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Abstract: The Holuhraun lava flow was the largest effusive eruption in Iceland for 230 years, with
an estimated lava bulk volume of ~1.44 km3 and covering an area of ~84 km2. The six month long
eruption at Holuhraun 2014–2015 generated a diverse surface environment. Therefore, the abundant
data of airborne hyperspectral imagery above the lava field, calls for the use of time-efficient and
accurate methods to unravel them. The hyperspectral data acquisition was acquired five months after
the eruption finished, using an airborne FENIX-Hyperspectral sensor that was operated by the Natural
Environment Research Council Airborne Research Facility (NERC-ARF). The data were atmospherically
corrected using the Quick Atmospheric Correction (QUAC) algorithm. Here we used the Sequential
Maximum Angle Convex Cone (SMACC) method to find spectral endmembers and their abundances
throughout the airborne hyperspectral image. In total we estimated 15 endmembers, and we grouped
these endmembers into six groups; (1) basalt; (2) hot material; (3) oxidized surface; (4) sulfate mineral;
(5) water; and (6) noise. These groups were based on the similar shape of the endmembers; however,
the amplitude varies due to illumination conditions, spectral variability, and topography. We, thus,
obtained the respective abundances from each endmember group using fully constrained linear spectral
mixture analysis (LSMA). The methods offer an optimum and a fast selection for volcanic products
segregation. However, ground truth spectra are needed for further analysis.
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1. Introduction

Lava flow emplacement is an important constructive geological process that contributes to
reshaping natural landscapes [1–3]. To assess the hazards and long-term impacts posed by lava flows,
it is vital to understand aspects such as the return period of effusive eruptions, to map the areas covered
by eruptions in the past and to characterize the evolution of lava flow surfaces after emplacement [4,5].
In high eruption frequency areas, lava flows often overlap each other. If the overlapping lava flows
erupt within a short time span and have similar chemical and surface characteristics, discrimination
will be further complicated by their similar spectral signatures. Spectral reflectance plays an important
role in visible and shortwave infrared (VIS-SWIR) remote sensing. Each material absorbs and reflects
the incoming radiation in a characteristic way. In the 400–2500 nm range, minerals display absorption
features due to the interaction of light with cations (Fe, Mg, Al) and anions (OH, CO3) [6]. Reflectance
spectra provide information about the specific material and their composition. They are used for
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different applications such as classification of remotely sensed data, identification of mineral features
of rock, and environmental assessment [7,8]. The interest in reflectance spectra of volcanic rocks has
increased recently as they can play an important role as planetary analogues. In fact, these spectra can
be used to identify compounds by data acquired by ongoing solar system exploration missions [9,10].

Characterization of surface spectral reflectance by satellite remote sensing is constrained by the
spectral range and resolution (i.e., number of spectral bands) as well as by the spatial resolution of
the imagery. Whereas multispectral imagery can be acquired at very high spatial resolution (e.g.,
WorldView [11,12]); the spatial resolution of hyperspectral satellite data remains low (e.g., EO-1
Hyperion with a ground resolution of 30 m x 30 m); and spectral mixing is thus a major issue [13].
The spectral reflectance of lava of different compositions has also been documented using laboratory
spectrometry with decimeter-size samples [14]. For accessible volcanic terrains, field spectrometry
offers a useful alternative approach for characterizing the spectral reflectance of contrasted lava
surfaces and for documenting its spatial variation at different spatial scales [5,14]. The great variety of
morphologies observed in the 2014–2015 Holuhraun lava flows [1,15] encouraged a detailed study
of their spectral characteristics, to obtain information about lava composition and detect possible
differences in the spectra of the flow. In spectroscopy, the identification of the mineral constituents
of major rock types is typically approached using spectral unmixing methods [5,16]. Usually, in the
visible and near-infrared spectral range, mafic rocks are characterized by very low reflectance due to the
presence of large amounts of dark mafic minerals [14]. The 2014–2015 lava flow at Holuhraun in NE
Iceland offers an excellent diverse surface environment for investigating and characterizing lava deposits.
Its intense volcanic activity [1,17–19], geomorphological complexity [20], and well-documented flank
eruptions [1] perplex the remote sensing monitoring of the bulk volcanic edifice. However, the detailed
field mapping of lithologies is frequently obstructed by difficulties in accessibility, the scale of lava
flow fields, topography, while remote sensing has become increasingly important in mapping volcanic
terrains and specifically in mapping lava flows. Mapping individual lava flows using satellite remote
sensing is challenging for at least three reasons: vegetation cover, spatial overlapping, and spectral
similarity [3,4]. Moreover, a high eruption frequency often leads to lava flows overlapping each other.
If the overlapping lava flows are erupted within a short period and have similar chemical and surface
characteristics, discrimination will be further complicated by their similar spectral signatures.

