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Abstract: Automatic image registration for multi-sensors has always been an important task for
remote sensing applications. However, registration for images with large resolution differences has
not been fully considered. A coarse-to-fine registration strategy for images with large differences
in resolution is presented. The strategy consists of three phases. First, the feature-base registration
method is applied on the resampled sensed image and the reference image. Edge point features
acquired from the edge strength map (ESM) of the images are used to pre-register two images
quickly and robustly. Second, normalized mutual information-based registration is applied on the
two images for more accurate transformation parameters. Third, the final transform parameters
are acquired through direct registration between the original high- and low-resolution images. Ant
colony optimization (ACO) for continuous domain is adopted to optimize the similarity metrics
throughout the three phases. The proposed method has been tested on image pairs with different
resolution ratios from different sensors, including satellite and aerial sensors. Control points (CPs)
extracted from the images are used to calculate the registration accuracy of the proposed method and
other state-of-the-art methods. The feature-based preregistration validation experiment shows that
the proposed method effectively narrows the value range of registration parameters. The registration
results indicate that the proposed method performs the best and achieves sub-pixel registration
accuracy of images with resolution differences from 1 to 50 times.

Keywords: image registration; edge point feature; normalized mutual information; ACO for
continuous domain; diversity of parameters

1. Introduction

Image registration is the work of geometrically aligning two images containing the same scene,
which are often called the reference image and the sensed image. The two images may have different
resolutions, and may be acquired by different sensors or at different times. Image registration plays
an important role in various applications, such as environmental monitoring, medical diagnosis,
computer vision, and change detection [1–4]. For remote sensing image applications, the registration
accuracy is of great concern. For applications like change detection, a registration accuracy of one-fifth
of a pixel can result in a detection error of about 10%. Traditional image-registration techniques
based on manually selected control points (CPs) can meet the requirement of accuracy. However,
the method is time consuming and very laborious, which is impractical for large volumes of remote
sensing data [5]. Automatic registration algorithms provide a more practical means with high efficiency
and accuracy and many methods have been proposed recently [6–10]. However, there are always
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problems like inefficiency, inaccuracy, and instability when it comes to the automatic registration of
multi-sensor images. The difficulties involved mainly include the significant geometric and radiometric
differences between the images to be registered. Therefore, further studies are required in order to
improve the efficiency, accuracy, and robustness of the existing methods, especially for images with
significant differences.

The main purpose of this study is to present a method to register two images with large resolution
differences, that has seldom been fully considered before. The method is a three-phase registration
parameter solving strategy. Phase-1 is a preregistration process using edge point features acquired
from the edge strength map (ESM). In Phase-1, a multiresolution image pyramid is constructed and
the hierarchy with the similar resolution as the low-resolution image is selected to register with the
low-resolution image. A low-accurate solution set that comprises rigid and scale transform parameters
is the output of Phase-1 and the solution search space for Phase-2. Phase-2 then searches for accurate
registration parameters using mutual information (MI) and a more accurate solution set is the output
of Phase-2. In Phase-3, the output of Phase-2 is used to construct a search space of an affine transform
model for the fine-tuning registration directly between the original high- and low-resolution images.
The MI-based registration method is then applied again to obtain the final accurate registration
parameters. ACOR is the optimizer for all the three phases. The main contributions of this paper are
given as follows:

1. Edge point features acquired from ESMs of the images are used to pre-register two images quickly
and robustly for the first time.

2. Registration efficiency is increased through indirect registration between the image pyramid of
the high-resolution image and the low-resolution image in Phase-1 and Phase-2.

3. More accurate transform parameters are acquired through direct registration between the original
high- and low-resolution images in Phase-3.

The new method comprehensively utilizes feature- and intensity-based methods to overcome the
problem of ill-condition, inaccuracy, or inefficiency of a single method, namely, the proposed method
employs the advantages of the robustness and efficiency of edge point features and accuracy of MI.
The proposed method is tested on a variety of images include unmanned aerial vehicle (UAV) Phase
One images, aerial images, optical ZY-3 and TH-1 satellite images, and synthetic aperture radar (SAR)
images taken at different times. Experimental results show that the proposed approach is robust, fast,
and precise.

The rest of this paper is organized as follows. Section 2 focuses on a literature review of related
work and defining the research gap. Section 3 interprets the proposed method and the implementation
steps of the method in detail. In Section 4, we first validate the effectiveness of edge point features
and normalized mutual information for registration. Then the experimental results are described and
analyzed using several image pairs with different resolution ratios. Section 5 gives a critical discussion
on the factors that have an influence on the performance of the proposed method. Concluding remarks
are presented in Section 6.

2. Related Works

Depending on the image information used, image registration can be divided into two categories,
which are feature- and area-based methods in general [11]. Feature-based methods initially
extract distinctive features, and then implement registration using similarity measures to establish
transformation between the corresponding features. Area-based methods directly register two images
using original intensity information.

Feature-based methods work well on the condition that adequate detectable features, suitable
feature extraction, and reliable matching algorithms are available. The main advantage of the
approaches is that stable features are robust to complex geometric and radiometric distortions.
Feature-based methods can also be divided into two categories depending on the features used,
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which are low-level features and high-level features [12]. Low-level features-based methods estimate
the registration parameters by matching low-level features such as feature points, corners, edges, and
ridges. Needless to say, point features extracted from multi-sensor imagery with varying radiometric
and geometric properties will be difficult to match. Therefore, points are not suitable primitives when
the images to be registered have significantly different geometric and radiometric properties. Linear
features like edges and ridges are more suited for multi-sensor image registration since the geometric
distribution of the pixels making up the features can be used in the registration processes [13]. Feature
extraction methods widely used include scale-invariant feature transform (SIFT) [14], Harris corner
detector [15], Laplace of Gaussian (LoG) zero-crossing edge detector [16], and the phase congruency
model [8]. Low-level features are useful when the distinctive details are prominent. High-level
features-based methods extract specific objects such as roads, buildings, and rivers as matching
features. Feature extraction methods for high-level features include the active contour model [17],
image segmentation [18], and mean-shift [19], and the matching entity can be area, perimeter, moment,
and centroid. High-level features are more suitable for registration applications if the structural
characteristics of specific object types are well known. After calculating the value of the low- and
high-level features for the two images, the difference of the value is considered as the distance of
the two sets of features. An optimization strategy is then applied to minimize the distance. Another
advantage of feature-based methods is that these approaches are not strict with the initial searching
range of registration parameters. With adequate distinctive features, feature-based methods are fairly
easy to converge to near-optimal registration results. However, in multi-sensor image registration
applications, it is difficult for feature detectors to take all the differences into account. For example,
when the difference in geometric or radiometric characteristics between the two images is large,
mismatching and low registration accuracy often appear.

Area-based methods can be applied to solve the problem of inaccurate results when images
to be registered have poor geometric and radiometric correlation. These approaches use the entire
images or subsets of the images to estimate the intensity correspondence. As a result, the area-based
methods often give rise to a heavy computational load [11,20]. The similarity metrics widely used
in area-based methods include normalized cross correlation (NCC) [21], phase correlation [22], and
mutual information (MI) [8,23]. The NCC algorithm performs well for images with similar gray-level
characteristics. However, NCC is sensitive to the intensity changes and unable to handle multi-sensor
images taken under different illumination and noise conditions [11]. In order to precisely match
multi-sensor images with significant noise and illumination changes, a more suitable technique is
needed. Many researchers have proved that the MI-based method can reach sub-pixel registration
accuracy, though it is time consuming. Another drawback of the MI-based method is that the method
requires a particular region of the search space to converge to the optimal solution. When the search
space is not well predefined, the MI-based method converges to a local maximum rather that a global
maximum, resulting in an incorrect registration result [20]. In the study of [8], a new metric—spatial
and mutual information (SMI)—combining spatial information and mutual information is proposed for
registration. The SMI-based metric takes into account both spatial relations of detected features (spatial
information) and the mutual information between the reference and sensed images. Experiments have
shown that the SMI-based metric is robust and can achieve high accuracy.

