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Abstract: Thermal infrared remote sensing observations have been widely used to provide useful
information on surface energy and water stress for estimating evapotranspiration (ET). However,
the revisit time of current high spatial resolution (<100 m) thermal infrared remote sensing systems,
sixteen days for Landsat for example, can be insufficient to reliably derive ET information for
water resources management. We used in situ ET measurements from multiple Ameriflux sites to
(1) evaluate different scaling methods that are commonly used to derive daytime ET estimates from
time-of-day observations; and (2) quantify the impact of different revisit times on ET estimates at
monthly and seasonal time scales. The scaling method based on a constant evaporative ratio between
ET and the top-of-atmosphere solar radiation provided slightly better results than methods using the
available energy, the surface solar radiation or the potential ET as scaling reference fluxes. On average,
revisit time periods of 2, 4, 8 and 16 days resulted in ET uncertainties of 0.37, 0.55, 0.73 and 0.90 mm
per day in summer, which represented 13%, 19%, 23% and 31% of the monthly average ET calculated
using the one-day revisit dataset. The capability of a system to capture rapid changes in ET was
significantly reduced for return periods higher than eight days. The impact of the revisit on ET
depended mainly on the land cover type and seasonal climate, and was higher over areas with high
ET. We did not observe significant and systematic differences between the impacts of the revisit on
monthly ET estimates that are based on morning or afternoon observations. We found that four-day
revisit scenarios provided a significant improvement in temporal sampling to monitor surface ET
reducing by around 40% the uncertainty of ET products derived from a 16-day revisit system, such as
Landsat for instance.

Keywords: Evapotranspiration; remote sensing; revisit time period; AmeriFlux

1. Introduction

Evapotranspiration (ET) represents the loss of water from the Earth’s surface by evaporation
of water intercepted by the soil surface and the canopy, and by vegetation transpiration processes.
ET has been estimated at about two thirds of the precipitation over land surfaces [1]. Therefore, ET is
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a key environmental variable linking the water, carbon, and energy cycles with multiple applications,
such as agricultural water management, large scale hydrology, drought monitoring, weather and
climate forecasting for example [2,3]. At large scales, ET may be derived by taking advantage of
remotely sensed observations of surface variables that are linked to ET. Indeed, ET cannot be directly
measured as a flux from satellites, but the response of plants to water and heat stress directly affects
the surface energy balance and surface temperature, which can be measured by thermal infrared
(TIR) sensors [4–7]. Thermal infrared radiometers at km-scale resolution, such as the Moderate
Resolution Imaging Spectroradiometer (MODIS) at 1 km or the Visible Infrared Imaging Radiometer
Suite (VIIRS) at 750m resolution, provide daily and spatially continuous information about the land
surface temperatures that are commonly used to derive ET and drought indices at large scales [8–11].
However, natural and managed landscapes are usually heterogeneous at smaller spatial scales (<100 m)
and require information on biophysical variables at similar spatial scales that can be derived from
high spatial resolution observations (<100 m) [12–15]. For water resources management, spaceborne
systems must be able to capture rapid changes in land surface temperature (LST) after a precipitation
or irrigation event [16] requiring high spatial resolution observations on a frequent basis. However,
remote sensing observations are not temporally continuous.

The revisit intervals of current high spatial resolution satellite-based thermal infrared systems
(<100 m resolution) are usually insufficient to characterize the energy and water budgets of land
surfaces for a variety of research and applications, such as agricultural water resources management.
For example, Landsat has a swath width of 185 km and provides global coverage every 16 days,
but depending on local cloud coverage, the frequency of clear sky observations is often much
lower, limiting its ability to provide data for operational management-appropriate ET estimates [17].
Moreover, optical sensors (from Visible to TIR) require cloud-free observations to derive surface
properties; microwave radiometers may provide information about surface temperature in all weather
conditions, but at spatial resolutions too coarse for surface heterogeneity detection. To improve the
temporal sampling of current TIR observations and ET estimates at high spatial resolution, the NASA
ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) [18–20] was
deployed to the International Space Station on 29 June 2018. ECOSTRESS is providing multispectral
thermal infrared data to measure the Earth surface temperature at a spatial resolution of 40 × 70 m.
The spaceborne system has an average revisit time of four days over 90% of the contiguous United
States (CONUS) at varying times of day depending on the latitude [21]. ECOSTRESS will provide
a foundation for the proposed Hyperspectral Infrared Imager (HyspIRI) mission, with a launch no
earlier than 2024 and with a five-day revisit [21]. Other high spatial resolutions and high revisit missions
are currently under study. The Copernicus Land Surface Temperature Monitoring (LSTM) mission
has been identified as a priority mission by the European Space Agency (ESA) to monitor energy and
water budgets and complement the Sentinel program. LSTM has started an ESA preparatory phase
study in 2018 to establish mission feasibility. To support agriculture management services, LSTM will
have a spatial resolution of 30–50 m and a temporal resolution lower than three days [22]. The French
Space Agency (CNES) and the Indian Space Research Organization (ISRO) have also started the design
of a new satellite mission called TRISHNA, combining a high spatial resolution (50 m) and high revisit
capacities (between two and three days) in the thermal infrared domain [23]. The launch of TRISHNA
is planned at the 2024 horizon. Using cloud mask products from MODIS, Mercury et al. [24] found
that a five-day revisit period provides a sufficient number of clear-sky scenes to enable both monthly
and quarterly surface energy assessments of the vast majority of the Earth’s land surface. Using data
from a single Landsat satellite (i.e., system with a 16-day revisit period), Allen et al. [17] showed that
having at least one cloud-free image per month for selected locations was verified only one year out of
the 26-year Landsat archive used by the authors. Using ground station measurements and MODIS
cloud masks, Lagouarde et al. [16] estimated that only a one-day revisit spaceborne system could
provide on average one cloud-free image every five days over Europe. In a paper focused on future
Landsat capacities for water management, Anderson et al. [12] recommend a revisit lower than four
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days. Lagouarde et al. [25] pointed out the effect of atmospheric turbulence on surface temperature
and recommend revisit periods as high as possible (no value was provided by the authors) to cope
with associated LST uncertainties. Alfieri et al. [26] found that a return interval of five days or less was
necessary for accurate daily ET estimates, i.e., relative error lower than 20%.

The estimation of daily ET from time-of-day observations is also an existing problem. Current high
spatial resolution systems are on sun-synchronous orbits and only provide time-of-day observations
which may not be appropriate for water resources management. Therefore, various methods have
been developed to scale time-of-day derived ET to daytime or daily averages for management
applications [27–29]. A summary of the main temporal scaling methods and key findings is provided
in Table 1. The reported methods are based on the assumption of self-preservation of evaporative
ratios (ER) between ET and different scaling reference fluxes during daytime [30,31]. Four scaling
reference fluxes are usually used: The top-of-canopy (TOC) incoming shortwave radiation (measured
or calculated) [32–38], the top-of-atmosphere incoming shortwave radiation [36–39], the surface
available energy representing the difference between the surface net radiation and the soil heat
flux [4,33,34,36–42], and the surface potential evapotranspiration [35,37,38]. The term “evaporative
fraction” (EF) is commonly used when the available energy at the surface is used as reference scaling
flux. Prior studies showed that the self-preservation assumption is not verified throughout the daylight
hours in general [4,43–45]. Except for the work by Van Niel et al. [36,45], most of the previous studies
considered daytime average ET only because the assumption of a constant evaporative ratio is usually
not satisfied during nighttime [46]. It should be noted that Kustas et al. [27] and Stannard et al. [47]
suggested that the nighttime contribution can represent 5% to 13% of the daytime total depending on
vegetation type and soil moisture conditions. Geostationary satellites can provide diurnal information
with temporal resolutions from 15 min to 1 h, but the relatively coarse spatial resolution of the thermal
bands, e.g., 2 km for the Advanced Baseline Imager (ABI) on the GOES and Himawari series, may cause
additional difficulties due to spatial variability of surface biophysical properties within coarser pixels.

In this study, we evaluated the uncertainty on ET retrievals resulting from the scaling of
time-of-day measurements up to monthly and seasonal average estimates using ground-based
observations made at different AmeriFlux sites spanning a wide range of ecosystems and climates
over the contiguous United States. The objective was twofold. First, we compared four different
temporal scaling methods commonly used to derive integrated ET over daytime from time-of-day ET
retrievals. Then, we evaluated the impact of satellite revisit times on monthly and quarterly ET average.
Section 2 presents the different temporal scaling methods that we evaluated, and the methodology
used to generate and evaluate the representativeness of the temporal series of monthly and seasonal
ET associated with different revisit periods. The AmeriFlux data sets used in the study are described
in Section 3, and results are presented and discussed in Sections 4 and 5, respectively. This study
was based on in situ ET measurements only and no actual remote sensing observations were used.
Therefore, potential errors due to ET retrieval algorithms were not considered, and only uncertainties
induced by the scaling and interpolation procedures were evaluated. Throughout the text, specific
attention was made on thermal infrared systems because (1) long-term thermal infrared missions
at high spatial and temporal resolutions did not exist at the time this article had been published,
(2) ECOSTRESS was launched few month ago (June 2018) to demonstrate the need for high spatial and
temporal resolutions thermal infrared missions and (3) other thermal infrared missions (i.e., LSTM,
TRISHNA) were under study. However, results were based on ground-based direct measurements of
ET and were therefore also valid for other systems and spectral domains that could be used to derive
ET estimates.
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Table 1. Summary of techniques used to upscale evapotranspiration from time-of-day observations to daytime or daily scale. Relevant specifications and key findings
are also summarized.