Hyperspectral remote sensing provides information on hundreds of distinct and contiguous
channels of the electromagnetic spectrum, thus enabling the identification of multiple ground objects
through their detailed spectral profiles. However, restrictions on the spatial resolution of hyperspectral
data, the multiple scattering of the incident light between objects, and microscopic material mixing
form the mixed pixel problem. Pixels are identified as mixed when they are composed of the spectral
signatures of more than one ground object. Therefore, we adopted linear spectral mixture analysis
(LSMA) techniques [8,21], which model the pixel spectra as a combination of pure components
(endmembers) weighted by the fractions (abundances) that contribute to the total reflectance of the
mixed pixel [22]. Ideally, each selected endmember from the hyperspectral image under study has
the maximum possible abundance of a single physical material present and minimum abundance
of the rest of the physical materials. Spectral unmixing typically consists of two main substages:
(a) endmember extraction; and (b) abundance estimation [22]. In this paper, we focus on both
endmember extraction and estimation of fractional abundances of the lava field products on 2014–2015
Holuhraun lava fields. For this purpose, an airborne hyperspectral image with an AisaFENIX sensor on
board a NERC Airborne Research Facility (Natural Environment Research Council Airborne Research
Facility) campaign was acquired at Holuhraun after the eruption and for the sub-pixel analysis we
used the sequential maximum angle convex cone (SMACC) algorithm to identify the spectral image
endmembers while the LSMA method was employed to retrieve the abundances. Our approach was
narrowed to the eruptive fissure vent part since it is considered to have a more diverse surface. The
resulting abundances from the LSMA method were both quantitatively and qualitatively compared
with the spectral indices technique, aerial and field photographs, respectively. The objective was to
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retrieve the main lava surface type contributing to the signal recorded by airborne hyperspectral at the
very top surface of Holuhraun.

2. The 2014–2015 Eruption at Holuhraun

The eruption took place in the tectonic fissure swarm between the Bárðarbunga-Veiðivötn and
the Askja volcanic systems (Figure 1a). It lasted about six months (31 August 2014 to 27 February
2015) and produced a bulk volume ~1.44 km3 of basaltic lava [1]. Lava effusion rates during the
eruption period range from 320 to 10 m3/s. Averaged values are ∼250, 100, and 50 m3/s during the
initial (August–September 2014), intermediate (October–December 2014) and final phase (December
2014 to February 2015), respectively [1,17] (Figure 1b). The lava was emplaced on the sandur plains
(glacial outwash sediment plains) north of the Vatnajökull/Dyngjujökull glacier, partially covering
the previous two Holuhraun lava flow fields south of the Askja caldera [1]. The area is gently
sloping (average inclination <0.5%; i.e., ∼0.3◦) to the east-northeast. The shallow gradient resulted
in low topographic forcing of the flow and, therefore, rather slow lava flow advance. During its
emplacement history, the lava field was initially dominated by channels and horizontal expansion.
Then it transitioned to grow in volume primarily by inflation, tube-fed flow (i.e., transport of lava
through roofed over partially or filled channels) and vertical stacking of lava-lobes. The 2014–2015
effusive eruption products originate from intense activity in the vent, in which high oxidation occurs
in this area. The main lava channel shows significant inflation (5–10 m). Lava advancement rates were
generally low ∼0.0167 m/s during the initial eruption phase [1] and dropped to ∼0.0017 m/s during
the middle of November 2014 [23]. The six-month-long effusive eruption features diverse surface
structures and morphologies. The 2014–2015 lava flow at Holuhraun in NE Iceland offers an excellent
diverse surface environment to investigate and characterize lava deposits.
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3. Spectral Unmixing on Lava