The purpose of image registration is to find the registration transformation function between the
two coordinate systems of two images. Linear transformations, such as rotation, scaling, translation,
and affine transformations are the most commonly used transformation models for medical or remote
sensing image registrations [2,8,21,23]. Elastic or non-rigid transformations are more complicated
transformation models, which are capable of locally warping the template image to align with the
reference image. Non-rigid transformations include radial basis functions [24], physical continuum
models [25], large deformation models [26], et al. After the similarity metric and registration
transformation function are determined, an optimizer is required to find the global maximum of
the proposed metric when the images are correctly registered. The optimization methods used
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include exhaustive search [27], Marquardt–Levenberg [28], simultaneous perturbation stochastic
approximation (SPSA) search strategy [20], continuous colony optimization algorithm (ACOR) [29],
etc. Exhaustive search is simple and easy to understand, but the computing load is heavy and
increases exponentially with the number of parameters. SPSA uses a multiresolution search strategy to
reduce the computing time and accelerate maximization of the similarity metric [20]. However,
SPSA converges slowly when the registration parameters are close to the correct solution, thus
limiting the efficiency of the method. Thévenaz et al. [28] proposed a more powerful optimizer
that converges in a few criterion evaluations when initialized with good starting conditions using a
modified Marquardt–Levenberg algorithm. The ant colony optimization (ACO) algorithm is a heuristic
search optimization method inspired by the real ants’ foraging behavior. In nature, ants deposit
chemical material called pheromones to communicate with each other and find the shortest path from
the food source to their nest. Therefore, the key point of ACO is to set up a proper pheromone model
that allows artificial ants to cooperate with each other like real ants. ACO is originally proposed for
discrete problems and is not suitable for registration applications, which is a continuous optimization
problem [30]. ACOR is the continuous version of ACO [31] and has been applied successfully for
registration of optical and synthetic aperture radar (SAR) images [8,29]. Compared with other methods,
ACO and ACOR are more robust for problems with many local optima. ACOR can also deal with
complex multimodal problems effectively [32]. These reasons all motivate us to adopt ACOR as an
optimizer in this paper.

The aforementioned methods have been applied for registration of various types of remote sensing
images such as unmanned aerial vehicle (UAV) images, aerial images, optical satellite imagery, and
SAR imagery. However, the reference image and the sensed image of these registration applications
often have a similar resolution with a difference not more than 5 times. Few research studies have
concentrated on registration of images with a resolution difference larger than 10 times, which is
of great importance in certain remote sensing applications such as digital calibration field-based
geometric calibration [33–36] and unexploded ordnances (UXO) risk assessment [37]. The popularity
of high-resolution remote sensing images, such as WorldView 3/4 satellite images, will also create
demand for registration of images with large resolution differences in the future. This paper focused
on registration between aerial images and optical satellite images with a resolution difference as large
as 50 times. Compared with other registration applications, the registration of remote sensing images
with large resolution differences still has the following characteristics:

1. The number of features extracted directly from high-resolution images is much larger than that
of low-resolution images. Thus, this increases the matching difficulty and computing time for the
correspondence of the features.

2. Some features are no longer suitable for image registration. For instance, line features on
the satellite image become area features on the aerial image and it is difficult to find the
correspondence between these two features using state-of-the-art methods.

3. Due to the significant differences in sensors, environment, and distance, there are also huge
differences in the radiometric information and noise between high-resolution aerial images and
low-resolution satellite images. The difference greatly decreases the robustness of SIFT and other
feature-based methods.

Due to the above problems between images with large resolution differences, it is not a good
choice to directly register the two images. The method adopted by [37] is to directly resample both the
high-solution image and low-solution image to a similar solution. The method in [33] completes the
registration between the aerial DOM image and the ZY-3 image by projecting the DOM onto the satellite
image focal plane with the sensor model using the laboratory interior orientation, satellite orbital, and
attitude data of ZY-3. These methods essentially register the transformed high-resolution image and
low-resolution image, which may result in loss of registration precision. Meanwhile, there is still a
large grayscale difference between resampled images and low-resolution effects. A down-sampled
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image obtained by the multiresolution image pyramid can be more suitable because it takes into
account the degradation effect of the image.

3. Materials and Methods

The proposed automatic registration scheme aims to improve the previous registration algorithms
in order to handle images with large resolution differences. As previously mentioned, the proposed
algorithm consists of three coarse-to-fine registration processes. In the first stage, a down-sampled
high-resolution image from the image pyramid was registered with the low-resolution image with a
feature-based method. In the second stage, the two preregistered images in the previous stage were
registered with an area-based method more precisely and more quickly. The third stage transforms the
registration parameters to adapt to the original high- and low- resolution images. Then, an area-based
method was used again to optimize the final registration parameters. ACOR was utilized as an
optimizer throughout the process chain. Figure 1 shows the flowchart of the proposed method.

Remote Sens. 2018, 10, x FOR PEER REVIEW  5 of 27 

 

sampled high-resolution image from the image pyramid was registered with the low-resolution 
image with a feature-based method. In the second stage, the two preregistered images in the previous 
stage were registered with an area-based method more precisely and more quickly. The third stage 
transforms the registration parameters to adapt to the original high- and low- resolution images. Then, 
an area-based method was used again to optimize the final registration parameters. ACO  was 
utilized as an optimizer throughout the process chain. Figure 1 shows the flowchart of the proposed 
method. 

Reference Image Sensed Image
Resampled 

Grayscale Image

Image Pyramid Construction

Edge Points Edge Points

( ) ( )
2

1

1 exp
22

m
i

i ss

d a
D A,B

σσ π =

 
= − 

 


Gaussian Weighted Distance

ACO for Continuous Domain
Phase-1 Preregistration

NO

Parameter Range for Phase-2

YES

Reference Image

Normalized Mutual Information

( ) ( ) ( )
( )

H A H B
I A,B

H A,B
+

=

ACO for Continuous Domain

( )
ii xdiv x T≤

NO

Parameter Range for Phase-3

YES

Phase-2 Registration

1 1

1 1

21

22

23

24

2

2

cos cos
sin sin
sin sin
cos cos

l l h h

h h l l

l l h h

l l h h

l h
x x x
l h
y y y

s r s
s r s
s r s
s r s

t t t
t t t

ϕ ϕ
ϕ ϕ
ϕ ϕ
ϕ ϕ

 ⋅ ≤ ≤ ⋅
− ⋅ ≤ ≤ − ⋅
 ⋅ ≤ ≤ ⋅
 ⋅ ≤ ≤ ⋅
 ≤ ≤


≤ ≤

2 2

2 2

0 21 31 0 21

0 22 32 0 22

0 23 33 0 23

0 24 34 0 24

3

3

l h

l h

l h

h h

l h
x x x
l h
y y y

s r r s r
s r r s r
s r r s r
s r r s r

t t t
t t t

 ⋅ ≤ ≤ ⋅
− ⋅ ≤ ≤ − ⋅
 ⋅ ≤ ≤ ⋅
 ⋅ ≤ ≤ ⋅
 ≤ ≤


≤ ≤

Normalized Mutual Information

( ) ( ) ( )
( )

H A H B
I A,B

H A,B
+

=

ACO for Continuous Domain

( )
ii xdiv x T≤

NO

Optimal transformation 
parameters

YES

Phase-3 Registration

31 32 3

33 34 3

0 0 1

x

y

r r t
r r t
 
 
 
  

Registered Image

( )
ii xdiv x T≤

Phase-1 Optimizer

Phase-2 Optimizer Phase-3 Optimizer

 
Figure 1. Flowchart of the proposed method. ACO: ant colony optimization. 

3.1. Edge Point Features-based Preregistration 

The main process of preregistration is to construct similarity metrics using detected edge point 
features. Firstly, the high-resolution image was down-sampled to a resolution similar with the low-
resolution image using a multiresolution image pyramid. Secondly, ESMs based on the anisotropic 
Gaussian kernel were calculated for the two images to be registered. Edge point features were then 
extracted from ESMs using a non-maximum suppression method.  

