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Abstract: The production of land cover maps through satellite image classification is a frequent
task in remote sensing. Random Forest (RF) and Support Vector Machine (SVM) are the two most
well-known and recurrently used methods for this task. In this paper, we evaluate the pros and cons of
using an RF-based kernel (RFK) in an SVM compared to using the conventional Radial Basis Function
(RBF) kernel and standard RF classifier. A time series of seven multispectral WorldView-2 images
acquired over Sukumba (Mali) and a single hyperspectral AVIRIS image acquired over Salinas Valley
(CA, USA) are used to illustrate the analyses. For each study area, SVM-RFK, RF, and SVM-RBF were
trained and tested under different conditions over ten subsets. The spectral features for Sukumba
were extended by obtaining vegetation indices (VIs) and grey-level co-occurrence matrices (GLCMs),
the Salinas dataset is used as benchmarking with its original number of features. In Sukumba,
the overall accuracies (OAs) based on the spectral features only are of 81.34%, 81.08% and 82.08%
for SVM-RFK, RF, and SVM-RBF. Adding VI and GLCM features results in OAs of 82.%, 80.82% and
77.96%. In Salinas, OAs are of 94.42%, 95.83% and 94.16%. These results show that SVM-RFK yields
slightly higher OAs than RF in high dimensional and noisy experiments, and it provides competitive
results in the rest of the experiments. They also show that SVM-RFK generates highly competitive
results when compared to SVM-RBF while substantially reducing the time and computational cost
associated with parametrizing the kernel. Moreover, SVM-RFK outperforms SVM-RBF in high
dimensional and noisy problems. RF was also used to select the most important features for the
extended dataset of Sukumba; the SVM-RFK derived from these features improved the OA of the
previous SVM-RFK by 2%. Thus, the proposed SVM-RFK classifier is as at least as good as RF and
SVM-RBF and can achieve considerable improvements when applied to high dimensional data and
when combined with RF-based feature selection methods.

Keywords: image classification; random forest; support vector machine; random forest kernel; very
high spatial resolution satellite images

1. Introduction

Remote sensing (RS) researchers have created land cover maps from a variety of data sources,
including panchromatic [1], multispectral [2], hyperspectral [3], and synthetic aperture radar [4], as well
as from the fusion of two or more of these data sources [5]. Using these different data sources, a variety
of approaches have also been developed to produce land cover maps. According to the literature,
approaches that rely on supervised classifiers often outperform approaches based on unsupervised
classifiers [6]. This is because the classes of interest may not present the clear spectral separability
required by unsupervised classifiers [6]. Maximum Likelihood (ML), Neural Networks (NN) and fuzzy
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classifiers are classical supervised classifiers. However, there are unsolved issues with these classifiers.
ML assumes a Gaussian distribution, which may not always occur in complex remote sensed data [7,8].
NN classifiers have a large number of parameters (weights) which require a high number of training
samples to optimize particularly when the dimensionality of input increases [9]. Moreover, NN is a
black-box approach that hides the underlying prediction process [9]. Fuzzy classifiers require dealing
with the issue of how to best present the output to the end user [10]. Moreover, classical classifiers
have difficulties with the complexity and size of the new datasets [11]. Several works have compared
classification methods over satellite images, and report Random Forest (RF) and Support Vector
Machine (SVM) as top classifiers, in particular, when dealing with high-dimensional data [12,13].
Convolutional neural networks and other deep learning approaches require huge computational
power and large amounts of ground truth data [14].