Study/Reference Scaling Quantities (1) Data/Location/Experiment Relevant Particularities Key Findings

Jackson et al. [32] Simulated RG Crop sites in CA, NE, MN, ID Daytime scale; impact of cloudiness Good performance for cloud free days

Brutsaert and Sugita [33] AE, RG, Rn FIFE (2) Daytime scale; impact of cloudiness Good performance of the models based on AE,
Rn, Rg

Crago [40] AE FIFE (2) Daytime scale; impact of cloudiness Variability of EF depends on cloudiness and
advection of moisture

Zhang and Lemeur [34] AE, Simulated RG
HAPEX-MOBILHY (3)

experiment
Daytime scale; impact of cloudiness Constant EF is valid under cloud-free

conditions only

Anderson et al. [4] AE Large-area implementation Daytime scale; Used a surface
energy balance model

Found systematic error of 10%; Defined
correction factor of 1.1

Hoedjes et al. [42] AE Olive orchard in Morocco Daytime scale; Applied correction
factor under dry conditions

EF was well preserved under dry
conditions only

Van Niel et al. [45] AE Two long-term (2001–2008) flux
tower sites in Australia

Daily scale; account for observed
biases and nighttime fluxes

β-correction functions significantly reduce
observed bias

Delogu et al. [35] RG, PET Five agricultural fields;
three-year datasets

Daytime scale; Interpolation
between cloud free conditions

Best performance of the model based on RG for
sites with water stress

Ryu et al. [39] AE, RTOA
34 flux towers from FLUXNET;

one-year datasets
Daily scale; No correction factor;

Comparison with satellite-based ET
Best performance of the model based on RTOA;

up to 13% bias using AE

Van Niel et al. [36] AE, RG (measured and
modelled), RTOA

Two long-term (2001–2011) flux
tower sites in Australia

Daytime scale; β-correction factors
for each reference scaling flux Best performance of the model based on RG

Tang et al. [37] AE, RG, RTOA, PET Yucheng, China Daily scale; All sky conditions Scaling based on PET had the best performance

Cammalleri et al. [38] AE, RG, RTOA, PET 14 Ameriflux sites;
two-year datasets

Daytime scale; Applied
β-correction factor of 1.1 to AE

RG is the most robust scaling variables;
no seasonal variability was found

(1) AE: Available Energy, i.e., surface net radiation minus soil heat; Rg: Surface incoming solar radiation; RTOA: Top-of-atmosphere incoming solar radiation; PET: Potential
evapotranspiration; Rn: Surface net radiation. (2) FIFE: First International Satellite-Land Surface Climatology Project (ISLSCP) Field Experiment. (3) HAPEX-MOBILHY: Hydrologic
Atmospheric Pilot Experiment, Modélisation du Bilan Hydrique.
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2. Materials and Methods

The impact of the satellite revisit period on monthly and seasonal ET is evaluated using
continuous and long-term ground-based measurements of ET from the AmeriFlux network using the
eddy-covariance technique [48].

2.1. Scaling ET from Instantaneous Observations to Daytime Averages

2.1.1. Four Scaling Methods Based on Self-Preservation of Evaporative Ratios

In the first part of the paper, we evaluated four different methods commonly used to scale ET
from instantaneous observations to daytime averages. The scaling methods are based on daytime
self-preservation of the evaporative ratios between ET and different reference scaling fluxes: (1) The top-
of-canopy incoming shortwave radiation or solar global radiation (Rg), (2) the top-of-atmosphere
incoming shortwave radiation (RTOA), (3) the surface available energy (AE) representing the difference
between the surface net radiation and the soil heat flux (measured by the AmeriFlux stations),
and (4) the potential evapotranspiration (PET).

Daytime evapotranspiration (ETF,d) represents the cumulative surface evapotranspiration (in mm)
from sunrise to sunset scaled from time-of-day latent heat flux (λEt) using the reference scaling flux F
(Equation (1)).

ETF,d =
1
λ

λEt

Ft
Fd, (1)

where Ft is the instantaneous reference scaling flux in W m−2 or joule (J); Fd is the daytime average
scaling flux, i.e., integrated F over daylight hours from sunrise to sunset in J; λ is the latent heat of
vaporization (λ = 2.45 MJ kg−1). The subscript “F” stands for the reference flux used (e.g., ETRG,d or
ETAE,d). Subscripts “t” and “d” refer to time-of-day and daytime fluxes, respectively. Two of the scaling
fluxes (Rg and AE) were directly measured by the stations. PET was computed using the Penman’s
formula [49,50] (Equation (2)) based on measured net radiation (Rn in MJ m−2 day−1), wind speed
(u in m s−1), air temperature and relative humidity. The Penman’s form of PET is fully-physically
based, including all primary meteorological variables involved in the ET process [51]. It was showed
to be the most appropriate form of PET when considering a changing climate [52], energy-limited
environments or ‘equitant’ climate, i.e., PET close to the water supply [53]:

PET =
∆

∆ + γ

Rn

λ
+

γ

∆ + γ

6.43(1 + 0.536 u) VPD
λ

, (2)

where ∆ is the slope of saturation-to-vapor pressure curve depending on air temperature, γ is the
psychrometric constant and VPD is the vapor pressure deficit (in kPa).

RTOA was derived from information on the sun-site geometry only [39]:

RTOA = Ssun

[
1 + 0.033 cos

(
2π DOY

365

)]
cosθs, (3)

where Ssun is the solar constant (≈1360 W m−2); DOY is the day of year; θs is the sun zenith angle
depending on the declination angle, date and location (latitude and longitude) of the sites.

2.1.2. β Factors, a Metric to Evaluate the Self-Preservation of Evaporative Ratios

Van Niel et al. [36,45] introduced a β factor (βF in Equation (4)) to characterize observed biases
in the upscaling methods when self-preservation of the evaporative ratio λEt/Ft was not verified.
β factors were used in this study as a metric to compare and evaluate the four different scaling methods.
The β factor is equal to 1 when self-preservation of the evaporative ratio is verified, i.e., the evaporative
ratios derived from time-of-day and daytime average fluxes are equal (see Equation (1)). β factors
depend on the acquisition time (t), land surface type and local climate, and may vary seasonally
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due to the non-uniform distribution of precipitation throughout the year and surface hydrology
variability. Van Niel et al. [45] calculated βAE factors for the evaporative fraction (i.e., F = AE was
used as reference scaling flux) and clear-sky conditions only accounting for all available data from two
eight-year datasets, while Van Niel et al. [36] accounted for all-sky conditions and average seasonal
variability of βAE over two 11-year datasets. Following Van Niel et al. [45], β factors for each site and
clear-sky conditions were calculated as the median values of daily βF,i factors over the whole dataset
or individual months to account for seasonal variability (Equation (4)):

βF = median (βF,i)i=1, n with βF,i =
λETd,i

Fd,i

Ft,i

λEt,i
, (4)

where subscript i is used to represent the i-th clear-sky observations in a period of time (month or
entire data set in our study) consisting of a total of n clear-sky observations.

2.1.3. Metrics to Evaluate the Different Scaling Methods

Observed discrepancies between the different scaling methods and ground-based average daytime
ET were characterized using four different metrics: The β factor (Equation (4)), the median error
(ME; Equation (5)), the median absolute deviation (MAD, Equation (6)), and the root mean square
error (RMSE; Equation (7)) of the differences.

ME = median(DF,i)i=1, n with DF,i = ETF,d,i − ETd,i, (5)

MAD = median
(∣∣∣DF,i − median(DF,i)i=1, n

∣∣∣)
i=1, n

, (6)

RMSE =

√
1
n ∑

i=1, n
(DF,i)

2, (7)

where DF,i represents the difference between daytime ET estimated using Equation (1) and measured
by a flux tower; the subscripts i and F are used to represent individual days in a given set of n days
and the reference flux used for daytime scaling in Equation (1), respectively. In our study, sets of n
days represent the entire data set or sets of days that are either mostly clear or mostly cloudy.