3.1.1. Image Pyramid Construction 

The image pyramid has been widely used in numerous registration methods because it can 
reduce computational time and improve algorithm stability. It was used in this paper for both reasons, 
but in a different way. A high-resolution image has a huge number of pixels, thus feature extraction 
and matching are time-consuming. Besides, features directly extracted from high- and low-resolution 
images are not applicable for matching. For instance, a line feature (such as road) on a low-resolution 
image turns into two lines in the high-resolution image. Point features like SIFT also face a similar 

Figure 1. Flowchart of the proposed method. ACO: ant colony optimization.

3.1. Edge Point Features-based Preregistration

The main process of preregistration is to construct similarity metrics using detected edge point
features. Firstly, the high-resolution image was down-sampled to a resolution similar with the
low-resolution image using a multiresolution image pyramid. Secondly, ESMs based on the anisotropic
Gaussian kernel were calculated for the two images to be registered. Edge point features were then
extracted from ESMs using a non-maximum suppression method.
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3.1.1. Image Pyramid Construction

The image pyramid has been widely used in numerous registration methods because it can
reduce computational time and improve algorithm stability. It was used in this paper for both
reasons, but in a different way. A high-resolution image has a huge number of pixels, thus feature
extraction and matching are time-consuming. Besides, features directly extracted from high- and
low-resolution images are not applicable for matching. For instance, a line feature (such as road) on a
low-resolution image turns into two lines in the high-resolution image. Point features like SIFT also
face a similar problem. All the above reasons motivated us to transform the high-resolution image to a
resolution similar with the low-resolution image. The image pyramid just provides a solution more
reasonable than down-sampling for it considers image degradation effects. Thus, the image pyramid
of the high-resolution image was constructed containing the level with the resolution nearest to the
low-resolution image. Then the image of the level was resampled to a resolution as the same as the
low-resolution image.

3.1.2. ESMs

An ESM is an image with the same size as the original image. The pixel value of the ESM
represents the possibility of the pixel being an edge pixel. For the Canny detector, the ESM consists of
intensity gradient values of each pixel. For the phase congruency model, the ESM consists of Fourier
components in phases of each pixel. In order to extract proper reasonably distributed edge point
features, a noise robust ESM with good edge resolution and localization and little edge stretch effect is
desirable. The gradient-based ESM ηi(x) used by the Canny [38] or Marr–Hildreth edge detector [39]
is the convolution of image I(x), x = [x, y]T with the directional derivative of the isotropic Gaussian
kernel gσ(x). It is widely known that the isotropic Gaussian kernel suppresses noise while blurring
edges. When using the small scaled Gaussian kernel, high edge localization and resolution can be
obtained while noise robustness is sacrificed. In contrast, the large scale Gaussian kernel is noise-robust,
but subject to poor edge localization and resolution. To overcome the conflict, anisotropic Gaussian
kernels were designed in [40], which can be represented [40,41] as follows:

gσ,ρ,θ(x) = 1
2πσ2 exp

(
− 1

2σ2 xTR−θ

[
ρ2 0
0 ρ−2

]
Rθx

)
, ρ ≥ 1, σ > 0

Rθ =

[
cos θ sin θ

− sin θ cos θ

]
,

(1)

where ρ is the anisotropic factor, θ is the rotate angle of the anisotropic Gaussian kernel. The noise
suppression capability of the anisotropic Gaussian kernel is inversely proportional to the square of its
scale but independent of its anisotropic factor and direction. The directional derivative filter along the
direction θ of the anisotropic Gaussian kernel is derived as follows:

g′σ,ρ,θ(x) =
∂gσ,ρ,θ(x)

∂θ
= −ρ2[cos θ, sinθ]x

σ2 gσ,ρ,θ(x). (2)

Assume that there are a number of P directions θp = (p− 1)π/P, p = 1, 2, . . . P, then the
anisotropic directional derivative-based ESM ηa(x) can be expressed as:

ηa(x) = max
p=0,1,...,P−1

{∣∣∣I ∗ g′σ,ρ,θp
(x)
∣∣∣}. (3)

The previous analysis has shown that the noise suppression capability of the anisotropic Gaussian
kernel is inversely proportional to the square of its scale. Thus, in the same scale, using anisotropic
Gaussian kernel with a large anisotropic factor ρ instead of the isotropic Gaussian kernel blurs fewer
edges while preserving noise robustness, thus increasing the edge localization capability. It has also
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been proven that the edge resolution constant of the anisotropic directional derivative approximately
equals 2σ/ρ when the number of P are larger than 16, which can also be satisfied with a small ratio of
the scale to the anisotropic factor. Therefore, high edge resolution and noise-robustness are compatible
in the anisotropic directional derivative-based ESMs.

An anisotropic directional derivative-based ESM has high edge positioning ability, however,
it suffers severely from the edge stretching effect, a phenomenon where the detected edges are
elongated along their directions. Edge stretch is determined by the product of scale factor σ and
anisotropic factor ρ. Therefore, the edge detection using anisotropic directional derivative-based ESMs
generates spurious edge pixels around the ends of the actual edges. Considering the advantage of
small-scaled isotropic directional derivative-based ESM with little edge stretch, a fused ESM combining
anisotropic and isotropic directional derivative-based ESMs is designed as follows:

η f (x) =
√

ηa(x) · ηi
′(x)

ηi
′(x) =

∣∣∣I ∗ ∇gσ/ρ(x)
∣∣∣, (4)

where ηi
′(x) denotes an isotropic directional derivative-based ESM with scale σ/ρ and ∇gσ/ρ(x)

denotes the derivative of the isotropic Gaussian kernel gσ/ρ(x). Figure 2 illustrates the three ESMs of a
test image corrupted by zero-mean white Gaussian noise [40]. As analyzed previously, an isotropic
directional derivative-based ESM with the scale σ = 1 in Figure 2b has little edge stretch but was
subject to severe noise response in the background. The anisotropic directional derivative-based ESM
in Figure 2c created by the parameters σ2 = ρ2 = 8, P = 16, shows severe edge stretch and many
spurious short lines radiating from the ends of the actual edge. The fused ESM in Figure 2d inherits
the merits of both anisotropic and isotropic directional derivative-based ESMs, resulting in little edge
stretch and a cleaner background.
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3.1.3. Edge Point Feature Detection

Edges can be extracted from the ESM using a non-maximum suppression and hysteresis decision.
For this preregistration process, we do not use all pixels on the edges, but a certain amount of edge
point features from the edges to improve processing efficiency. To select reasonably distributed edge
point features, a 2-D order-statistic filter was used to perform a morphological dilation on the ESM.
Then, edge point features were selected as local maxima in the filtered ESM that were also greater than
the threshold.

Therefore, the set of edge point features can be mathematically defined as follows:

ESMd = ordfilt2(ESM,r)
P = {(i, j)|ESM(i, j) = ESMd(i, j), ESM(i, j) > T },

(5)

where ordfilt2(·) denotes the morphological dilation operation applied on the ESM with a 2-D
order-statistic filter, r is the radius of the filter, and T is the threshold for filtering out edge point
features with low local maxima. (i, j) is the pixel coordinate of edge point features in the ESM and P
denotes the set of obtained edge point features.