Various spectroscopy studies [2,5,7,14,25] over the volcanic area have examined the mineralogical
composition of the extensive lava fields. Usually, in the visible (VIS) and near-infrared (NIR) spectral
range, mafic rocks are characterized by very low reflectance due to the presence of large amounts of
dark mafic minerals [14]. Spectral indices provide the first efficient way to emphasize subtle spectral
variations at the surface [26]. More elaborate methods have been developed to discriminate and
quantify mixtures of mafic minerals. They have been used to derive composition maps of mafic
minerals [27–29]. However, some lava flows can have a similar chemical/mineralogical composition
but dissimilar spectral behaviour due to the different grain size, surface texture, and presence of
weathering [13,14]. The main components of igneous rocks do not display any peculiar spectral
features in the visible and near infrared spectral range. In the case of basalts, the only spectral feature
commonly found is an absorption peak, due to iron, located around 1000 nm [26]. However, in the
case of hydrothermal alteration, hydroxyl bearing minerals show distinctive absorption features in the
2000–2500 nm spectral region [30]. Because of the heterogeneity of the lava surface, mixed pixels are
very common which is illustrated in Figure 2a,b.
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Figure 2. Illustration of (a) the mixed pixel in the lava surface caused by the presence of small, sub
pixel targets within the area; (b) variability of lava surfaces in Holuhraun lava field which include the
oxidizing surface, sulfate mineral, and lava.

Spectral Mixing Analysis (SMA) has been specifically developed to account for mixtures [10].
Analysis of the data sample can simply be performed on these abundance fractions rather than the
sample itself. This method is well-suited for spectroscopic analysis because most of the spectral
shapes are due to different materials. The signal detected by a sensor at a single pixel is frequently
a combination of numerous disparate signals. Unmixing techniques were applied to the volcano of
Nyamuragira for discriminating lava flows of different ages by Li et al. [5]. The most recent study by
Daskalopoulou et al. [16], used unmixing techniques to segregate lava flows and related products from
the historical Mt. Etna. Nonetheless, there are no findings concerning lava flow delineation through
unmixing in Iceland.

4. Data Acquisitions and Methods

4.1. Airborne Hyperspectral Data Acquisitions

Airborne hyperspectral data were acquired on 4 September 2015 between 16.56 and 17.58 (local
time) with an AisaFENIX sensor (Specim, Spectral Imaging Ltd, http://www.specim.fi) [31] on board
a NERC Airborne Research Facility (Natural Environment Research Council Airborne Research Facility
http://www.bas.ac.uk/nerc-arf) aircraft [32]. Pushbroom VNIR and SWIR sensor, are two separate
detectors with common fore-optics. The hyperspectral data contain 622 channels with spectral range
from ~400 nm to 2500 nm (break at ~970 nm). The pixel size of this data is explained in Section 4.2.2.

http://www.specim.fi
http://www.bas.ac.uk/nerc-arf
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In total, eight flights were acquired at the Holuhraun lava flow during this period with an average
altitude of 2.4 km (Figure 3a). The data are delivered as level 1b ENVI BIL format files which means
that radiometric calibration algorithms have been applied and navigation information has been synced
to the image data (Figure 3b). In this study, we subset the data to focus on the area around the eruptive
fissures vent (Figure 3c) which is thought to have a diverse surface and has field photographs. Very
high-resolution aerial photographs of the lava field (0.5 m spatial resolution) from Loftmyndir ehf
(http://www.loftmyndir.is/) [33] were used for comparison and validation of the unmixing results.
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4.2. Spectral Unmixing and Abundance Retrieval

The processing workflow towards unmixing and generating abundance consists of four steps:
(1) Atmospheric correction to retrieve surface reflectance; (2) Data masking, geocorrection, reprojection,
and resampling; (3) An endmember selection algorithm was adopted to select the endmembers; then a
linear spectral mixing analysis method was employed to retrieve the abundance (Figure 4).