2.2. Assessing the Impact of the Satellite Revisit Period on ET

From AmeriFlux data, the study consisted to simulate discontinuous series of ET at a given
overpass time (by crossing clear sky conditions with revisit), and then to reconstruct continuous series
of daily ET by successively (1) interpolating between successive cloud-free observations and (2) scaling
instantaneous observations (as they would be available from space) at daily scale. This study is based
on ground data only.

2.2.1. Generation of Series of Observations with Different Revisit Periods

The impact of the satellite return period on monthly and seasonal ET estimates was evaluated
by comparing different revisit scenarios with two reference datasets: (1) A one-day revisit dataset
based on all clear-sky observations made at a given time-of-day by the flux tower, and (2) the daytime
average flux tower measurements accounting for all days (including cloudy conditions). The different
revisit scenarios are based on the different sampling of clear-sky ground-based observations for a given
time-of-day. For each site, an n-day revisit scenario is derived by selecting the clear-sky observations
at the time of the satellite overpass available over the n-day cycle. As results may depend on the
initialization date, n time series can be derived for each revisit frequency. Then, the n different samples
associated with n different revisit initializations were compared with the reference datasets and the
mean observed discrepancies were used for comparison with other revisit scenarios.
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Two overpass times have been considered to represent the nominal times of a morning and
afternoon satellite overpass: 10:00 and 13:00 The 10:00 overpass corresponds to instruments like the
Thermal Infrared Sensor (TIRS) onboard Landsat-8, the Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER), MODIS onboard Terra or the Sea and Land Surface Temperature
Radiometer (SLSTR) onboard Sentinel 3, and the afternoon overpass to instruments like MODIS
onboard Aqua or VIIRS onboard the Suomi National Polar-Orbiting Partnership (Suomi-NPP) and
Joint Polar Satellite System (JPSS) spacecrafts, for example. The afternoon overpass is also the preferred
overpass time for missions in preparation, such as TRISHNA or LSTM [22,23]. The impact of
acquisition time on the ability to detect water stress and then derive daily ET estimates in accordance
with the actual stress level and the stability of temperature measurements was discussed by [54,55].
Lagouarde et al. [55] also showed that the difference between cloud coverage at 10:00 and 13:00 had
no significant impact on ET estimates.

2.2.2. Interpolation between Clear-Sky Observations

For cloudy conditions or when observations are not available due to satellite return periods,
the time-of-day evaporative ratio of the missing day is estimated from consecutive available
observations using linear interpolation following the methodology used by Zhang and Lemeur [34].
It should be noted that the linear interpolation does not allow for real time monitoring under cloudy
conditions. An example of an eight-day revisit scenario is given in Figure 1, where the TOA incoming
solar radiation (RTOA) is used to scale time-of-day ET measurements to daytime ET. Eight different
eight-day revisit scenarios can be derived from the control one-day series by starting each sample on
a different day. The impact of the revisit on ET estimates has been measured using statistical analysis
of monthly and seasonal average ET. The four seasonal periods—winter, spring, summer and fall—are
December, January and February (DJF); March, April and May (MAM); June, July and August (JJA);
and September, October and November (SON), respectively. Two metrics are used to quantify the
difference between monthly and seasonal ET average estimated from a given revisit scenario and the
ground-based dataset: The root mean square difference/error (RMSE) and a robust estimator of the
maximum deviation represented by the median error plus three times the value of the median absolute
deviation [56], referred to as maximum deviation estimator hereafter. RMSE is used to characterize the
average uncertainty associated with a given revisit period. The estimator of the maximum deviation
is used to evaluate the capability of a given revisit dataset to capture short-term changes in surface
hydrology, such as the drying period following a moisture event.

2.2.3. Clear Sky Identification

In situ measurements made under cloudy conditions were identified based on the departure of the
incoming shortwave radiation measured by the station from estimated clear-sky shortwave radiation
following [55]. First, for a given location, date and time, the expected value of the clear-sky incoming
shortwave radiation is approximated by the maximum value measured by the station over the entire
dataset—about ten years of data are available per site on average. Ground-based measurements are
flagged cloudy if the measured shortwave radiation is lower than 80% of the estimated clear-sky
radiation. On average, the value of 80% represents a good compromise between the need to remove
data actually contaminated by clouds and the need to account for possible interannual calibration
differences by being overly selective.
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Figure 1. Methodology used to generate different revisit scenarios—the figure presents an example of
an eight-day revisit scenario using data collected at the Atmospheric Radiation Measurement (ARM)
Southern Great Plains, OK. (a) A control evaporative ratio series is calculated using ground-based
measurements at a given satellite overpass time assuming a one-day revisit period—here the
modeled top-of-atmosphere incoming shortwave radiation (RTOA) is used as scaling reference flux.
Eight different eight-day revisit scenarios can be derived from the control one-day series by starting
each sample on a different day. For the eight-day scenarios, the larger markers in (a) represent
clear sky observations, and the smaller markers represent days with no satellite observations (due to
return period or clouds) associated with evaporative ratios estimated from two consecutive clear
sky observations using linear interpolation. (b) Impact of different eight-day revisits initializations
on monthly ET estimates. The gray filled area represents the ensemble of eight-day revisit samples
associated with eight different start days.

2.3. The AmeriFlux Network

Part of the FLUXNET network [48], AmeriFlux provides continuous observations of ecosystem
level exchanges of CO2, water and energy, and micrometeorological parameters at diurnal, seasonal,
and interannual time scales. We used measurements of radiative forcing (shortwave and longwave
downwelling and outgoing radiation), surface fluxes (soil heat and latent heat), and atmospheric
parameters (air temperature) collected at 21 AmeriFlux sites over the contiguous United States.
The selected stations operate in climatologically diverse regions and are representative of various land
cover types (Table 2).
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Table 2. List of AmeriFlux sites, including site geolocation, primary surface type and period of time considered for each dataset. Ameriflux data availability varies
from site to site.

Site ID Lat Lon Surface Type Period Regional Climate Reference

Southern Great Plains, OK ARM 36.606 −97.489 Cropland 2003–2012 Temperate Billesbach et al. [57]
Audubon Ranch, AZ Aud 31.591 −110.509 Grassland 2004–2008 Semi-arid Krishnan et al. [58]

Bondville, IL Bo1 40.006 −88.290 Cropland 1997–2007 Temperate Meyers and Hollinger [59]
Brookings, SD Bkg 44.345 −96.836 Grassland 2005–2009 Temperate Hollinger et al. [60]

Chestnut Ridge, TN ChR 35.931 −84.332 Deciduous broadleaf 2006–2013 Temperate Hollinger et al. [60]
Fermi, IL—Agricultural IB1 41.859 −88.223 Cropland 2006–2011 Temperate Matamala et al. [61]

Fermi, IL—Prairie IB2 41.841 −88.241 Grassland 2005–2011 Temperate Matamala et al. [61]
Fort Peck, MT Fpe 48.308 −105.102 Grassland 2000–2008 Temperate Gilmanov et al. [62]

Freeman Ranch, TX—Mesquite FR2 29.950 −97.996 Grassland 2005–2008 Semi-arid Heinsch et al. [63]
Freeman Ranch, TX—Woodland FR3 29.940 −97.990 Woody savannah 2005–2012 Semi-arid Heinsch et al. [63]

Konza, KS Kon 39.082 −96.560 Grassland 2007–2012 Temperate Brunsell et al. [64]
Loblolly Pine, NC NC2 35.803 −76.668 Evergreen needleleaf 2005–2010 Sub-tropical Noormets et al. [65]

Loblolly Pine Clearcut, NC NC1 35.812 −76.712 Evergreen needleleaf 2005–2009 Sub-tropical Noormets et al. [65]
Mead, NE—Irrigated maize Ne1 41.165 −96.477 Irrigated cropland 2002–2012 Temperate Verma et al. [66]

Mead, NE—Irrigated maize-soybean Ne2 41.165 −96.470 Irrigated cropland 2002–2012 Temperate Verma et al. [66]
Mead, NE—Rainfed maize-soybean Ne3 41.180 −96.440 Rainfed cropland 2002–2012 Temperate Verma et al. [66]

Missouri Ozark, MO MOz 38.744 −92.200 Deciduous broadleaf 2005–2013 Temperate Gu et al. [67]
Santa Rita Mesquite, AZ SRM 31.821 −110.866 Woody savannah 2004–2013 Semi-arid Scott et al. [68]

Tonzi Ranch, CA Ton 38.432 −120.966 Woody savannah 2002–2012 Semi-arid Baldocchi et al. [69]
Vaira Ranch, CA Var 38.413 −120.951 Grassland 2001–2012 Semi-arid Ryu et al. [70]

Walker Branch, TN WBW 35.959 −84.287 Deciduous broadleaf 1995–2006 Temperate Baldocchi and Meyers [71]
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In this study, the primary data set used is the latent heat flux λE that is derived from
eddy-covariance measurements. The footprint of tower-based flux measurements depends on several
parameters, such as the sensor height, surface roughness around the tower, wind speed and direction,
and atmospheric stability and may vary from a tenth of km2 to several km2 [72].