3.1.4. Gaussian Weighted Distance-based Similarity Metric

Let PA = {a1, a2, . . . , am} and PB = {b1, b2, . . . , bn} be the point sets extracted from the ESMs of
the two images A and B to be registered. The nearest distance between ai(i = 1, 2, . . . , m) and PB is

d(ai) = min
b∈B

(‖ai − b‖), (6)

where ‖ · ‖ is the Euclidean distance between ai and b. For two point sets well matched without
outliers, the maximum value of d(ai) can be used to evaluate the similarity of the two point sets.
The smaller the maximum value of d(ai) is, the more similar the two point sets. This is also the
basic principle of the Hausdorff distance-based registration method and has been applied in image
registration effectively [42,43]. However, the method will not work even with only one outlier for a
resulting large Hausdorff distance. In order to eliminate the effects of outliers, an inverse distance
metric weighted with a Gaussian function was used to measure the resemblance of two point sets.
This measurement D(A, B) is expressed as follows:

D(A, B) =
1

σs
√

2π

m

∑
i=1

exp
(
−d(ai)

2σs2

)
, (7)

where σs is the standard deviation of the Gaussian function. It can be chosen as the expected distance
of corresponding points. The Gaussian weighted distance D suppresses outliers effectively for a large
d(ai) has little contribution to the value of D. In contrast, the point pairs that were close to each other
contribute a lot to D. As a result, D is large only when most corresponding point pairs were close
to each other. Thus, the two images can be registered when D is maximized. Figure 3 shows simple
examples of D. The dots and triangles in the figures belong to two data sets. In Figure 3a, the distance
between the dots and the nearest triangle was 1. In Figure 3b, the distance between the dots and the
nearest triangle were the same as Figure 3a except for one outlier in the lower right corner with a
distance of 10. The D values for Figure 3a,b were 0.1196 and 0.1195 when σs was set as 30. It can be
seen that the outlier has little effect on the D values. However, when the Hausdorff distance was used
as the measurement, we obtained 9 and 19 for the two figures. The outlier changed the final result
significantly. Therefore, the measurement D minimizes the influence of outliers.
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3.2. Normalized Mutual Information-based Registration

Mutual information is a measurement that represents the degree of dependence of two data sets
and has been widely adopted to solve multi-model image registration for medical images [28,44]
and remote sensing images [8,23,45] for several reasons. Firstly, mutual information is insensitive to
changes in intensity and robust to noise in different modalities [20]. Secondly, mutual information has
no special requirements on image content [46]. It can process images with no obvious features like
corners, edges, and regions. Thirdly, mutual information generates sharp peaks at perfectly aligned
images, thus resulting in high registration accuracy [8].

The mutual information of two images A and B is defined as:

I(A, B) = H(A) + H(B)− H(A, B), (8)

where H(A) and H(B) are the entropies of A and B respectively, while H(A, B) being the joint entropy
of A and B. Image entropy is a measure of information contained in an image and the definitions of
H(A, B) is:

H(A, B) = −
M

∑
m=1

N

∑
n=1

p(m, n) log p(m, n), (9)

where p(m, n) is the joint probability mass function and represents the probability of the occurring of
the mth intensity value of image A and the nth intensity value of image B. M and N are the maximal
intensity value of the two images. The expression of H(A) and H(B) can be easily deduced from
Equation (9). Original mutual information expressed by Equation (8) is sensitive to the size of overlap
area of registered images. To eliminate this effect, we use the normalized mutual information:

I(A, B) =
H(A) + H(B)

H(A, B)
. (10)

There is a noteworthy issue considering the accuracy of registration when using mutual
information or normalized mutual information. In the above analysis, images A and B are considered
having been aligned and the pixel positions are coinciding with each other. If we regard A as
the reference image, in fact, B is the transformed sense image using the registration parameters.
In general, the pixels of B are not coinciding with A and interpolation of the reference image is needed.
The interpolation method involves nearest neighbor (NN), trilinear (TRI), partial volume (PV), and
generalized partial volume estimation (GPVE). The interpolation and registration accuracy are in an
ascending direction in the order of NN, TRI, PV, and GPVE, while the efficiency and computational
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complexity are in an opposite direction in the same order. We use PV as the interpolation method as
a compromise.

3.3. ACO for Continuous Domain as an Optimization Strategy

Due to the local optimal matches of extracted edge points, the local optimum of mutual
information, and the interpolation artifact inherent from mutual information, the Gaussian weighted
distance or mutual information as a similarity contains many local optimums. Moreover, an excellent
automatic registration method should use as little manual intervention as possible with sufficiently
wide initial range. Therefore, this optimization algorithm for the proposed registration method should
be able to converge to the global optimum with little requirements on the initial parameter range.

ACO is a heuristic approach proposed to solve the traveling salesman problem at first [26]. In the
following decades, the ant colony algorithm has been widely used to solve various optimization
problems. ACOR is a famous continuous version of ACO, and the discrete probability distribution in
ACO is shifted to a continuous form. In this study, ACOR was adopted as a global optimizer. Direct
application of ACOR on original images was computationally intensive. A three-phase optimization
strategy was then proposed to improve the efficiency, which will be elaborated in Section 3.4. The
framework of ACO generally contains three main algorithmic steps: ant-based solution construction,
pheromone update, and daemon action.

3.3.1. Ant-Based Solution Construction

A continuous optimization problem can be defined as s∗ = (X, C, f ), where X ⊆ Rn is the search
space with n parameters, C is the constraint conditions, f is the objective function for optimization,
and s∗ ∈ X is the n dimensional optimal solution generated from the search space X. In the ant-based
solution construction process, k solutions are generated from search space X using uniform random
sampling, and a solution archive S is used to store the k solutions. The k solutions are sorted in
descending order according to the f value of each solution. Then the new n dimensional solution is
constructed parameter-by-parameter by sampling the Gaussian kernel probability density function
Gi(x)(i = 1, 2, . . . n).

Gi(x) =
k

∑
l=1

wl gl
i(x) (11)

The sampling of every element of X = [X1, X1, . . . , Xn]
T requires the inverse of Gi(x), and

is mathematically difficult to solve. In practice, gl
i(x) is recovered via an equivalent two-phase

sampling. First, one solution was selected probabilistically from the solution archive S and the
probability of each solution was calculated through its weight wl , where l is the rank of a solution sl
and represents its order in the solution archive S. wl is proportional to the corresponding objective
function value f (sl)(l = 1, 2, . . . , k). Second, the values of variables were generated using selected
Gaussian distribution gl

i(x).

3.3.2. Pheromone Update

As mentioned earlier, the pheromone information of ACOR is stored in the solution archive
S. Therefore, the pheromone information was updated by changing S. Unlike ACO, ACOR does
not generate a pheromone matrix and the weights wl or f (sl) of the solutions were similar to the
pheromone. At each iteration, m new solutions were generated and stored in a new solution archive S′,
and the f value of each solution was calculated. Then the solutions in the two archives were united to
obtain k + m solutions in descending order of f . Before the next iteration, m solutions with lowest f
values were removed and the remaining k solutions were stored in S for the upcoming search process.
Through the pheromone update process, the search is always towards the better solutions.
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3.3.3. Daemon actions

The best solution in the solution archive was updated after each iteration process. Then the
termination conditions were examined. If the termination condition is met, the best solution found is
returned. Termination conditions generally include the number of iterations, increment of the objective
function value between two iterations, the reduction of the size of search space, or difference between
the best and worst solutions. In this paper, we used different termination conditions (or the strategy
switching condition) at different registration phases, which will be elaborated in Section 3.4.2.

3.4. Three-phase Searching Strategy

The purpose of image registration was to find the optimal geometric transformation by which the
transformed sensed image T(B) best matches the reference image A. The transformation has many
expressions for different geometric distortions, such as translation, rotation, rigid, similarity, and affine.
For this paper, affine transformation was selected as the final transformation model due to its high
precision and adaptability for multi-sensor images. However, our preliminary experiments showed
that the affine transformation model would not work with a wide initial parameter range. Therefore,
the similarity transformation model was used in the first two phases for preregistration results.

Considering the registration efficiency, this paper adopts a three-phase searching strategy. From
Equations (7) and (10), it can be seen that the computational complexities of D(A, B) and I(A, B) are
O(nP) and O

(
noverlap

)
, where nP is the number of extracted points and noverlap is the number of pixels

in the overlapped area from the sensed image. The amount of extracted points is much less than the
amount of the overlapped pixels, thus we have O(nP) � O

(
noverlap

)
. Based on the analysis, edge

point features-based registration was first used to improve computing efficiency, in addition to its
robustness for a larger initial parameter range. After the Phase-1 process, the parameter range was
narrow enough for mutual information-based registration to converge, which was adopted in Phase-2.
It is easy to see that the efficiency of mutual information-based registration is in proportion to noverlap.
Therefore, the sensed image in Phase-2 was the resampled low-resolution image as Phase-1, instead of
the original image. In Phase-3, the original sensed image was adopted to register with the reference
image using the mutual information again for the optimal transformation parameters.

