Source fault parameters and their 2-standard deviations for the 9 July, 2009 Yao’an earthquake.

Parameter (Unit) Intervals of Parameters 2009 Ms6.0 Yao’an Earthquake

Length (km) (0–15 km) 6.8 ± 1.5
Width (km) (0–10 km) 1.1 ± 0.0
Depth (km) (2–6 km) 4.0 ± 0.7

Strike (◦) (0–360◦) 301.4 ± 4.3
Dip (◦) (−89.9–−0.1◦) −87.9 ± 0.8

Strike slip (m) (−2 m–2 m) 0.7 ± 0.4
Dip slip (m) (−3–0 m) −0.9 ± 0.4

X (km) (10–17 km) 14.1 ± 0.7 *
Y (km) (1–6 km) 3.1 ± 0.6 *

* The X-coordinate/Y-coordinate location is the mid-point of top edge of the modeled fault (the magnitude of the
dip angle is negative). The longitude and latitude of reference point of the X- and Y-positions are 101.083◦ and
25.535◦, respectively.
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pattern (optimal strike angle and dip angle), the real physical activity properties of a tectonic fault 
should not reflect a homogeneous slip on a sharply bounded fault plane. Therefore, we further 
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Figure 3. Coseismic deformation and model for uniform slip inversion of the Yao’an earthquake;
(a) Observed coseismic interferogram (the black line represents the modeled fault trace); (b) model
synthetic interferogram; (c) residual interferogram between observation and modeling; (d) a–a’ is a
profile across the fault trace and the profile of line-of-sight (LOS) displacement (blue dots), model LOS
displacement (red dots) and topography (grey).

4.2. Distribution Slip Model

Although the uniform slip model can provide a first-order fit to the observed deformation pattern
(optimal strike angle and dip angle), the real physical activity properties of a tectonic fault should not
reflect a homogeneous slip on a sharply bounded fault plane. Therefore, we further established a more

https://comet.nerc.ac.uk/downloadgbis/
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realistic model that discretized the fault into several sub-faults to describe the uneven slip at different
depths and locations of fault planes. Here, we adopted the Steepest Decent Method (SDM) geodetic
inversion code developed by the authors of Reference [38] to establish the distribution models, which
has been successfully applied to many fault inversion analyses (e.g., [39–43]). In the process of the
inversion, a smoothing constraint on the slip was applied between adjacent sub-faults to stabilize the
inversion. Figure 4 shows an optimal smoothing factor, which was determined using the compromise
curve between the roughness of the dislocation model and the relative fitting residuals. It should be
noted there is other ways to determine the smoothing factor such as the one based on strop drop [44].
Moreover, we used CRUST1.0 [45] to characterize the stratification of the crust in Yao’an area.
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Using the fault geometry (optimal strike angle and dip angle) determined through the uniform
slip modeling, we extended the fault plane along the strike and down-dip by increasing its total length
to 22 km and its down-dip width to 12 km. The fault plane is discretized into 1 km sub-faults in the
along-strike and down-dip directions. Then, the slip on all of the small sub-faults was calculated using
the SDM (Steepest Decent Method) inversion code [38].

Surface displacements simulated from the distribution slip model are shown in Figure 5b and their
comparisons against the InSAR observations are shown in Figure 5a. The deformation predicted by the
distribution model was more consistent with the InSAR observations than the uniform slip modeling
result (Figure 3b). The residual between the observed and modeled was small (Figure 5c). The 3D
slip distribution is shown in Figure 6. Slips on the fault planes are smooth and do not exhibit much
complexity. Most of the slip occurred at depths of 3 to 8 km, with a maximum slip of approximately
70 cm at a depth of 6 km. The seismic moment based on the distributed slip is 5.56 × 1017 Nm,
corresponding to Mw5.8, which is comparable to seismological estimates of Mw5.7 (from USGS, United
States Geological Survey). In order to estimate the uncertainty of the slip distribution, we adopted the
Monte Carlo Method by adding random noise to the inversions. Error analysis with 1σ uncertainty
showed that the maximum standard deviation is ~1.2 cm, which indicates that the distribution slip
was well retrieved (Figure 6c).
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Figure 6. (a) Slip distributions for a fault plane of 22 km length, 12 km downdip width, and 87◦ dip;
(b) 3-D view of the fault from WSW; (c) 1σ uncertainty in fault slip estimated through a Monte Carlo
process with 100 inversions. The thick black line in the top of each subfigure represent the projection of
fault trace on the surface.
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5. Discussions

5.1. Seismic Activity in Yao’an Area

The displacement profile in Figure 2 does not show any discontinuity, implying that the fault did
not break the surface. This phenomenon is consistent with the results from field investigation showing
the absence of significant seismic ruptures at the surface after the Yao’an earthquake [1]. The optimal
strike angle and dip angle determined by the rectangular dislocation model constrained by InSAR
observations are similar to the results of previous geological and geophysical investigations (Table 3).

Table 3. Comparison of source parameters of the 2009 Ms6.0 Yao’an earthquake

Fault Plane Difference in
Strike (◦)

Difference in
Dip (◦) Source

Strike (◦) Dip (◦)

294.00 87.00 −7.36 −5.1 USGS a

294.00 87.00 −7.36 −5.1 GCMT b

296.00 77.00 −5.36 −15.1 Qin et al. [46]
304.45 75.52 3.09 −16.58 Zhang et al. [47]
296.60 86.60 −4.76 −5.5 Pan et al. [48]
293.00 88.00 −8.36 −4.1 Li et al. [6]
301.36 −87.9 This study

a United States Geological Survey. b Global Centroid Moment Tensor Catalogue.