AmeriFlux instruments are carefully maintained and a detailed description of the network and
a summary of the accuracy assessment of each instrument are provided by Baldocchi et al. [48].
It should be noted that the authors found that quality control tests of surface energy balance closure
suggested that turbulent fluxes at some sites are systematically 10% to 30% too small to close the energy
budget. Different approaches have been developed to correct for closure issues. They were usually
based on the assumption that the convective fluxes are underestimated using the eddy covariance
technique [73,74]. Indeed, the non-closure of measured energy balance can be partly due to errors
measuring heat storage in the canopy and the upper soil surface layer as mentioned by [75,76], footprint
mismatch between the eddy fluxes and the other energy fluxes (net radiation and soil heat) [77,78],
inaccuracies in the eddy covariance processing [79], or low frequency turbulence structures not
captured by the eddy covariance system [77]. In this study, we did not correct for energy imbalance
and used the measured latent heat flux as they were provided in the database. AmeriFlux datasets are
archived and distributed by the Oak Ridge National laboratory [80]. For each selected site, the dataset
represents 30-min averages of each parameter; the evapotranspiration is represented by the latent heat
flux in W m−2 in the AmeriFlux database.

The selected sites represented four main land cover types: Forests, croplands, grasslands and
woody savannahs. We selected locations with companion sites for which the local climate did not
vary, but for which the canopy development, plant phenology stage or land water use might differ.
Instrumented crops are irrigated or rainfed near Mead in Nebraska; the Loblolly pine stands in North
Carolina have different ages: The older stand is around 20 years-old, and the companion site (Loblolly
pine clearcut in Table 2) was planted with loblolly pine seedlings in 2004 after a clearcut, for example.

3. Results

3.1. Clear Sky Identification

On average over the 21 selected sites, 20 and 19 observations per month were made under clear sky
conditions in Summer at 10:00 and 13:00, respectively, around 16 clear-sky observations per month in
spring or fall, while only 12 and 14 observations per month were clear in December (Figure 2, one-day
revisit period). The median number of clear-sky observations dropped to five and two observations
per month for return periods of 4 and 10 days, respectively.
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However, the impact of cloud coverage may significantly differ from one station location to 
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km resolution, we found that ground-based estimates were usually slightly higher than MODIS-
derived products. This may be due to differences in spatial scales, i.e., a partly cloudy sky can 
significantly affect a km-scale satellite pixel and be flagged by the cloud mask algorithm without 
affecting in situ observations. 
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arid areas (Sites referred to as Aud, SRM, Ton, Var in Figure 3). For these sites, ERAE and ERTOA varied 
in the 0.10–0.16 and 0.04–0.1 ranges, respectively. For semi-arid sites, we also observed a higher 
number of data above the upper whispers (third quartile + 1.5 interquartile) describing that a 
relatively low number of precipitation events are associated with high ER values at these sites. We 
found that time-of-day evaporative ratios based on AE and PET reference fluxes (ERAE and ERPET) 
usually significantly underestimated the daytime average evaporative ratio and we sometimes 
observed large differences between ER calculated at 10:00 and 13:00 For example, differences higher 
than 0.1 in median ERPET were observed at agricultural sites in Konza (kon) and Mead (Ne1, Ne2, 
Ne3), for example. Results illustrated the fact that evaporative ratios based on AE and PET were not 
constant during daytime and might significantly vary with the acquisition time. Such a result has 
been previously noticed for the evaporative fraction (ERAE) in several studies [40,43,44]. Conversely, 
differences between the two acquisition times (10:00 and 13:00) are usually low for evaporative ratios 
based on RG and RTOA scaling reference fluxes, suggesting more conservative ratio along the day than 
for evaporative ratios based on AE and PET. 

Figure 2. Number of cloud-free observations per month derived from ground-based incoming
shortwave radiation at 10:00 (a) and 13:00 (b) at the 21 flux towers. Average results over all the
sites depending on season periods: December, January and February (DJF); March, April and May
(MAM); June, July and August (JJA); and September, October and November (SON). The boxes extend
from the lower to upper quartile values of the data, with a line at the median. The whiskers represent
1.5 interquartile range below and above the boxes.

However, the impact of cloud coverage may significantly differ from one station location to
another (see the spread of data in Figure 2). For example, in July at 10:00, 29 observations were
identified clear-sky at Tonzi Ranch, CA on average, but only 16 at Chestnut Ridge, TN. In comparison
to the global statistics for cloud-free MODIS observations produced by Lagouarde et al. [23] with a 5 km
resolution, we found that ground-based estimates were usually slightly higher than MODIS-derived
products. This may be due to differences in spatial scales, i.e., a partly cloudy sky can significantly
affect a km-scale satellite pixel and be flagged by the cloud mask algorithm without affecting in
situ observations.

3.2. Scaling ET from Instantaneous Observations to Daytime Averages

For each site, the multi-year median value and dispersion of the four evaporative ratios (λEt/Ft

in Equation (1)) were derived from daily clear-sky observations collected at 10:00 and 13:00 (Figure 3;
Table A1 in Appendix A), respectively. We also reported (star symbols between the boxplots in
Figure 3) the true evaporative ratio based on measured daytime average ET and reference fluxes
(i.e., λETF,d/Fd). As expected, we found lower median evaporative ratios (ER) for sites located in
semi-arid areas (Sites referred to as Aud, SRM, Ton, Var in Figure 3). For these sites, ERAE and
ERTOA varied in the 0.10–0.16 and 0.04–0.1 ranges, respectively. For semi-arid sites, we also observed
a higher number of data above the upper whispers (third quartile + 1.5 interquartile) describing
that a relatively low number of precipitation events are associated with high ER values at these
sites. We found that time-of-day evaporative ratios based on AE and PET reference fluxes (ERAE and
ERPET) usually significantly underestimated the daytime average evaporative ratio and we sometimes
observed large differences between ER calculated at 10:00 and 13:00 For example, differences higher
than 0.1 in median ERPET were observed at agricultural sites in Konza (kon) and Mead (Ne1, Ne2,
Ne3), for example. Results illustrated the fact that evaporative ratios based on AE and PET were not
constant during daytime and might significantly vary with the acquisition time. Such a result has
been previously noticed for the evaporative fraction (ERAE) in several studies [40,43,44]. Conversely,
differences between the two acquisition times (10:00 and 13:00) are usually low for evaporative ratios
based on RG and RTOA scaling reference fluxes, suggesting more conservative ratio along the day than
for evaporative ratios based on AE and PET.
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of-canopy incoming shortwave (SW) radiation, (c) modelled top-of-atmosphere (TOA) incoming SW 
radiation, and (d) potential ET. The boxes extend from the lower to upper quartile values of the data, with 
a line at the median. The whiskers represent 1.5 interquartile range below and above the boxes. For each 
site, the star symbols between boxes represent the median evaporative ratios derived from daytime average 
ET measured by the station and scaling fluxes. The AmeriFlux site ID labels are defined in Table 2. 

Following [36,45], we derived β factors using in situ flux data (Equation (4)) to evaluate the 
performance of the different scaling methods and verify the assumption of a constant evaporative 

Figure 3. Distribution of the evaporative ratios derived for each site and two times of day, 10:00
(white boxes) and 13:00 (gray boxes) based on four different scaling reference fluxes: (a) Available
energy, (b) top-of-canopy incoming shortwave (SW) radiation, (c) modelled top-of-atmosphere (TOA)
incoming SW radiation, and (d) potential ET. The boxes extend from the lower to upper quartile values
of the data, with a line at the median. The whiskers represent 1.5 interquartile range below and above
the boxes. For each site, the star symbols between boxes represent the median evaporative ratios
derived from daytime average ET measured by the station and scaling fluxes. The AmeriFlux site ID
labels are defined in Table 2.