3.4.1. Registration Parameter

In Phase-1, the similarity transformation model was adopted for registration of the low-resolution
version sensed image and reference image. The model can be expressed as:

T1 =

 s · cos ϕ −s · sin ϕ tx1

s · sin ϕ s · cos ϕ ty1

0 0 1

, (12)

where s is the scale parameter, ϕ is the rotation angel, tx1 and ty1 are the horizontal and vertical
displacement, respectively. In Phase-2 and Phase-3, the affine transformation model was selected. It
has an expression as follows:

T2 =

 r21 r22 tx2

r23 r24 ty2

0 0 1


T3 =

 r31 r32 tx3

r33 r34 ty3

0 0 1

,

(13)

where (r21, r22, r23, r24) and (r31, r32, r33, r34) involve the comprehensive effect of rotation, scale, and
shear transform; tx2, ty2, tx3 and ty3 are the horizontal and vertical displacement, respectively.
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3.4.2. The Strategy Switching Method

The switches between the three phases are determined by the range length of the parameters.
When the ACOR process converges, the range lengths of the parameters are decreased. Therefore, the
diversity of the parameters measures the convergence and provides a reasonable determinant of phase
switching. In this paper, the diversity of parameter x with k solutions xi(i= 1, 2, . . . , k) is defined as:

div(x) =
1
lk

√√√√ k

∑
i=1

(xi − x)2, (14)

where l gives the length of the search space of parameter x.
√

∑k
i=1(xi − x)2/k Equation (14) gives

the average distance to the solutions xi(i= 1, 2, . . . , k). div(x) then represents the diversity of x in
proportion to the parameter ranges. Thus, we can calculate the diversity of parameters s, ϕ, tx, ty

in Phase-1. Empirical thresholds were then used to switch from Phase-1 to Phase-2. That is to say,
when the diversity of solutions of parameters were not more than empirical thresholds, Phase-1 was
terminated and Phase-2 started. This can be expressed as follows:

div(s) ≤ Ts

div(ϕ) ≤ Tϕ

div(tx) ≤ Ttx

div
(
ty
)
≤ Tty

, (15)

where Ts, Tϕ, Ttx , and Tty are thresholds for parameters s, ϕ, tx1, and ty1. When Equation (15) is
satisfied, it is assumed that the maximum and minimum values of parameters s, ϕ, tx1, and ty1 are
[sl ,sh], [ϕl ,ϕh], [tl

x1
,th

x1
], and [tl

y1
,th

y1
], respectively. Then initial parameter ranges for Phase-2 can be

calculated as 

sl · cos ϕl ≤ r21 ≤ sh · cos ϕh

−sh · sin ϕh ≤ r22 ≤ −sl · sin ϕl

sl · sin ϕl ≤ r23 ≤ sh · sin ϕh

sl · cos ϕl ≤ r24 ≤ sh · cos ϕh

tl
x1
≤ tx2 ≤ th

x1

tl
y1
≤ ty2 ≤ th

y1

. (16)

In Phase-2, the switch condition was similar to Phase-1 and can be expressed as follows:

div(r21) ≤ Tr21

div(r22) ≤ Tr22

div(r23) ≤ Tr23

div(r24) ≤ Tr24

div(tx2) ≤ Ttx2

div
(
ty2
)
≤ Tty2

, (17)

where Tr21 , Tr22 , Tr23 , Tr24 , Ttx2 , and Tty2 are thresholds for parameters r21, r22, r23, r24, tx2, and ty2. When
Equation (17) is satisfied, it is assumed that the maximum and minimum values of parameters r21,
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r22, r23, r24, tx2, and ty2 are [rl
21,rh

21], [rl
22,rh

22], [rl
23,rh

23], [rl
24,rh

24], [tl
x2

,th
x2

], and [tl
y2

,th
y2

], respectively. Then,
initial parameter ranges for Phase-3 can be calculated as

s0 · rl
21 ≤ r31 ≤ s0 · rh

21
−s0 · rl

22 ≤ r32 ≤ −s0 · rh
22

s0 · rl
23 ≤ r33 ≤ s0 · rh

23
s0 · rh

24 ≤ r34 ≤ s0 · rh
24

tl
x2
≤ tx3 ≤ th

x2

tl
y2
≤ ty3 ≤ th

y2

, (18)

where s0 is the resolution ratio between the original sensed image and the low-resolution revision
sensed image.

4. Results and Discussion

4.1. Descriptions of Experimental Data

Multiple sets of remote sensing image pairs acquired by multi-sensors at different times and
different resolutions were used to evaluate the performance of the proposed method. These data
include images from optical satellite sensors such as Tianhui-1 and Ziyuan-3, aerial images from the
Phase One camera, and DOM images produced from aerial images. Both Tianhui-1 and Ziyuan-3
are surveying and mapping satellites, providing 5 m and 2.1 m ground sampling distance (GSD)
nadir-view images. The GSD of Phase One aerial images and DOM images were 0.1 m and 0.5 m,
respectively. Therefore, using aerospace and aerial images from the same region, we can get image
pairs with resolution ratios of 4:1, 10:1, 21:1, and 50:1. In order to verify the applicability of the
proposed method, two images with the same resolution from Landsat TM and Radarsat SAR were also
tested. Local geometric distortions and relief displacement existed in all image pairs. Their specific
parameters are shown in Table 1, and the experimental images are displayed in Figure 4. It can be
seen that large illumination differences and scene changes existed in the images. Color images were
converted to grayscale images before registration.

Table 1. Specific parameters of image pairs to be registered. GSD: ground sampling distance; SAR:
synthetic aperture radar.

No. Figure Data Source Image Size
(pixels)

GSD
(m)

Resolution
Ratio Date Location

1
4a Landsat TM 762 × 379 30

1:1
2007 China,

Guangzhou4b SAR 696 × 344 30 2008

2
4c Ziyuan-3 162 × 165 2.1

4:1
2013 China,

Dengfeng4d Aerial DOM 700 × 700 0.5 2010

3
4e Tianhui-1 500 × 500 5

10:1
2016 China,

Dengfeng4f Aerial DOM 5048 × 5671 0.5 2010

4
4g Ziyuan-3 463 × 449 2.1

21:1
2013 China,

Dengfeng4h Phase One 7760 × 10,328 0.1 2015

5
4i Tianhui-1 172 × 191 5

50:1
2016 China,

Dengfeng4j Phase One 7760 × 10,328 0.1 2015

In Sections 4.2 and 4.3, the effectiveness of Phase-1 and Phase-2 preregistration methods was
validated based on images with similar resolution. Thus, the down-sampled aerial images from the
image pyramid were used. In Section 4.4, the registration results for the image pairs with different
methods were analyzed and discussed. The accuracy of the registration methods was evaluated in two
ways in this work. Two commonly used evaluation measures, MI of the image pairs and root mean
square error (RMSE) of the corresponding control points (CPs), were used as the first way. The RMSE
measure was normalized to the pixel size of the reference image. The Automatic Point Measurement
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(APM) function of ERDAS AutoSync [47] was used to obtain corresponding CPs. The error of CPs was
set to not more than 0.5 pixels before running APM, so the CPs obtained had high precision. The spatial
distributions of CPs are also displayed in Figure 4. Unfortunately, when the resolution difference
between the two images reached 50:1, APM could not extract enough CPs. The second way was visual
inspection by generating registered images. The RGB color image, whose green component was the
reference image and red component was the sensed image, and the checkerboard mosaicked image
using the calculated registration parameters [20,23] were used here to show the registration results.
It should be noted that the images in Figure 4 are not displayed according to the true size of the images.
In order to make the images more suitable for typesetting, images in the same row are displayed as
thumbnail images with the same height. As can be seen from Table 1, the image size in Figure 4c is
162 × 165 pixels, and the size of Figure 4d is 700 × 700 pixels. The ratio of the actual size between the
two is about 4:1. However, for ease of presentation, Figure 4d is down-sampled to the same size as
Figure 4c to display. To avoid reader confusion about the experimental data and results, we provide the
image data and registration results in Figure 4 and partial follow-up figures for the reader to download.
The download link is https://drive.google.com/open?id=1vUqcoOKxLFc25cTsuISpxp_RH7bKZrm-.
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Figure 4. Image pairs to be registered. The specific parameters of Figure 4a–j are listed in Table 1. Red
points in the images show the spatial distribution of extracted control points (CPs) using Automatic
Point Measurement (APM).