4.2.1. Atmospheric Correction

Remote-sensing applications require removing the atmospheric effect from the imagery, to retrieve
the spectral reflectance of the surface materials. In this study, the data were atmospherically corrected
using the quick atmospheric correction (QUAC) algorithm [34,35], since we had no prior knowledge to
perform empirical calibration [36,37]. QUAC is an in-scene approach, requiring only an approximate
specification of sensor band locations (i.e., central wavelengths) and their radiometric calibration;
no additional metadata is required [35]. QUAC does not involve first principles radiative transfer
calculations, and therefore it is significantly faster than physics-based methods; however, it is also
more approximate [35].

http://www.loftmyndir.is/
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4.2.2. Data Masking, Geocorrection, Reprojection, and Resampling

In this study, we use the Airborne Processing Library (APL) software for processing the data [38].
The first step of the APL processing is to apply the mask of bad channels to atmospherically corrected
data, creating a new file with bad channels set to zero (Appendix A on Figure A1). The next step uses
the navigation file, the view vector file, and the digital elevation file (DEM) to calculate the ground
position for each pixel then change the projection to UTM (Universal Transverse Mercator) Zone
28N [38]. We used satellite-based ASTER sensor for the DEM. In the final step we resampled output
pixel size to ~3.5 m according to the height above ground level (AGL) that is given by the theoretical
pixel size chart that can be found in Appendix A on Figure A2 (https://nerc-arf-dan.pml.ac.uk/trac/
wiki/Processing/PixelSize) [39].

4.2.3. Endmembers Selection

The conventional image-based endmember selection approach based on scatterplots of the image
bands may not be effective in identifying a sufficient number of endmembers. In this paper, we
employed the sequential maximum angle convex cone (SMACC) algorithm [34] to identify spectral
image endmembers. Endmembers are spectra that represent pure surface materials in a spectral
image. The extreme points were used to determine a convex cone, which defined the first endmember.
A constrained oblique projection was applied to the existing cone to derive the next endmember.
The cone was then increased to include a new endmember [8,40]. This process was repeated until a
projection derived an endmember that already existed within the convex cone, or until a specified
number of endmembers was satisfied [21]. When implemented with SMACC, the output endmember
number was set as 5, 10, 15, 20, and 30 respectively. Better endmembers could be identified easily from
the 15 endmembers output (more detail in Section 6.2). Then, we used the selected 15 endmembers for
deriving the abundance.

4.2.4. Linear Spectral Mixture Analysis

The linear spectral mixture analysis (LSMA) approach was adopted to calculate the abundance of
endmembers for each pixel. LSMA assumes that the spectrum measured by a sensor is a linear
combination of the spectra of all components (endmembers) within the pixel, and the spectral
proportions of the endmembers (i.e., their abundance) reflect the proportion of area covered by distinct
features on the ground [8,21]. The general equation for linear spectral mixing can be expressed as:

Rij,λ =
N

∑
n=1

pij,nRn,λ + Eλ (1)

where Rij,λ is the measured reflectance at wavelength λ for pixel ij, where i is the column pixel number,
and j is the line pixel number; pij,n is the fraction of endmembers n contributing to the image spectrum
of pixel ij; N is the total number of endmembers; Rn,λ is the reflectance of endmember n at wavelength
λ; and Eλ is the error at wavelength λ of the fit of N spectral endmembers. The fraction pij,n can be
solved using a least-square method with fully constrained unmixing. Fully constrained unmixing
means that the sum of the endmember fractional (abundance) values for each pixel must equal unity,
which requires a complete set of endmembers. Therefore, it should meet the following two conditions:

0 ≤ pij,n ≤ 1 (2)

N

∑
n=1

pij,n = 1 (3)

In the majority of cases, the unmixing is only partially constrained because the extracted
endmember set is incomplete for the image and only term (2) (i.e., Equation (2)) is satisfied. In this

https://nerc-arf-dan.pml.ac.uk/trac/wiki/Processing/PixelSize
https://nerc-arf-dan.pml.ac.uk/trac/wiki/Processing/PixelSize
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study, fully constrained LSMA were applied to the FENIX image to obtain the abundance result and
both SMACC and LSMA were executed by ENVI 5.3 and IDL 8.5 language programming.
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5. Results

5.1. Endmember Groups

The approximate locations of the 15 endmembers selected are shown in Figure 5a. SMACC first
finds the brightest spectral in the image and defines it as the first endmember. In this study, the first
endmember (endmember 1) represented saturated hot material. We grouped these 15 endmembers
into six groups; (1) basalt; (2) hot material; (3) oxidized surface; (4) sulfate mineral; (5) water; and (6)
noise (Figure 5b–g). These groups were based on the similar shape of the endmembers with the USGS
spectral library; however, the amplitude of the endmembers within a group vary due to illumination
conditions, spectral variability, and topography. We added up the abundances within the group to
derive the abundance according to this endmembers group.Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 20 
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Figure 5. (a) The spatial distribution of 15 endmembers extracted by SMACC; The numbers on the
image indicate the approximate location of the pixels selected as the represented endmembers of (b)
basalt; (c) hot material; (d) oxidized surface; (e) sulfate mineral; (f) water; and (g) noise, extracted
by SMACC.

5.2. Basalt Abundance

Figure 6a indicates the presence of the dominant basalt abundance pixel throughout the image.
This abundance is associated with endmember 8 which is characterized by very low reflectance
(Figure 5b) due to the presence of large amounts of dark mafic rock since the study area is dominated
by basaltic lava (Figure 6b).
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Figure 6. (a) The abundance map for basalt endmember, yellow areas indicate the highest fraction
of basalt meanwhile the black areas indicate the lowest fraction of basalt (the red box shows the
approximate location of the field photo); (b) field photograph of basaltic lava field of the Holuhraun.

5.3. Hot Material Abundance

As shown in Figure 7a, the hot material abundance map is very sparse. This abundance is
described as blends of the endmember 1, 4, 5, and 13 which are characterized by very high reflectance
in the SWIR due to the presence of hot material (Figure 5c). Figure 5a shows that endmembers 1, 4, 5,
and 13 are located in the lower right corner and the upper part of the image, Figure 7b shows a false
color (NIR-SWIR) image which agrees with the abundance map, i.e., some patches of hot material
(red-yellow color) exist in the area. The false color image is created by stacking R: 2200 nm; G: 1600 nm,
and B: 896 nm. This indicates that the lava field is still emitting hot material during the data acquisition.
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5.4. Oxidized Surface Abundance

The oxidized surface endmembers (3, 6, and 12) have the highest abundance fraction at the vent
as shown in Figure 8a. This agrees with a field observation shown in Figure 8b which highlights the
matching dominant oxidized surface at the vent wall.
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of the field photograph)