Following [36,45], we derived β factors using in situ flux data (Equation (4)) to evaluate the
performance of the different scaling methods and verify the assumption of a constant evaporative ratio
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during daytime (Figure 4). β factors characterized the bias between estimated and measured daytime
ET; they were presented in Figure 4 as a function of the ratio between annual solar radiation measured
at the surface (RG) and simulated at the top of the atmosphere (RTOA) as a proxy for cloudiness, and the
ratio between annual ET and PET as a proxy for aridity [81]. This draws a rough line between temperate
(high ET/PET) and semi-arid (low PE/PET) sites. Sites with high (respectively low) RG/RTOA ratio
were usually associated with lower (respectively higher) ET/PET ratio. The median errors and median
absolute deviations between retrieved and measured daytime ET are presented in Figure 5. Results in
Figures 4 and 5 were based on clear-sky observations at 13:00 with no restrictions on sky conditions
before or after 13:00 (i.e., part of the day could be cloudy). For all scaling methods, we found that
β factors tend to increase when the ET/PET ratio decreases or when the RG/RTOA ratio increases.
For example, βAE factors were around 1.0–1.1 for most of the sites located in temperate regions while
varied between 1.2 and 1.3 for sites located in semi-arid regions. Comparing the four scaling methods,
βAE factors varied from 1.06 to 1.31, βRG from 0.99 to 1.18, βRTOA from 0.91 to 1.08 and βPET from 1.12
to 1.29 depending on sites (Table A1 in Appendix A). The scaling method based on RTOA overestimated
daytime ET at some of the sites and we found associated βRTOA factors lower than 1 (Figure 4).
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The dispersion of β factors around the median value was represented by the median absolute 
deviation (areas of the circles in Figure 4) and tends to increase with a decrease of ET/PET or increase 
of RG/RTOA. The associated median errors (Figure 5) were lower than 0.1 mm per day for the methods 
based on scaling radiation fluxes (RG and RTOA). Higher median errors were systematically observed 

Figure 4. All-data β factors (values represented by the colors) derived from observations made at
13:00 for each site depending on the ratio between the annual mean surface solar radiation (RG) and
simulated TOA radiation (RTOA) and the ratio between the annual mean actual (ET) and potential
(PET) evapotranspiration for different reference scaling fluxes: (a) AE, (b) RG, (c) RTOA and (d) PET.
The area of the circles represents the median absolute deviation, which varies from 0.09 (smallest circle)
to 0.30 (largest circle). The AmeriFlux site ID labels are defined in Table 2.

The dispersion of β factors around the median value was represented by the median absolute
deviation (areas of the circles in Figure 4) and tends to increase with a decrease of ET/PET or increase
of RG/RTOA. The associated median errors (Figure 5) were lower than 0.1 mm per day for the methods
based on scaling radiation fluxes (RG and RTOA). Higher median errors were systematically observed
for the methods based on AE and PET, with maximum median errors around 0.2 and 0.3 mm per
day, respectively.
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Figure 5. Median error (ME, represented by the colors) and median absolute deviation (MAD,
represented by the area of the circles) between simulated and measured daytime average ET for each
site depending on the ratio between the annual mean surface solar radiation (RG) and simulated
TOA radiation (RTOA) and the ratio between the annual mean actual (ET) and potential (PET)
evapotranspiration for different reference scaling fluxes: (a) AE, (b) RG, (c) RTOA and (d) PET. Scaling
to daytime values was based on ET measurements at 13:00 assuming self-preservation between ET
and different scaling fluxes. The MAD varies from 0.06 mm day−1 (smallest circle) to 0.33 mm day−1

(largest circle). The AmeriFlux site ID labels are defined in Table 2.

Average results derived from all the sites for different sky conditions through daytime before
and after clear-sky observations made at two different times (10:00 and 13:00) are presented in Table 3.
Daytime periods were considered “mostly clear-sky” when 80% or more of the observations were
identified clear. They were considered “cloudy” otherwise. Globally, the scaling method based on
simulated RTOA showed the best performance to scale time-of-day ET observations to daytime average.
Accounting for all possible daytime sky conditions (clear and cloudy) before and after clear-sky
observations—context of remote sensing applications—and all the sites, βRTOA factor was significantly
closer to one than factors derived from other methods: We found βRTOA of 0.93 and 0.99 when based
on 10:00 and 13:00 observations, respectively, while βRG was 1.09 and 1.07, βAE was 1.18 and 1.17 and
βPET was 1.11 and 1.20, for 10:00 and 13:00 observations, respectively. As expected, results associated
with the RTOA-based method were slightly better when only clear-sky conditions during daytime
were considered, and slightly reduced in quality when only cloudy sky conditions were considered.
Median errors of estimated daytime ET based on RTOA were also lower than those derived from
the other methods (Table 3). Differences in median absolute deviations between the methods were
relatively small.

Globally, we found that upscaling ET using one of the four selected methods resulted in relatively
small median errors (absolute values varying from 0.01 to 0.13 mm day−1 depending on the method
used and time-of-day). However, the method based on simulated top-of-atmosphere solar radiation
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(RTOA) slightly outperformed the other methods (β factors closer to one and lower median errors on
average) and was used in the next section to evaluate the impact of the revisit period on ET estimates.
Also, as already mentioned by [34,39,45], using a simple function to calculate RTOA and upscale ET to
daytime totals represents a viable alternative for large-scale hydrological applications and the use of
remote sensing information.

Table 3. β-factor (Equation (4)), Median Error (ME) and Median Absolute Deviation (MAD) between
simulated and measured daytime ET in mm per day accounting for all the sites. Simulated daytime
values were derived from ET measurements at 10:00 and 13:00 and different scaling variables: Available
Energy (AE), Observed surface incoming SW radiation (RG), Simulated TOA SW radiation (RTOA)
and potential evapotranspiration (PET). Results account for clear sky conditions at satellite overpass
time and three different sky conditions during daytime: All conditions (clear or cloudy), clear-sky and
cloudy-sky conditions.

Sky Condition before
and after Clear Overpass

Scaling
Flux

10:00 Overpass 13:00 Overpass

β-Factor ME MAD β-Factor ME MAD

All conditions
(Clear or cloudy)

AE 1.18 −0.12 0.17 1.17 −0.11 0.12
RG 1.09 −0.06 0.16 1.07 −0.04 0.13

RTOA 0.93 0.06 0.17 0.99 0.01 0.13
PET 1.11 −0.08 0.16 1.19 −0.13 0.12

Mostly clear sky

AE 1.18 −0.12 0.17 1.16 −0.1 0.13
RG 1.07 −0.05 0.15 1.04 −0.03 0.13

RTOA 0.98 0.02 0.17 1.00 −0.01 0.13
PET 1.09 −0.06 0.16 1.18 −0.12 0.12

Cloudy sky

AE 1.18 −0.12 0.17 1.18 −0.11 0.13
RG 1.09 −0.07 0.16 1.07 −0.05 0.13

RTOA 0.92 0.07 0.18 0.98 0.01 0.15
PET 1.11 −0.09 0.16 1.20 −0.13 0.13

3.3. Impact of the Satellite Revisit Period on ET Estimates

For each land cover type and season, the RMSE calculated between monthly daytime ET derived
from the one-day revisit control dataset and the different revisit scenarios increased with the increasing
revisit period (Figure 6; Table A2 in Appendix A). For the summer period (JJA), the mean RMSE
calculated using the full dataset based on 13:00 observations varied from 0.37 mm per day for a two-day
revisit, to 0.55 and 0.73 for a 4-day and 8-day revisit, respectively, and up to 0.90 mm per day for
a 16-day revisit scenario (Figure 6; Table A2 in Appendix A). Such differences represented 13%, 19%,
26% and 31% of the average daytime ET derived from the one-day reference sample, respectively.
Similar values were obtained for RMSE based on 10:00 observations: From 0.37 mm (13%) to 0.92 mm
per day (32%) for the two-day and 16-day revisit scenarios. We found higher RMSE values in summer
when the vegetation was fully developed with a maximum of transpiration when soil moisture is not
limiting. However, relative RMSE were systematically higher in wintertime, varying from 24% for the
two-day scenario to 56% for the 16-day scenario (Figure 6b,d; Table A2 in Appendix A), but associated
with relatively low absolute RMSE value (Figure 6a,c). High differences in relative errors values
obtained in wintertime were due to low evapotranspiration in winter, which was around 0.4 mm per
day on average compared to around 3 mm per day in summer. As a result, small variations in ET
had relatively large impacts, but were not really significant. Except for wintertime, no significant
differences were observed between results based on the 10:00 and 13:00 datasets when considering all
the sites. For a four-day return period (e.g., the temporal resolution of ECOSTRESS), the relative RMSE
was around 19% in summer, around 25% during spring and fall and up to 39% in winter. For revisit
periods of eight days or more, the relative errors were higher than 33% in spring or fall and up to 45%
in wintertime.
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Figure 6. Absolute (a,c) and relative (b,d) differences—expressed as Root Mean Square difference
(RMSE)—between evapotranspiration (ET) derived from the one-day revisit dataset and derived from
the different revisit scenarios for a 10:00 (a,b) and 13:00 (c,d) simulated satellite overpass time. All revisit
datasets, including the reference (one-day revisit) were derived from time-of-day clear-sky observations
using daytime scaling and interpolation process for the cloudy days. The relative difference represents
the ratio between the RMSE and the one-day revisit dataset.