With recent developments in technology, high and very high spatial resolution data are becoming
more and more available with enhanced spectral and temporal resolutions. Therefore, the abundance
of information in such images brings new technological challenges to the domain of data analysis
and pushes the scientific community to develop more efficient classifiers. The main challenges that
an efficient supervised classifier should address are [15]: handling the Hughes phenomenon or
curse of dimensionality that occurs when the number of features is much larger than the number
of training samples [16], dealing with noise in labeled and unlabeled data, and reducing the
computational load of the classification [17]. The Hughes phenomenon is a common problem
for several remote sensing data such as hyperspectral images [18] and time series of multispectral
satellite images where [6] spatial, spectral and temporal features are stacked on top of the original
spectral channels for modeling additional information sources [19]. Over the last two decades,
the Hughes phenomenon has been tackled in different ways by the remote sensing community [20,21].
Among them, kernel-based methods have drawn increasing attention because of their capability to
handle nonlinear high-dimensional data in a simple way [22]. By using a nonlinear mapping function,
kernel-based methods map the input data into a Reproducing Kernel Hilbert Space (RKHS) where
the data is linearly separable. There is no need to work explicitly with the mapping function because
one can compute the nonlinear relations between data via a kernel function. The function kernel
reproduces the similarity of the data in pairs in RKHS. In other words, kernel-based methods require
computing a pairwise matrix of similarities between the samples. Thus, a matrix is obtained using
the kernel function in the classification procedure [23]. The kernel methods generally show good
performance for high-dimensional problems.

SVM as a kernel-based non-parametric method [24] has been successfully applied for
land cover classification of mono-temporal [25], multi-temporal [26], multi-sensor [27] and
hyperspectral [28] datasets. However, the main challenge of the SVM classifier is the selection of
the kernel parameters. This selection is usually implemented through computationally intensive
cross-validation processes. The most commonly nonlinear kernel function used for SVM is Radial
Basis Function (RBF), which represents a Gaussian function. In SVM-RBF classifier, selecting the best
values for kernel parameters is a challenging task since classification results are strongly influenced
by them. The selection of RBF kernel parameters typically requires to define appropriate ranges
for each of them and to find the best combination through a cross-validation process. Moreover,
the performance of SVM-RBF decreases significantly when the number of features is much higher than
the number of training samples. To address this issue, here we introduce and evaluate the use of a
Random Forest Kernel (RFK) in an SVM classifier. The RFK can easily be derived from the results of
an RF classification [29]. RF is another well-known non-parametric classifier that can compete with
the SVM in high-dimensional data classification. RF is an ensemble classifier that uses a set of weak
learners (classification trees) to predict class labels [30]. A number of studies review the use of RF
classifier for mono-temporal [31], multi-temporal [32], multi-sensor [33] and hyperspectral [34] data
classification. Compared to other machine learning algorithms, RF is known for being fast and less
sensitive to a high number of features, a few numbers of training samples, overfitting, noise in training
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samples, and choice of parameters. These characteristics make RF an appropriate method to classify
high-dimensional data. Moreover, the tree-based structure of the RF can be used to create partitions in
the data and to generate an RFK that encodes similarities between samples based on the partitions [35].
However, RF is difficult to visualize and interpret in detail, and it has been observed to overfit for
some noisy datasets. Hence, the motivation of this work is to introduce the use of SVM-RFK as a way
to combine the two most prominent classifiers used by the RS community and evaluating whether
this combination can overcome the limitations of each single classifier while maintaining their strong
points. Finally, it is worth mentioning that our evaluation is illustrated with a time series of very high
spatial resolution data and with a hyperspectral image. Both datasets were acquired over agricultural
lands. Hence, our study cases aim at mapping crop types.

2. Methods

This section introduces the classifiers background. As SVM and RF are well-known classifiers,
a summary of them is presented in this section. After that, we define the RFK and explain how it is
generated from the RF classifier.

2.1. Random Forest

The basics of RF have been comprehensively discussed in several sources during last
decades [15,30,36]. Briefly, RF classifiers are composed of a set of classification trees trained using
bootstrapped samples from the training data [30]. In each bootstrapped sample, about two-thirds of
the training data (in-bag samples) are used to grow an unpruned classification (or regression) tree,
and the rest of the samples (the out-of-the-bag samples) are used to estimate the out of bag (OOB)
error. Each tree is grown by recursive partitioning the data into nodes until each of them contains very
similar samples, or until meeting one stopping condition [30]. Examples of the latter are reaching the
maximum depth, or when the number of samples at the nodes is below a predefined threshold [30].
RF uses the Gini Index [37] to find the best feature and plot point to separate the training samples
into homogeneous groups (classes). A key characteristic of RF is that only a random subset of all the
available features is evaluated when looking for the best split point. The number of features in the
subset is controlled by the user and is typically called mtry. Hence, for large trees which is what RFs
use, it is at least conceivable that all features might be used at some point when searching for split
points whilst growing the tree. The final classification results are obtained by considering the majority
votes calculated from all trees, and that is why RF is called a bagging approach [30]. A general design
of RF is shown in Figure 1.