5.5. Sulfate Mineral Abundance

The sulfate mineral endmembers (2, 7, 10, 11, and 15) have the highest abundance fraction around
the lava pond and there are four most prominent areas for the sulfate (Figure 9a). This surface mineral
looked as if it had been dusted by snow (white color) commonly identified as thernadite (Na2SO4) [41].
This can be directly seen from a true color image. This mineral formed as the flow cooled, a thin
sublimate coating formed on the surface of the lava [41]. Figure 9b,c shows the thernadite formed in
surface lava at Holuhraun.Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 20 
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Figure 9. (a) The Abundance map for the sulfate mineral endmember, the yellow areas indicate the
highest fraction of sulfate mineral meanwhile the black areas indicate the lowest fraction of the sulfate
mineral; (b) Field photograph of sulfate mineral (white surface) formed on the surface of lava (the red
boxes and lines show the approximate location of the field and aerial photo respectively); (c) aerial
photograph of sulfate mineral (white surface) formed on the surface of lava (The numbers on the image
indicate the approximate location of the sulfate for both the abundance and photograph).

5.6. Water Abundance

The water abundance (Figure 10a) has the highest abundance fraction at the location mainly
recognized as a glacial river (Figure 10b). Endmember 14 represents water which is characterized by
a relatively low reflectance and has the highest reflectance in the blue wavelength. Water has high
absorption and virtually no reflectance in the NIR-SWIR wavelengths range (Figure 5f).
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Figure 10. (a) The abundance map for water endmember, the highest abundance fraction indicated by
a yellow color, and the lowest abundance fraction indicated by a black red box shows the approximate
location of the aerial photograph); (b) aerial photograph of the glacial river.

5.7. Noise Abundance

Figure 11 shows the abundance map corresponding to endmember 9. We consider this endmember
as representing noise due to an unrecognized spectral signature since this spectrum is characterized by
saturated reflectance in channels ~2000 nm and ~2400 nm (Figure 5g). The saturated reflectance could
be due to corrupted bands in some pixels.
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Figure 11. The abundance map for the noise endmember, the highest abundance fraction is indicated
by the yellow color, and the lowest abundance fraction is indicated by the black color.

5.8. False Color Abundance

The abundance results depicted as false color (R: Oxidized surface; G: Sulfate mineral; B: Basalt)
images show that the majority of rocks or minerals in the study area are dominated by basalt as shown
in the blue color in Figure 12a. The other colors such as magenta and yellow indicate a mixture. The
mixture phenomenon is illustrated in Figure 12b, as the surface has 0.25 oxidized surface mix with 0.75
basalt resulting in the magenta color; and 0.25 oxidized surface mix with 0.75 sulfate mineral resulting
in the yellow color pixel.Remote Sens. 2018, 10, x FOR PEER REVIEW  13 of 20 
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Figure 12. (a) False color of abundance highlighting for R: oxidized surface; G: sulfate mineral; and
B: Basalt; (b) Illustration of the mixed pixels in the area, 0.25 oxidized surface mix with 0.75 basalt
resulting in the magenta color; and 0.25 oxidized surface mix with 0.75 sulfate mineral resulting in the
yellow color pixel.

5.9. Validation

The very high-resolution aerial photograph was used for ground truth. The aerial photograph was
classified into oxidized surface, sulfate, basalt, and water using visual image interpretation and used
for validation of the unmixing results. We only validate three endmembers for basalt—oxidized, sulfate,
and water—since the noise and hot material cannot be detected based on visual interpretation. We
classified the endmembers that have fractional abundance > 0.5. Validation was based on 150 randomly
generated point samples within each class. Table 1 show the validation results, with a resulting mean
overall accuracy 79% and mean Kappa index of 0.73. This result shows that the abundances have
moderate agreement with the sample points.
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Table 1. Validation of the endmembers that have abundance > 0.5.