The above results (Figure 6) were obtained when the one-day revisit dataset was selected
as the reference dataset to mainly isolate the effect of the satellite return period on ET estimates.
The one-day revisit dataset was derived from time-of-day clear-sky observations using daytime scaling
and interpolation for the cloudy days. We also calculated uncertainty estimates using the measured
monthly daytime ET (integration of all daytime measurements for all sky conditions) as reference
dataset (Figure 7) to represent the uncertainties associated with daytime scaling and interpolation
processes. The RMSE between the retrieved one-day revisit dataset based on 13:00 observations
and the ground-based averages mainly illustrated the uncertainties due to scaling and interpolation
processes only, and was 0.08 (18%), 0.22 (15%), 0.33 (12%) and 0.15 (14%) mm per day for winter,
spring, summer and fall seasons, respectively. Therefore, observed RMSE between the different revisit
scenarios and ground-based measurements were significantly higher than previous results for which
the one-day revisit dataset was used as reference: The mean RMSE based on 13:00 observations varied
from 0.53 mm per day (19%) for a two-day revisit, to 0.67 (25%) and 0.81 (30%) for a 4-day and 8-day
revisit, respectively, and up to 0.94 mm per day (35%) for a 16-day revisit scenario. For water resources
management, 30% uncertainty had been reported as the minimum specification of current ET products
by [82], and larger uncertainties would be less appropriate for hydrological applications at field scale
(~100 m). It should be noted that our results were based on ground-based measurements only and did
not account for potential uncertainties of retrieval algorithms when using actual remote sensing data.
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Figure 7. Absolute (a,c) and relative (b,d) root Mean Square difference (RMSE) between ET measured
by the AmeriFlux sites (integration of all daytime measurements for all sky conditions) and derived
from the different revisit scenarios for a 10:00 (a) and 13:00 (b) simulated satellite overpass time using
daytime scaling and interpolation process for cloudy days. The relative difference represents the ratio
between the RMSE and the measured seasonal mean ET.

The effect of the revisit on ET retrievals depended on multiple factors, such as the land
cover type and seasonal climate and was more pronounced for forests and croplands with larger
evapotranspiration than woodland savannahs under semi-arid regional climate, for example (Figure 8;
Table A2 in Appendix A). Higher uncertainties were observed for forest sites in summer with seasonal
RMSE values higher than 1 mm per day for revisit higher than 10 days (at 13:00, Figure 8). For each
vegetation biome (i.e., croplands, grasslands, forests and woody savannahs), the return period had
a stronger impact in spring and summer and lower impact in winter. However, such an impact of the
revisit may vary from year to year depending on climate.

The maximum departure of monthly average ET from the one-day revisit dataset was represented
by the maximum deviation estimator (i.e., the median error plus three median absolute deviations)
and was used to evaluate the maximum observed uncertainties due to year-to-year climate variability
or rapid changes in surface hydrology after particular rain or irrigation events (Figure 9). Accounting
for all sites, the maximum deviation estimator of ET using the full dataset based on 13:00 observations
during summer (JJA) varied from 0.57 mm per day (33%) for a two-day revisit, to 0.83 (48%) and
1.16 (62%) for a 4-day and 8-day revisit, respectively, and up to 1.43 mm per day (80%) for a 16-day
revisit scenario (Figure 9). Similar results were found when using the datasets based on the 10:00
observations. To illustrate both the site-by-site and temporal variabilities, results were disaggregated
per site and month of the year in Figure 10. For each site, the observed differences followed a similar
seasonal pattern to the monthly average ET. We found higher differences for temperate grasslands and
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forests in summer and lower differences for grassland and savannahs in semi-arid regions for which
maximum differences due to the revisit were observed during rainy months as expected.
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Figure 9. Maximum discrepancies (in mm per day)—expressed as the median error (ME) plus three
median absolute deviations (MAD)—between the one-day revisit monthly ET dataset and four different
revisit scenarios (2-day, 4-day, 8-day and 16-day revisit) for a 10:00 (a,b) and 13:00 (c,d) simulated
satellite overpass time. The relative difference represents the ratio between the maximum discrepancy
(i.e., ME+3*MAD) and the one-day revisit dataset.
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For example, the seasonal variability of monthly average ET of semi-arid grasslands at Audubon
Ranch and Vaira Ranch (Figure 10i,j) strongly depended on regional climate, i.e., rainy seasons which
were different at those sites. Indeed, at Audubon Ranch, AZ, monthly average precipitation is maximal
during July, August and September, but it is minimal and almost nil during those months at Vaira
Ranch, CA. As a result, average monthly ET was low, around 2 mm per day at Vaira Ranch in spring
and 1.3 mm per day at Audubon Ranch in summer. However, during rainy periods, maximum
deviations were relatively large for the 8- and 16-day revisit and around 65% of the monthly mean for
particular months at Audubon Ranch. Such differences were most likely due to rain events followed
by periods of higher evapotranspiration that were not or only partly captured by the sampling, but
that significantly modified the surface hydrology and monthly means. The observed differences for
semi-arid sites were higher for ET estimates based on observations made at 13:00 than 10:00, probably
due to the effect of water stress that is usually prevailing in the afternoon. No significant differences
between results based on 10:00 or 13:00 measurements were found for the other sites. In general,
only the two-day revisit datasets provided maximum deviations from the one-day revisit lower than
1 mm per day throughout the year.
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able to capture the peak of evapotranspiration after the event (Figure 11). 

Figure 10. Maximum discrepancies (in mm per day)—expressed as the median error (ME) plus three
median absolute deviations (MAD)—between the one-day revisit monthly ET dataset and four different
revisit scenarios (2-day, 4-day, 8-day and 16-day revisit) for each site and a 13:00 simulated satellite
overpass time. The blue line represents the ET monthly average (in mm per day) derived from the
one-day revisit dataset.

The effect of a single precipitation event on evaporative ratios estimates is illustrated at Audubon
Ranch with data collected in spring 2004 (Figure 11). At Audubon, the rainfalls are not frequent in
April, and the cumulated precipitation for April is usually low and less than 10 mm during normal
years. In April 2004, the station measured a strong precipitation event of 50 mm of rainwater for
a few days. This event was followed by a two-day period with large ET, up to 3.2 mm per day,
mainly due to the high contribution of soil evaporation on total ET after a rain, and a longer period
(around 30 days) with plant transpiration. In this case, the maximum deviations from the reference
datasets corresponded to realizations of the 8-day and 16-day revisit scenarios that were able to capture
the peak of evapotranspiration after the event (Figure 11).
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Figure 11. Evaporative ratio calculated for different revisit scenarios (a to d: 2, 4, 8 or 16-day) using
13:00 data collected at Audubon Ranch, AZ from DOY 70 (10 March) to 160 (8 June) of 2004. For a given
realization of a n-day revisit period scenario (n = 1, 2, 4, 8 or 16), the larger markers represent clear
sky observations, and the smaller markers represent days with no satellite observations (due to
return period or clouds) associated with evaporative ratios estimated from two consecutive clear sky
observations using linear interpolation. For a given n-day revisit scenario, the different realizations
show the impact of precipitation events that occurred in April 2004.

Indeed, this local maximum was not representative of the April surface hydrology and revisit
scenarios of eight days and up which strongly relied on temporal interpolation tended to then
overestimate monthly ET. Depending on the day of initialization, maximum differences in monthly
average ET in April 2004 were 0.03, 0.08 mm, 0.35 mm, and 0.7 mm per day for a 2, 4, 8 and 16-day
revisit scenarios, respectively, representing around 2%, 7%, 31% and 61% of the monthly mean derived
from the one-day dataset (i.e., 1.14 mm per day), respectively. The largest discrepancies were due
to coarse samplings of the evaporative ratio (Figure 11) and interpolation procedures to estimate
missing data that were not able to well represent individual and rapid events. For actual applications,
such unrealistic cases should be identified and flagged by using additional information, such as the
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rainfall climatology or cloud cover dynamic. When ET did not vary significantly with time, e.g., low ET
values in May 2004, the different sampling scenarios provided very similar results.

4. Discussion

4.1. Scaling ET from Instantaneous Observations to Daytime Averages

The analysis of different scaling methods showed that the daytime self-preservation of evaporative
ratios based on the available energy (AE), surface solar radiation (RG), top-of-atmosphere irradiance
(RTOA) or potential evapotranspiration reference (PET) fluxes was usually not verified throughout the
year for all the sites as already noted by other authors, such as References [4,36,43], for example. Similar
to previous studies based on noon observations [33,34,40], we observed on average an underestimation
of daytime ET derived from scaling methods using observations at 10:00 and 13:00.

Anderson et al. [4] used a constant β factor of 1.1 to compensate for underestimation of
daytime total ET estimated using the evaporative fraction (i.e., βAE) measured at midday. Following
these results, Cammalleri et al. [38] applied the same correction to the evaporative fraction in
an inter-comparison study of scaling methods. On average over all the sites, we found that the
β factor varied from 0.93 to 1.18 (0.99 to 1.19, respectively) when derived from observations at 10:00
(13:00, respectively), depending on the scaling reference flux used. In comparison to the value used
by Anderson et al. [4], we found an average βAE factor of 1.18 and 1.17 when based on 10:00 and
13:00 measurements. In our study, the scaling method based on top-of-atmosphere irradiance (RTOA)
was associated with β factor closer to one and similar or lower median errors than the other methods
(Table 3). It should be noted that observed median errors and median absolute deviations were
relatively low for all the methods, especially when considering the methods based on radiation fluxes
(RG and RTOA). Similar results had been found by Delogu et al. [35] and Ryu et al. [39]. Such results
partly explained why no unique method has been clearly identified and selected yet by the scientific
community for daytime scaling. Existing studies have already illustrated good performances of each
of the four methods selected in this paper (see Table 1). For example, Cammalleri et al. [38] found that
the incoming surface shortwave radiation RG was the most robust scaling flux and found higher bias
when using PET, while Tang et al. [37] found the best performance when using a scaling method based
on PET.