4.2. Feature-based Preregistration Validation

The effectiveness of the proposed edge point features-based preregistration using an ANDD-based
ESM was validated. In order to compare the effectiveness of the proposed algorithm, the registration
experiments of the feature points obtained by the other two methods were also carried out. The two
methods use the Canny edge detection algorithm and phase convergence model to obtain feature
points, which have been widely used in registration applications. In this experiment, two pairs of
images from multi-sensors were used, which are No. 1 and 4 in Table 2. For a fair comparison, the
parameters of the three methods were adjusted to obtain approximately 400 edge points from each
image. The preregistration results are shown in Table 2 and Figure 5. The RMSE was calculated
using the corresponding CPs obtained using manual registration. D means the Gaussian weighted
distance-based similarity metric calculated using Equation (7).

Table 2. Experimental results of features-based preregistration. RMSE: root mean square error; D:
Gaussian weighted distance-based similarity metric.

No. Method Edge Points No. RMSE (pixels) D

1
Canny 395/384 7.56 1.85
phase 395/398 5.18 1.86

Proposed 393/384 2.93 1.88

4
Canny 406/415 11.51 1.89
phase 401/412 50.22 1.86

Proposed 409/420 10.76 1.90
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Figure 5. Feature-based preregistration results using different edge points extraction methods. (a,d) use
the Canny algorithm to obtain edge points; (b,e) use the phase convergence model to obtain edge
points; (c,f) use the ANDD-based ESM to obtain edge points.

In Figure 5a–c, we can see that all three methods have completed the preliminary registration task
of the No. 1 image pair, resulting in registration results that can be further optimized. However, the
preregistration quality of the three methods was different. We selected two image blocks in each of the
three pre-registered images with a red rectangle and a white rectangle, as shown in Figure 5a–c. The
contents in the red rectangle and white rectangle both show that the method using an ANDD-based
ESM gave the best registration results, followed by the method using the phase convergence model,
and the worst was the method using the Canny algorithm. Table 2 also shows the method using an
ANDD-based ESM resulted in the smallest RMSE and the largest D value, while the method using the
Canny algorithm resulted in the largest RMSE and the smallest D value.

Figure 5d–f shows the preregistration results of No. 4 image pairs. For the two images, methods
using the Canny algorithm and ANDD-based ESM registered the two images well. However, the
method using the phase convergence model performed much worse as shown in Figure 5e. The
RMSE of Figure 5e reached ~50 pixels, which brings difficulties for further registration processing.
Although the accuracy of the pre-registration results does not directly determine the final registration
accuracy, poor registration results increase the amount of computation for subsequent processing,
and poorer pre-registration results may even make further processing impossible. In addition, the
phase convergence model uses many parameters that need to be manually adjusted when extracting
feature points, including number of wavelet scales, number of filter orientations, wave lengths of the
smallest filter, scaling factors between filters, and standard deviations of log-Gabor filters. However,
the method using the ANDD-based ESM only uses the standard deviation and scale factor to construct
an anisotropic Gaussian kernel, which greatly reduces the number of input parameters. Based on the
above experimental results and analysis, we recommend the method using the ANDD-based ESM for
extracting feature points.
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4.3. Effectiveness of Mutual Information

In this study, Gaussian weighted distance D and mutual information I were used as similarity
metrics for registration. The authors of [8] also proposed a new metric named SMI combining spatial
information and mutual information for registration, which can be simply defined as the product of D
and I. However, only a pair of optical images with similar spectral responses were used to validate
the metric, and some drawbacks of SMI did not show up. We tested the three metrics using two
image pairs with greater differences in geometry and radiation characteristics as used in Section 4.2,
and analyzed the strengths and drawbacks of these methods. The two image pairs were manually
registered using ERDAS AutoSync and then a translation transformation was applied on the manually
registered images. The manually registered images are shown in Figure 6. The size of the registered
image of the No. 1 image pair is 762 × 397 pixels and 501 × 582 for the No. 4 image pair.
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Figure 6. Manually registered images using ERDAS AutoSync. (a) The green component and red
component are the reference image and the warped sensed image of the No. 1 image pairs, respectively;
(b) the green component and red component are the reference image and the warped sensed image of
the No. 4 image pairs, respectively.

A horizontal translation with a range larger than the horizontal dimension of the reference image
was implemented to demonstrate the change of D, I, and SMI. For the quantitative evaluation of D
and SMI, features points should be extracted first. As analyzed in Section 4.2, we used feature points
extracted with the ANDD-based ESM for all images. The distance D for the feature points under
different horizontal translations with the range of [−800 800] was calculated using Equation (7) at
one-pixel intervals, and the results are shown in Figure 7a. As is shown in the figure, the optimal
transformation was corresponding to the global maximum of D, which helps the registration parameter
converge to the optimal values. However, the global maximum of D cannot provide sub-pixel accuracy.
In Figure 7d, the portion of the translation pixel with the range from −10 to 10 pixels in Figure 7a was
intercepted and enlarged, and the D value was calculated at intervals of 0.1 pixels. When checked
in detail as shown in Figure 7d, the maximal value of D did not correspond to the best transform
parameters. This problem was caused by the outliers and mismatching of extracted features. It is
common since most of the feature extraction methods do not always perform well for multi-sensor
images, including the three methods used in Section 4.2.

The same transformation was applied to the No. 1 registered images to calculate the value of I.
As shown in Figure 7b,e, the peak value of I was achieved when the two images were geometrically
aligned. Meanwhile, Figure 7b shows that the correct transformation was at a local maximum within
the range between −400 and 400 rather than the global maximum. Considering that the horizontal
dimension of the reference image was 762 pixels, the mutual information-based registration method
cannot support unconstrained search space. In other words, if the initial registration parameter range
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exceeds [−400 400], there is no guarantee that the registration result obtained is correct. This is also one
reason why this method first uses the feature-based registration method to narrow the search space.Remote Sens. 2018, 10, x FOR PEER REVIEW  18 of 27 
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Figure 7. D, I, and SMI values under different horizontal translations between the manually registered
images in Figure 6a. (a–c) are the D, I, and SMI values when the horizontal displacement is between
[−800 800] at pixel intervals; (d–f) are the D, I, and SMI values when the horizontal displacement is
between [−10 10] at 0.1 pixel intervals.

The value of SMI was further calculated using the value of D and I. The corresponding
experimental results are shown in Figure 7c,f. Figure 7c shows that the global maximum of SMI was
corresponding to the best transformation. Moreover, Figure 7f shows that SMI achieves the maximum
value with sub-pixel registration accuracy. Therefore, in this case, SMI inherits the advantages of both
D and I, and sub-pixel registration accuracy can be obtained only using the SMI metric.