Class Overall Accuracy Kappa Index Mean Overall Accuracy Mean Kappa Index

Basalt/Non-Basalt 70% 0.62

79% 0.73
Sulfate/Non-Sulfate 93% 0.89

Oxidized/Non-Oxidized 77% 0.72
Water/Non-Water 76% 0.70

6. Discussion

6.1. Comparison with the Existing Spectral Index Technique

The correlation between the spectral index images and the abundance image was analyzed. We
only correlated the three endmembers since there are no reference spectral indices for sulfate mineral,
hot material, and noise. Here we compared the basalt, oxidized, and water abundance images with
the mafic, oxidized, and water index images proposed by Inzana et al., Podwysocki et al. and Xu
respectively [42–44] (Appendix B). We applied these indices to the hyperspectral image and compared
them with the result from each abundance. Figure 13a–c shows the scatter plots results. The R2 values
were 0.46, 0.91, and 0.77 for the basalt, oxidized surface, and water, respectively. The oxidized surface
and water indicate a good correlation with the indices (Figure 13b,c). This suggests that both oxidation
and water generated from a spectral index are properly validated [2,44]. Meanwhile, basalt shows a
low correlation with the mafic index (Figure 13a) suggesting that the estimates of the basalt surface
from the unmixing technique is an overestimation, since the basalt abundance shows the older lava
flows as mafic with a relatively high fraction compared to the mafic index that only showed for fresh
lava flow. This being due to a full spectrum of hyperspectral can easily differentiate between basalt
surface and non-basalt.
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6.2. Number of Endmembers

The determination of the number of endmembers is critical, since underestimation may result in a
poor representation of the mixed pixels, whereas overestimation may result in an overly segregated
area [16]. Table 2 shows the relationship between the number of endmember and the number of
pixels that have fractional abundance > 0.5 and the mean correlation with mafic, oxidized, and water
index. We considered abundance >0.5 as high abundance. As the number of endmembers increase, the
number of pixels also increases for an oxidized surface, sulfate mineral, water, and noise abundances,
respectively. This is due to an increase of endmembers that is detected for each group. Meanwhile,
the basalt abundance shows the opposite, as the endmembers increase the number of pixels with
abundance >0.5 decreases. These results show that as more endmembers are considered the mixing of
basalt with other endmembers increases resulting in a decrease of the fractional abundance of basalt.
According to the results, we considered the 15 endmembers as an optimum number for this study since
they have the highest mean correlation with mafic, oxidized, and water index. Clearly, the selection of
appropriate endmembers in such a diverse volcanic environment, considering the particularities of the
FENIX dataset, is of great importance in order to obtain accurate unmixing results. In addition, since
only a small number of the available materials spectra are expected to be present in a single pixel, the
abundance vectors are often sparse [45].

Table 2. Comparison number of pixels that have abundance >0.5, R2 and number of endmembers.

Number of
Endmembers

Number of Pixels Abundance
R2

Oxidized Surface Sulfate Mineral Hot Material Water Noise Basalt

5 19 57 19 0 0 522481 0.27
10 86 115 19 0 2 522406 0.35
15 91 215 34 373 2 522266 0.71
20 95 232 36 373 5 522046 0.67
30 97 250 40 373 7 521707 0.69

6.3. Size of Lava Field Area

As the methods were only tested on a subset area of the lava field vent, to apply the methods for
the entire lava flow is challenging for several reasons. (1) The high spatial heterogeneity typically gives
rise to mixed pixels containing multiple materials and it will increase the number of endmembers
detected by SMACC [40]. (2) Different illumination occurs within the different flight lines for the entire
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lava flow (Figure 3b) since the data acquisition time is acquired between 16.56 and 17.58 local times
which results from the very low sun angle during the acquisition. This problem can be approached by
collecting ground truth spectra, extensive calibration, and atmospheric correction using simultaneous
and constrained calibration of multiple hyperspectral images through a new generalized empirical
line model purposed by Kizel et al. [37]. (3) The computation time to perform unmixing also must be
considered for the entire lava field since the area is relatively large (84 km2) and the hyperspectral data
contains 622 channels with a 3.5-meter spatial resolution. In order to process the full set of data we
need to consider using high performance computing (HPC) [46].