The effect of the acquisition time on the median error and deviation associated with the different
scaling methods depended on the experimental sites (Table A1 in Appendix A). On average, we found
smaller median errors and median absolute deviations in daytime average ET when the scaling
methods are based on data collected at 13:00 (Table 3). β factors were also closer to unity. Results are
in line with Lagouarde et al. [16] who also showed that time-of-day to daytime ET scaling methods
provided the best performance for satellite overpass around 13:00.

To derive surface ET at a larger scale using remote sensing data, it is necessary to estimate
time-of-day ET at the satellite overpass time concurrently with time-of-day and daytime total values of
the scaling reference flux. The evaporative fraction (i.e., AE is the scaling flux) has already been used by
multiple ET retrieval algorithms based on remote sensing data, for example [4,9,10,15,83,84]. As already
mentioned by Zhang and Lemeur [34], Van Niel et al. [36] and Ryu et al. [39], the evaporative ratio
based on RTOA can be accurately derived from a simple formula and represents a viable alternative for
large-scale hydrological applications. Of all the methods we tested, our results verified those from
Ryu et al. [39] and suggested that the scaling based on modeled RTOA might be a very good candidate
for large-scale remote sensing applications. Moreover, the method based on modeled RTOA slightly
outperformed the other methods.

4.2. Impact of the Satellite Revisit Period on ET Estimates

We showed that the impact of the revisit on ET depended on multiple factors, such as the local
seasonal climate and land cover type. Therefore, the revisit period—a critical specification for missions
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that propose to retrieve ET from remote sensing data—strongly depends on the objective of the
missions. Globally, the average impact of the revisit on seasonal ET (as represented by the mean RMSE
calculated over a multi-year dataset) depended on the season and varied from 16%, 13%, and 18% for
a two-day revisit to 41%, 31% and 43% for a 16-day revisit in spring, summer and fall, respectively,
based on observations at 13:00 (Figure 6). Results were derived from clear-sky ground measurements
collected by 21 AmeriFlux towers distributed in the USA and they represented average conditions
observed at those sites. Previous studies performed for Europe revealed a much smaller availability of
cloud-free observations over northern regions [55], for example. On average, we found that four-day
revisit systems should provide a significant improvement in temporal sampling to monitor surface ET
reducing by around 40% the uncertainty of ET products derived from a 16-day system, such as Landsat
(Table A2 in Appendix A). Driven by agricultural and water resources management applications,
the nominal uncertainty requirements for satellite-based ET products specified by the Meteosat Second
Generation Program [82] is 25% when evapotranspiration is higher than 0.4 mm per hour, and equal
to 0.1 mm per hour otherwise, with a minimum requirement of 30%. Based on our results, a 30%
uncertainty requirement on multi-year seasonal ET average was almost verified by a 16-day revisit
period in summer (i.e., 31% based on 13:00 observations) and was only verified by a four-day revisit in
spring and fall when accounting for the full dataset.

Relatively high RMSE values were observed between the one-day and two-day revisit scenarios
(around 16% depending on the season—see Figure 6) clearly illustrates the fact that missing
observations due to cloud coverage or orbital characteristics strongly impact the quality of the retrievals
as already mentioned by Lagouarde et al. [16]. Based on statistical cloudiness analysis over Western
Europe during spring and summer periods, Lagouarde et al. [16,55] showed that the average period
of time without any cloud-free data varied from 5 to 10 days for a one-day revisit period, and up to
20 days for a two-day revisit. For these regions, the authors concluded that only a one-day revisit
system was able to assess at field scale the rapid changes in surface hydrology after a specific rainfall
or irrigation event. For precipitation events associated with short drying periods, we also found that
rapid changes in surface hydrology could be partially captured by a two-day revisit instrument or
totally missed by a four-day system. At Audubon Ranch, AZ in April 2004 for example, one of the two
realizations of the two-day revisit scenario was not able to fully capture the short drying period after
the event (red line in Figure 11a). However, in such a case and for revisit periods lower than four days,
the short drying period did not significantly affect the monthly or seasonal mean, and the relevance of
an impact of the revisit period might depend on the desired application. Most realizations of the 8-day
and 16-day revisit scenarios were missing the drying period, but provided monthly total average close
to the reference dataset. Therefore, return periods of eight days or more are not fully appropriate to
daily operational management, such as irrigation scheduling. On the other hand, the realizations of
the 8- and 16-day revisit scenarios that were able to capture the drying period were associated with
strong discrepancies with the reference due to interpolation process of missing data due to the revisit
and cloudiness. For most of the sites, we found that the maximum observed deviation of ET from
the one-day revisit dataset—described by the median error plus three median absolute deviation of
monthly average in our experiment—was lower than 1 mm per day for revisit periods of two days
only (Figure 10). For agricultural sites, a four-day return period was associated with the maximum
deviation of monthly ET average varying from 1 to 1.75 mm per day during the crop season (Figure 10).
At most of the sites, the percentage of cloudy observations was slightly higher in the afternoon, but we
did not find significant and systematic differences between the impact of the revisit on daytime ET
based on observations made at 10:00 and 13:00 In comparison with the study by Delogu et al. [35],
we found a larger sensitivity of the uncertainty on daytime ET estimates to changes in the revisit
period. Using two two-year ground-based datasets collected in France and a one-year dataset collected
in Morocco, Delogu et al. [35] found that revisit periods lower than six days had no significant impact
on the estimation of seasonal average ET based on the evaporative fraction scaling method, probably
reflecting a low temporal variability of surface hydrology. Nevertheless, while we found that the revisit
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was critical to capture rapid changes in surface hydrology, the revisit was a less essential parameter
to derive ET at yearly or seasonal time scales. Therefore, the relevance of sensitivity studies and ET
uncertainty assessment strongly depends on the application.

This study was based on in situ observations, which implied the assumption of a perfect ET
retrieval algorithm (i.e., latent heat fluxes are derived from in-situ observations associated with lower
uncertainty than remote sensing retrievals) using perfect land surface temperature (LST) measurements
from space, whereas LST retrievals can be prone to large uncertainties (several K) due to atmospheric
corrections, emissivity and directional effects for instance [85,86]. Consequently, expected uncertainties
associated with actual satellite-based ET products may be higher than those reported in this paper.
For example, reviews of satellite-based ET validation studies [14,87,88] reported average uncertainty
on derived ET of around 0.8 mm per day. Based on a review of 33 research articles, Karimi and
Bastiaanssen [89] reported that the error associated with remote sensing-based ET estimates varied
from 1% to 20% depending on the land surface type and local climate with a mean relative error of
around 5% and a standard deviation of 5%.

For a given revisit, the uncertainty on ET estimates (i.e., RMSE) may depend on the interpolation
procedure used to fill the gaps between two consecutive clear-sky observations. We chose a linear
interpolation technique (of the evaporative fraction) for its simplicity. Intermediate results
(not described in this paper) suggested that spline or bilinear interpolation methods were less
appropriate to represent rapid changes in surface hydrology measured by the stations. Therefore,
temporal interpolation and disaggregation strategies based on blended remote sensing products
derived from systems at different temporal resolutions, e.g., the Disaggregation of the Radiometric
Temperature (DisTrad) method [90,91], the Disaggregation of Evaporative Fraction (DEFrac) [91,92] and
the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) [93,94], have been successfully
used to improve ET estimates at high spatial resolution for precision agriculture applications.
Bindhu et al. [95] were able to disaggregate MODIS LST products at 1 km to the resolution of Landsat 7
(60 m) with an RMSE lower than 0.96 K using a refined version of DisTrad (NL-DisTrad). To some extent,
such techniques help to reduce uncertainties due to temporal interpolation. However, datasets with
a higher temporal resolution usually have a coarser spatial resolution that can introduce uncertainties
due to spatial variability of LST within pixels at km scale [96,97].