During the period from 2000 to 2009, five Ms > 6.0 earthquakes occurred within the Yunnan
block [6]. It should be noted that on 15 January 2000, an Ms6.5 earthquake occurred in the Yao’an area,
towards the NEE of the 2009 Yao’an earthquake (Figure 7). The focal mechanisms of the 2000 and
2009 Yao’an earthquakes are similar, suggesting that the two earthquakes have occurred on the same
fault, namely the Maweijing fault with a NW-trending high-angle dextral strike-slip [6,46]. However,
the epicenter of 2000 Ms6.5 earthquake is about 5 km away from the Maweijing fault, suggesting a
possible error in the reported earthquake location. The NW-striking fault plane of the 2009 Yao’an
earthquake is approximately consistent with distribution of the aftershocks [6,46] (Figure 7). It should
be noted that the aftershock data are from the China Seismic Network. The seismic monitoring stations
were sparse and the observation accuracy was relatively poor in 2009. Therefore, the aftershock
locations, especially the depth, have large uncertainties, while the number of earthquakes should
be accurate. Hence we only analyzed the approximate distribution of the aftershocks with respect
to the fault geometry of the 2009 Yao’an earthquake inferred from InSAR. We did not analyze the
information related to the aftershock depth because the depth estimates were extremely unreliable.
The geological survey, aerial image interpretation of the earthquake zone, source distribution, and the
focal mechanism solution of the earthquake sequence all indicate that the 2009 Ms6.0 Yao’an earthquake
ruptured the Maweijing fault [6,46]. The reported hypocenter depth of the 2009 Ms6.0 earthquake is
about 10 km [6,46,47,49]. However, the slip distribution from the inversion of the InSAR displacement
field suggests that most of the slip took place at depth shallower than 10 km.

It should be noted that we only have one ascending track L-band ALOS PALSAR images to study
the 2009 Ms6.0 Yao’an earthquake. This single imaging geometry, together with the complex structure
in this mountainous region limit our ability to obtain optimal fault geometry and slip distribution of
the 2009 earthquake. Nevertheless, the coseismic slip distribution of this earthquake is obtained for
the first time. This is important to better evaluate the seismic hazards in the region.
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5.2. Tectonic Dynamics Mechanism

The occurrence of the 2009 Yao’an earthquake is the result of the regional tectonic stress field.
The collision between the Indian plate and the Eurasian plate causes the Qinghai–Tibet plateau to move
eastward. However, the eastward motion is blocked by the South China block, causing the extrusion
of crustal materials towards the southeast [50]. As a result, the Sichuan-Yunnan block is rotated
clockwise around the eastern Himalayan tectonic belt [50]. Eastern faults of the Sichuan-Yunnan
block are dominated by left-lateral strike-slip activity, whereas western faults are dominated by
right-lateral strike-slip activity [51]. The 2009 Yao’an earthquake occurred on the Maweijing fault in the
southwestern boundary of the Yunnan block. This fault also has dextral strike-slip, which is consistent
with the fault movement of the southwestern part of the Yunnan block. Therefore, it can be concluded
that the 2009 Yao’an Ms6.0 earthquake was a result of regional stress accumulation which eventually
led to the rupture of the Maweijing fault.

The stress p-axis of the 2009 Yao’an earthquake are approximately in the NNW–SSE direction,
which is consistent with the regional tectonic stress field [46]. The Yao’an earthquake and most of
its aftershocks occurred in a transition region between low and high velocity zones in the crust [52].
In addition, with the impact of the collision and convergence between the Indian and Eurasian plates,
deformation of the Sichuan–Yunnan block is accommodated by complex internal tectonic deformation,
southeastward crustal extrusion, and rotation [53,54]. The upper crust of the Sichuan–Yunnan block
shows lateral extrusion to the southeast and clockwise rotation around the eastern Himalayan syntaxis.
Additionally, the lower crust underlying the Sichuan–Yunnan block deforms by plastic flow [55].
This mechanism drives deformation and fault activity in the upper crust, leading to strain accumulation.
The accumulated strain will then be released by frequent earthquakes in the region.

6. Conclusions

The 2009 Ms6.0 Yao’an earthquake occurred in a mountainous area that lacks dense seismic and
GPS networks. Therefore, the source parameters, particularly the coseismic deformation characteristics
and the distribution of the slip along the fault, remain unknown. The InSAR technology provides
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important constraints on the source parameters and slip distribution. The inversion results have
revealed that the Yao’an earthquake was dominated by right-lateral slip with a down-slip component.
The source parameters from the dislocation model indicate that most of the slip occurred at depths of
3–8 km, with a maximum slip of approximately 70 cm at a depth of 6 km.

This study further indicates that InSAR can provide reliable source parameters of shallow,
moderate-sized earthquakes in areas that lack dense seismic networks. More importantly, the Yao’an
area is an earthquake-prone region, and thus continuous attention should be given to seismic activities
in this region. Moreover, with the development of satellite technologies (e.g., GNSS and InSAR),
more high-precision observations with better temporal and spatial resolutions could be used to study
earthquakes in the mountain area in more detail.
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