6.4. Using Full Optical Region for Mapping Recent Lava Flow (VIS-SWIR-TIR)

Hyperspectral VIS-SWIR image data is effective for discrimination mafic, oxidation, sulfate
etc. However, not all the minerals and surface type are always mapped uniquely with VIS-SWIR
hyperspectral data. A typical surface such as rock forming minerals associated with unaltered rocks
and alteration minerals associated with altered rocks can be identified with TIR (Thermal Infrared)
data [47–49]. Image processing methods that have become standard for hyperspectral VNIR/SWIR data
analysis also work for hyperspectral TIR data [47]. Vaughan et al [47] showed that pixel classification
techniques based on spectral variability within the scene and mineral libraries for matching spectral
emissivity features can be used for TIR-derived mineral maps using SEBASS hyperspectral TIR image
data. Hyperspectral TIR instruments operational for airborne surveys are also available in the NERC
Airborne Research Facility with a Specim AisaOWL sensor [48]. A synergistic use of airborne data from
both FENIX (VIS-SWIR) and OWL (TIR) allows great potential for lava discrimination in future study due
to the complementary nature of the reflective (VIS-SWIR) and emissive (TIR) spectral regions. This might
significantly improve our understanding of physical lava surface properties. Specifically, VIS-SWIR
imaging spectrometers can discriminate surface materials and TIR data acquisitions can help to identify
the thermal characteristics of different materials [47–49]. For instance, combining emissivity spectra with
reflectance spectra in a mixing model would improve discriminating lava from surfaces [50–52].

7. Conclusions

In this study, an application of potential spectral unmixing methods on 2014–2015 Holuhraun
lava flow field was presented. In total, we acquired fifteen spectral endmembers and their abundances.
The first endmember was chosen as the brightest pixel which represented saturated incandescent
lava. We grouped these 15 endmembers into six groups (basalt, oxidized surface, sulfate mineral, hot
material, water, and noise) based on the shape of the endmembers since the amplitude varies due to
illumination conditions, spectral variability, and topography. The endmembers represent pure surface
materials in a hyperspectral image. We concluded that the selection of appropriate endmembers in
such a diverse volcanic environment, considering the particularities of the FENIX dataset, is of great
importance in order to obtain accurate unmixing results. Combination of SMACC and LSMA methods
offers an optimum and a fast selection for volcanic products segregation However, ground-truthing
spectra are recommended for further analysis. A synergistic use of airborne data from both FENIX
(VIS-SWIR) and OWL (TIR) gives a great potential for lava discrimination in future study due to the
complementary nature of the reflective (VIS-SWIR) and emissive (TIR) spectral regions. This might
significantly improve our understanding of physical lava surface properties.
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Appendix A

The bad channels in this data are located at 968 nm and 1014 nm. Figure A1 show the spectral
reflectance before masking (Figure A1A) and after channel masking (Figure A1B).
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Figure A2. This shows the theoretical pixel size at the nadir for Fenix. The pixel size will be larger
at the edges of the swath, in this study, the AGL is ~ 2400 m so according to the graph the optimal
pixel size resample for the FENIX is ~3.5 m.
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Appendix B

The mafic indices originated, developed by Inzana et al. [42] to distinguish mafic from non-mafic
rocks are from Landsat TM image, expressed as follows:

Ma f ic index =
ρ1600nm

ρ860nm
∗ ρ640nm

ρ860nm
(A1)

where ρ1600nm is the measured reflectance at wavelength 1600 nm, ρ640nm is the measured reflectance
at wavelength 640 nm, and ρ860nm is the measured reflectance at wavelength 860 nm.
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The oxidized index originated designed any multispectral sensor with bands that fall within the
red channel and blue channel [43], expressed as follows:

Oxidized index =
ρ640nm

ρ500nm
(A2)

where ρ500nm is the measured reflectance at wavelength 500 nm.
We calculated the water index using the Modified Normalized Difference Water Index

(MNDWI) [44]. This index enhances open water features while suppressing noise from built-up
land, vegetation, and soil. This is expressed as follows:

Water index =
ρ600nm − ρ1600nm

ρ600nm + ρ1600nm

where ρ600nm is the measured reflectance at wavelength 600 nm.
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