5. Conclusions

We used Ameriflux data to evaluate the performance of four different methods commonly used
to scale ET from time-of-day observations to daytime averages and quantify the impact of the revisit
period of observational systems on ET uncertainty. We found that the different methods performed
relatively well and the observed differences with ground-based measurements were associated with
low median errors and median absolute deviations. The scaling method based on the top-of-atmosphere
solar radiation (RTOA) ensured slightly better performance than the other methods (i.e., β factor closer
to unity and lower median errors on average). Moreover, the scaling method based on modeled
RTOA does not require ancillary information (only time, date and location) and might be very suitable
for large-scale remote sensing applications. Uncertainties of daytime ET estimates increased with
longer revisit times and the impact of different revisit periods depended on the land cover type and
local climate. During spring, summer and fall, a five-day revisit scenario was associated with 30%
or less uncertainty on seasonal ET average. For most of our sites, we did not find significant and
systematic differences between the impact of the revisit on daytime ET based on observations made at
10:00 and 13:00 On average, we found that four- or five-day revisit systems may provide a significant
improvement in temporal sampling to monitor surface ET reducing by around 40% the uncertainty
of ET products derived from a 16-day revisit system, such as Landsat. The capability to capture
the contribution of rapid changes in moisture events to surface hydrology and ET was significantly
reduced for return periods of eight days or more. As already mentioned by Anderson et al. [12],
a four-day revisit system could be achieved by using a constellation of four different Landsat satellites.
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With return periods of five days or less, NASA ECOSTRESS represents a significant improvement
in terms of temporal sampling of land surface temperature required to derive reliable ET products at
the field scale. Onboard the International Space Station, ECOSTRESS is monitoring the Earth’s surface
with various overpass and revisit times, depending on the latitude allowing scaling methods and the
impact of overpass time on ET retrievals to be further examined.
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Appendix A

Table A1. β factors derived from observations made at 10:00 and 13:00 for each site and different reference
scaling fluxes: the available energy (AE), surface solar radiation (RG), simulated top-of-atmosphere
solar radiation (RTOA) and potential evapotranspiration (PET). The AmeriFlux site ID labels are defined
in Table 2. Two agricultural sites near Mead, NE (i.e., Ne1 and Ne2) represent irrigated crops.

Site ID
10:00 Overpass 13:00 Overpass

AE RG RTOA PET AE RG RTOA PET

ARM 1.24 1.11 0.98 1.10 1.15 1.01 0.93 1.14

Aud 1.40 1.09 0.89 1.18 1.32 1.12 1.07 1.29

Bo1 1.25 1.11 0.87 1.15 1.07 1.00 0.96 1.11

Bkg 1.28 1.14 0.98 1.15 1.14 1.02 0.94 1.17

ChR 1.22 1.13 1.00 1.12 1.12 1.03 0.91 1.14

IB1 1.04 1.13 0.86 1.14 1.08 1.02 1.00 1.14

IB2 1.14 1.09 0.84 1.11 1.08 1.02 0.98 1.13

Fpe 1.42 1.13 0.88 1.24 1.15 1.05 0.96 1.20

FR2 1.10 1.10 0.94 1.09 1.20 1.12 1.01 1.17

FR3 1.03 0.99 0.97 0.95 1.27 1.19 1.08 1.26

Kon 1.15 1.06 1.00 1.01 1.27 1.11 1.02 1.22

NC2 1.20 1.11 0.90 1.14 1.13 1.02 0.96 1.14

NC1 1.23 1.11 0.89 1.14 1.15 1.04 0.97 1.17

Ne1 1.13 1.09 0.92 1.10 1.13 1.04 0.98 1.17

Ne2 1.11 1.07 0.90 1.08 1.16 1.07 1.00 1.20

http://ameriflux.ornl.gov/
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Table A1. Cont.

Site ID
10:00 Overpass 13:00 Overpass

AE RG RTOA PET AE RG RTOA PET

Ne3 1.10 1.05 0.88 1.06 1.20 1.09 1.03 1.23

MOz 1.20 1.09 0.87 1.11 1.18 1.08 1.00 1.19

SRM 0.98 1.03 0.98 1.05 1.25 1.18 1.06 1.29

Ton 1.22 1.06 0.99 1.10 1.22 1.11 1.03 1.24

Var 1.30 1.12 1.03 1.17 1.25 1.08 1.00 1.25

WBW 1.24 1.17 1.04 1.18 1.10 1.03 0.91 1.12

Table A2. Mean ET RMSE in mm per day between a 2, 4, 8 or 16-day revisit scenario and the one-day
revisit dataset based on ET observations made at 10:00 and 13:00 for different land cover types. Values
in parentheses represent the relative errors (i.e., ratio between RMSE and seasonal average ET based on
the one-day revisit dataset).

Season
10:00 13:00

DJF MAM JJA SON DJF MAM JJA SON

2-day revisit

All sites
0.132 0.270 0.373 0.196 0.103 0.250 0.371 0.189
(29%) (18%) (13%) (18%) (24%) (16%) (13%) (18%)

Cropland 0.101 0.307 0.439 0.182 0.090 0.263 0.378 0.176
(25%) (21%) (12%) (16%) (24%) (19%) (11%) (17%)

Grassland
0.109 0.240 0.364 0.151 0.091 0.270 0.359 0.130
(25%) (16%) (16%) (18%) (26%) (17%) (16%) (17%)

Broadleaf Forest
0.142 0.256 0.373 0.219 0.100 0.226 0.445 0.253
(42%) (17%) (12%) (18%) (31%) (15%) (13%) (20%)

Needleleaf Forest
0.187 0.314 0.406 0.351 0.156 0.280 0.522 0.326
(24%) (13%) (9%) (16%) (21%) (12%) (13%) (16%)

Woody Savannah 0.182 0.228 0.178 0.184 0.121 0.189 0.170 0.147
(29%) (16%) (11%) (20%) (20%) (12%) (11%) (17%)

4-day revisit

All sites
0.181 0.409 0.550 0.273 0.146 0.349 0.549 0.268
(39%) (27%) (19%) (25%) (35%) (23%) (19%) (26%)

Cropland 0.149 0.447 0.626 0.252 0.146 0.379 0.571 0.250
(38%) (30%) (18%) (22%) (39%) (27%) (16%) (24%)

Grassland
0.162 0.362 0.524 0.220 0.117 0.340 0.510 0.206
(38%) (25%) (23%) (26%) (33%) (22%) (23%) (27%)

Broadleaf Forest
0.178 0.402 0.591 0.344 0.131 0.338 0.695 0.373
(53%) (27%) (19%) (28%) (41%) (22%) (21%) (30%)

Needleleaf Forest
0.268 0.461 0.592 0.441 0.213 0.352 0.673 0.371
(34%) (20%) (14%) (21%) (29%) (15%) (17%) (18%)

Woody Savannah 0.227 0.383 0.314 0.226 0.167 0.302 0.278 0.215
(36%) (26%) (19%) (24%) (28%) (20%) (19%) (25%)

8-day revisit

All sites
0.228 0.549 0.728 0.362 0.189 0.492 0.735 0.347
(50%) (36%) (26%) (33%) (45%) (33%) (26%) (33%)

Cropland 0.189 0.560 0.822 0.355 0.186 0.507 0.774 0.341
(48%) (38%) (23%) (31%) (50%) (36%) (22%) (32%)

Grassland
0.194 0.495 0.684 0.285 0.155 0.478 0.670 0.283
(45%) (34%) (31%) (34%) (43%) (31%) (30%) (37%)

Broadleaf Forest
0.234 0.636 0.799 0.423 0.169 0.558 0.906 0.438
(69%) (42%) (26%) (35%) (53%) (37%) (27%) (35%)

Needleleaf Forest
0.331 0.613 0.806 0.575 0.273 0.523 0.929 0.508
(42%) (26%) (19%) (27%) (37%) (23%) (23%) (25%)

Woody Savannah 0.290 0.489 0.418 0.318 0.224 0.389 0.414 0.268
(46%) (34%) (25%) (34%) (38%) (25%) (28%) (32%)
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Table A2. Cont.

Season
10:00 13:00

DJF MAM JJA SON DJF MAM JJA SON

16-day revisit

All sites
0.285 0.689 0.924 0.471 0.237 0.627 0.901 0.447
(62%) (45%) (32%) (43%) (56%) (41%) (31%) (43%)

Cropland 0.261 0.719 1.017 0.498 0.230 0.659 0.967 0.472
(66%) (49%) (29%) (43%) (62%) (47%) (27%) (45%)

Grassland
0.239 0.642 0.880 0.376 0.202 0.613 0.833 0.341
(56%) (44%) (39%) (44%) (56%) (39%) (38%) (45%)

Broadleaf Forest
0.285 0.805 1.050 0.527 0.214 0.690 1.065 0.552
(84%) (53%) (34%) (43%) (68%) (45%) (32%) (44%)

Needleleaf Forest
0.408 0.694 1.007 0.713 0.331 0.645 1.083 0.619
(52%) (29%) (23%) (33%) (45%) (28%) (27%) (30%)

Woody Savannah 0.341 0.567 0.554 0.370 0.279 0.493 0.542 0.340
(54%) (39%) (34%) (40%) (47%) (32%) (36%) (40%)
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