In Figure 8a–c, we show the values of D, I, and SMI of the No. 4 registered images as the horizontal
displacement changes from −600 pixels to 600 pixels at pixel intervals. A detail of values near the
peak position is also displayed in Figure 8d–f, with the horizontal displacement changes from −10
pixels to 10 pixels at 0.1 pixel intervals. It can be seen that in this case, the D value performed similar
to that as in Figure 7a. The optimal transformation was corresponding to the global maximum of D,
but the registration accuracy could not achieve sub-pixel accuracy. The I value in Figure 8b performed
differently compared with Figure 7b. In Figure 8b, the correct transformation corresponds to the global
maximum in the entire search space. Figure 8e also shows that I achieved the maximum value with
sub-pixel registration accuracy. Therefore, ACOR can be directly applied to I for the search of optimal
transformation parameters when not considering computational efficiency. The SMI value in Figure 8c
also shows that the global maximum of SMI was corresponding to the best transformation. However,
we can see that in Figure 8f, the global maximum of SMI did not correspond to the zero position of
translation. In this case, SMI inherits the advantages of D, but not I, and sub-pixel registration accuracy
cannot be obtained only using the SMI metric. This phenomenon was also caused by the outliers and
mismatching when extracting feature points.
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Figure 8. D, I, and SMI values under different horizontal translations between the manually registered
images in Figure 6b. (a–c) are the D, I, and SMI values when the horizontal displacement is between
[−600 600] at pixel intervals; (d–f) are the D, I, and SMI values when the horizontal displacement is
between [−10 10] at 0.1 pixel intervals.

The above two examples illustrate that: (1) The metric D allows the use of an unconstrained
initial range, but the final registration error may be large; (2) The metric I can provide a sub-pixel
registration accuracy but can only converge to the best transformation in a small search space.
Therefore, preregistration using metric D should be applied to narrow the search space in advance.
(3) SMI is not always able to provide sub-pixel level accuracy, and the final registration accuracy
is related to the quality of the extracted feature points. Therefore, metric I performs best when a
high registration accuracy is required. Meanwhile, as can be seen in Figures 7d–f and 8d–f, when
non-integer translation was performed, plenty of local maxima also state the difficulty of optimization.
This difficulty emphasized the need to introduce ACOR as a global optimizer for all the three metrics.

4.4. Validation of the Proposed Registration Method

The reliability and validity of the proposed method were tested with various remote sensing
images of different resolution ratios as described in Section 4.1. To illustrate the difference in
precision between the three phases of the algorithm, the intermediate registration results are also
shown. Furthermore, we have improved the SMI-based algorithm that was originally limited to rigid
transformations between images of the same resolution, making it suitable for the images in this
paper. In other words, the difference between the improved SMI-based method and the method in
this paper was that in the improved SMI-based method, Phase-2 and Phase-3 use the SMI metric,
while the NMI metric was used in the proposed method in the two phases. Then, the results of the
improved SMI-based algorithm were shown to compare with the ones of the proposed method. These
experiments were conducted on a computer with an Intel Core 3.50-GHz processor and 32.0 GB of
physical memory.

For all image pairs, registrations were conducted with no restrictions on initial parameters.
In other words, as long as there was overlap between the two images, the parameters were within the
consideration of the algorithm. The parameters used for ACOR optimization and switch between the
three phases were the same. For ACOR, the solution archive size k was set as 50, the number of ants
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m was set as 30, convergence speed ξ was set as 1.35, locality of the search process q was set as 0.19.
Thresholds Ts, Tϕ, Ttx , and Tty were set as 0.1. Therefore, when the diversities of parameters s, ϕ, tx1,
and ty1 were smaller than 0.1, Phase-1 was terminated and Phase-2 started.

Thresholds Tr21 , Tr22 , Tr23 , Tr24 , Ttx2 , and Tty2 for Phase-2 were set as 0.01. The number of iterations
for Phase-3 was set as 200. The results of the applications of different registration methods to the five
previously described pairs of images are presented in Table 3. In Table 3, the “ERDAS AutoSync”
method shows registration results using CPs obtained by the APM function in ERDAS AutoSync. The
transformation parameters were calculated using least square methods. The “EPFP” method shows
registration results using the edge point features-based preregistration method. The “EPFP+NMI”
method shows registration results using the edge point features-based preregistration method and the
normalized mutual information-based registration method. Transformation parameters for the EPFP
and EPFP+NMI methods were calculated for the resampled sensed image and the reference image.
Therefore, these parameters were transformed based on the resample ratio to obtain transformation
parameters between the original sensed image and the reference image. Then, RMSE and I values
were calculated based on these parameters. The “ISMI” method shows registration results using the
improved SMI-based method. The “Proposed” method shows registration results using the proposed
method. As mentioned in Section 4.1, not enough CPs were extracted from the No. 5 image pair, so the
ERDAS AutoSync method was not available, and the RMSE cannot be calculated for the other four
methods and only I values are shown. For the No. 1 image pair, the resolution ratio was 1:1, so the
three-phase method was simplified to two phases. Therefore, the results for EPFP and EPFP+NMI
methods were the same. In Figure 9, the registration results using the proposed method are shown.

Table 3. Experimental results of different registration methods. EPFP: edge point features-based
preregistration method; NMI: normalized mutual information-based registration method; ISMI:
improved SMI-based method.

No. Methods r31 r32 r33 r34 tx3 ty3
RMSE
(pixels) I

1

ERDAS AutoSync 0.9964 −0.0449 0.0533 0.9964 30.9492 5.8776 0.9339 1.0334
EPFP 1.0029 −0.0413 0.0413 1.0029 28.4385 7.6797 2.9298 1.0292

EPFP +NMI 0.9941 −0.0472 0.0532 0.9972 31.9530 5.8181 0.8658 1.0337
ISMI 0.9983 −0.0462 0.0526 0.9969 30.1811 6.1581 0.8730 1.0334

Proposed 0.9941 −0.0472 0.0532 0.9972 31.9530 5.8181 0.8658 1.0337

2

ERDAS AutoSync 0.2384 0.0443 −0.0449 0.2390 −14.3516 10.6895 0.6632 1.0466
EPFP 0.2268 0.0442 −0.0442 0.2268 −13.3705 14.6342 3.5642 1.0257

EPFP +NMI 0.2384 0.0449 −0.0463 0.2373 −14.8262 10.8282 0.3858 1.0528
ISMI 0.2380 0.0450 −0.0465 0.2375 −14.6429 10.9147 0.3608 1.0544

Proposed 0.2379 0.0454 −0.0465 0.2374 −14.6659 10.9359 0.3447 1.0546

3

ERDAS AutoSync 0.0981 0.0185 −0.0186 0.0967 −58.3673 25.8779 0.5678 1.0260
EPFP 0.0979 0.0145 −0.0145 0.0979 −46.7202 25.5249 14.8270 1.0052

EPFP +NMI 0.0979 0.0184 −0.0188 0.0968 −57.5111 27.0336 1.2557 1.0195
ISMI 0.0986 0.0182 −0.0177 0.0962 −58.1402 26.6876 0.7155 1.0250

Proposed 0.0980 0.0185 −0.0185 0.0967 −58.2511 25.9319 0.5765 1.0261

4

ERDAS AutoSync 0.0448 0.0148 −0.0151 0.0447 −32.4730 40.3796 1.1232 1.0184
EPFP 0.0464 0.0165 −0.0165 0.0464 −54.2718 32.6967 10.7569 1.0082

EPFP +NMI 0.0449 0.0148 −0.0153 0.0449 −33.8550 39.7711 1.3231 1.0173
ISMI 0.0450 0.0147 −0.0154 0.0448 −33.3337 40.8091 1.5782 1.0157

Proposed 0.0448 0.0147 −0.0152 0.0447 −32.1441 40.7132 0.8396 1.0191

5

ERDAS AutoSync - - - - - - - -
EPFP 0.0190 0.0054 −0.0054 0.0190 −13.6224 18.5911 - 1.0223

EPFP +NMI 0.0186 0.0059 −0.0059 0.0180 −13.4551 22.8200 - 1.0268
ISMI 0.0188 0.0061 −0.0059 0.0183 −14.9141 21.4645 - 1.0282

Proposed 0.0186 0.0059 −0.0059 0.0181 −12.6220 22.3736 - 1.0290
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image. (a–e) are registered images for No. 1–5 image pairs.

From Table 3, it can be observed that the proposed method generally outperformed other
registration methods for all image pairs. The proposed method achieved minimum RMSE values and
sub-pixel accuracy for the first four image pairs. Meanwhile, the I values reached the maximum for all
five image pairs. Visual inspection of Figure 9 also verifies the registration results were accurate. It
can also be seen from Table 3 that the registration accuracy of the EPFP method was the worst, and
the RMSE was above 1 pixel. When the EPFP and NMI methods were used together, the RMSE value
generally could be reduced to about 1 pixel. However, the resampled low-resolution sensed image
lost some of the original image’s intensity information. Therefore, the registration accuracy was lower
than the proposed method, which utilized the intensity information of every pixel of the original
sensed image. As mentioned previously, the ISMI method combines spatial information and mutual
information. Therefore, the registration accuracy using the ISMI method was related to the accuracy
of the EPFP method. When the registration accuracy of the EPFP method was high, the registration
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accuracy of the ISMI method could be as high as the proposed method. No. 1 and No. 2 image pairs
gave such examples. The RMSE of the EPFP method for the two image pairs was 2.9298 and 3.5642
pixels, which were relatively small compared with the other two image pairs. As shown in Table 3,
in these cases, RMSE and I values of the ISMI and Proposed method for this image pair were almost
the same. In contrast, for the No. 3 and No. 4 image pairs, the EPFP registration accuracies were
relatively low. Therefore, the accuracy of the ISMI method was also lower than the proposed method.

5. Discussion

Using the method proposed to complete the registration task required three registration operations.
Although the registration task in the first stage was coarse registration, it reduced the parameter search
space for subsequent registration, which was very important for the convergence speed of the entire
registration process. The spatial distribution of edge point features extracted from the images had
an influence on registration results. To make a fair comparison, we extracted almost equal numbers
of edge point features from each set of image pairs to be registered, as shown in Table 2. The spatial
distribution of edge point features is shown in Figure 10. For the No. 1 image pair, the edge features
were mainly boundary lines of the rivers. For the edge point features extracted from Figure 10a,d,
we can see that the method using the Canny algorithm extracted just a small number of edge point
features in the river boundary line at the right side of the images, especially Figure 10a. Most of the
edge point features were distributed irregularly at the land area in the middle of the images. Irregular
distribution of edge point features and insufficient edge point features on the strong edge (river
boundary line) led to poor registration accuracy in Table 2. The edge point features extracted using the
phase convergence model in Figure 10b,e had a better distribution than Figure 10a,d. In Figure 10b,
moderately distributed edge point features were extracted from the river boundary line at the right
side of the image. Figure 10e shows many edge point features were extracted from the water body
with a short distance along the river boundary lines. This reflects that the phase convergence model
was sensitive to noise when extracting edge features, which led to negative effects on registration
accuracy. In Figure 10c,f, we can see that the distribution of edge point features extracted using the
ANDD-based ESM from the river boundary lines in the two images were more consistent with each
other. More quantity of edge point features were extracted from the river boundary line at the right
side of the images in Figure 10c,f compared with Figure 10a,d, while no edge point features were
extracted from the water body compared with Figure 10b,e. Therefore, Table 2 shows that the method
using the ANDD-based ESM achieved the best registration results compared with the other methods.
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Figure 10. Feature-based preregistration results using different edge points extraction methods for the
No. 1 image pair. (a,d) use the Canny algorithm to obtain edge points; (b,e) use the phase convergence
model to obtain edge points; (c,f) use the ANDD-based ESM to obtain edge points.
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Figure 11 shows the distribution of edge point features extracted from the No. 4 image pair with
different methods. For the image pair, the edge features were mainly roads. As with Figure 10c,f,
the distribution of edge point features extracted using the ANDD-based ESM of Figure 11c,f were
also more consistent with each other compared with Figure 11a–d. From Figure 11a, we can see that
the method using the Canny algorithm extracted just a small number of edge point features in the
road inside the yellow box, which was consistent with the insufficient edge point features extracted
in the river boundary line of Figure 10a. However, in other areas, both Figure 11a,d extracted edge
point features that were nearly identical in distribution. As a result, the registration accuracy of the
method using the Canny algorithm was a little worse than that using the ANDD-based ESM. The
method using the phase convergence model performed much worse than the method using the Canny
algorithm for the image pair. In Figure 11b, almost no edge points were extracted from the road in the
yellow box. Figure 11e shows the method using the phase convergence model extracted some edge
point features in the same road in the yellow box in Figure 11b. However, it performed not so well in
other roads. For example, the method failed to extract edge point features in the roads in the yellow
ellipses in Figure 11e. Besides, many point features that were not real edge points were extracted as
shown in the yellow circle in Figure 11b. All the factors mentioned above led to serious inconsistency
between the distributions of edge point features in Figure 11b,e. As a result, the method using the
phase convergence model gave a low-level performance in Table 2 for the No. 4 image pair.Remote Sens. 2018, 10, x FOR PEER REVIEW  24 of 27 
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In the above analysis, the influences of different methods on the preregistration stage were
discussed. Considering the entire registration strategy, we can also summarize the factors that had an
impact on the registration results. Firstly, when the sensor that acquires the images to be registered
has a large difference, the precision of the proposed method may be affected. For the five image pairs,
only the two images of the No. 1 image pair were obtained from the optical sensor and the SAR sensor,
respectively, while other images were obtained from optical sensors. We can see that the SAR image
in Figure 4b is very noisy, which was also the reason why many edge point features were extracted
using the phase convergence model in the water body in Figure 10e. Although the method using the
ANDD-based ESM which successfully filtered the noise was adopted in the proposed method, the
registration accuracy was not high in the five image pairs in Table 3. For a higher registration accuracy
of such images, other similarity metrics may be considered in future studies. Secondly, resolution
differences also have an impact on the registration results. For the No. 2 to No. 4 image pairs, the
registration accuracy decreased as the resolution difference increased in Table 3. The reason for this
phenomenon may come from increasingly significant internal distortions in high-resolution images.
The high-resolution image has a larger size when the resolution difference increases. For example,
the size of the high-resolution image for the No. 4 image pair was 7760 × 10,328. The distortion
inside the image becomes complicated with the increase of the image. The affine transformation model
for the proposed method may not accurately describe the transformation relationship between the
low-resolution image and the high-resolution image. Thirdly, the land cover characteristics may have
effect on the registration accuracy. The coarse registration in the proposed method was based on the
edge point features. Therefore, rich edge features are necessary for image registration implementation.
When the image lacks edge features, or the edge features are short and the distribution is scattered, the
method is less adaptable. Temporal changes did not have an obvious impact on the registration results.
As Tables 1 and 3 show, there was no direct relationship between temporal changes and registration
accuracy. However, temporal changes may bring about climate change or changes in terrain and
ground facilities like buildings and roads. This makes the two images in different periods change in
brightness, content, etc., thus affecting the final registration accuracy.

6. Conclusions

Many automatic registration methods have been proposed for multi-sensor remote sensing
images in recent years. However, registration between images with large resolution differences has not
been fully considered. As more and more sensors of different resolutions are operating in orbit, the
registration of large differential resolution images will become more and more important. In this study,
a new method was proposed to register images with a wide resolution ratio range from 1:1 to 50:1.
Due to the difficulty and inefficiency for directly registering images with large differences in resolution,
the proposed method was comprised of three phases. First, the feature-based registration method was
used to provide a narrow parameter range on the reference image and the resampled sensed image for
further processing. The ANDD-based ESM was used here to get more stable edge point features for
registration. Then, normalized mutual information-based registration was applied on the reference
image and the resampled sensed image to get more accurate transformation parameters. In the last
phase, normalized mutual information-based registration was applied again on the original images to
be registered.

Several image pairs with different resolution ratios were used to test the validity and practicality
of the proposed method. The feature-based preregistration results showed that the ANDD-base ESM
provided more stable edge point features than widely used methods, including the Canny edge
detection algorithm and the phase convergence model. Registration results showed that the proposed
method achieves sub-pixel accuracy and performs better than manual registration results or methods
using SMI metrics in terms of matching performance and the RMSE of registration.
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The larger the image data, the longer the calculation time of MI. Therefore, Phase-3 spent a lot of
time when the size of the sensed image was large. Improving the speed of the proposed method is the
direction of our future work.
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