The operational use of RF classifiers requires setting two important parameters. First, the number
of the decision trees to be generated Nt. Second, the number of the features to be randomly selected for
defining the best split in each node mtry. Studies show the default value of 500 trees and the square root
of the number of features in the most applications stabilize the error of the classification [15,38]. Studies
also show that classification results are most sensitive to the latter parameter. However, it is important
to remark that several studies consistently observe that the differences in Overall Accuracies (OAs)
between the best configurations and other configurations for RF are small [11,39,40]. Moreover, RF is
known for being fast, stable against overfitting and requiring small sample size with high dimensional
input compared to many classifiers [15,41]. Furthermore, RF is commonly used for feature selection
by defining feature importance values based on total decrease in node impurity from splitting on
the features, averaged over all trees (Mean decrease Gini index). These characteristics, besides the
tree-based structure, make RF a good choice to be used as a partitioning algorithm that allows for
the extraction of the similarity between samples. This similarity can then be used to create an RFK.
In Section 2.3, we discuss how to obtain the similarity values between samples based on partitions
created on data by trees in an RF.
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Figure 1. Example of general design of RF classifier with n number of trees.

2.2. Support Vector Machine

The base strategy of an SVM is to find a hyperplane in a high-dimensional space that separates
the training data into classes so that the class members are maximally apart [20]. In other words,
SVM finds the hyperplane that maximizes the margin, where the margin is the sum of the distances to
the hyperplane from the closest point of each class [42]. The points on the margin are called support
vectors. Figure 2a illustrates a two-class separable classification problem in a two-dimensional input
space. Remote sensing data is often nonlinearly separable in the original high dimensional space [42].
In that case, the original data is mapped into a RKHS, where the data is linearly separable [43].
Figure 2b illustrates a two-class nonlinear separable classification problem in a two-dimensional
input space.

(a) (b)
Figure 2. Example of a linear (a) and a nonlinear SVM (b) for a two-class classification problem.
The nonlinear SVM maps the data into high dimensional space to separate linearly the classes of
the data.

Given training column vectors, xi ∈ RN f , where N f is the number of dimensions. In addition,
a binary class vector that denotes the labels, yi ∈ {−1, 1}, where i represents the i-th sample,
the maximization of the margin can be formulated as a convex quadratic programming problem.
One way to solve the optimization problem is using the Lagrange multipliers (dual problem) as follows:
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max
α

(
N

∑
i=1

αi −
1
2

N

∑
i,j=1

αiαjyiyjxixj),

subject to 0 ≤ α ≤ C and
N

∑
i=1

αiyi = 0. (1)

In Equation (1), αi is a Lagrange multiplier, C is a penalty (regularization) parameter and xixj is the
dot product between xi and xj. When the data is nonlinear separable in the original space (characteristic
of remote sensing data), the data is mapped into RKHS through a mapping function Φ : x → ϕ(x).
The dot product in the RKHS space is defined by a nonlinear kernel function k(xi, xj) = ϕ(xi)

T ϕ(xj).
When the kernel function is calculated for all samples (N), the kernel function generates a square
matrix (K ∈ RN×N) that containing pairwise similarities between the samples. Note that K is a positive
definite and symmetric matrix.

Within all type of kernel functions, the most well-known is the Radial Basis Function (RBF) kernel
(k(xi, xj) = exp(−(xi − xj)

2/− 2σ2), where σ is the bandwidth). Thus, the SVM using the RBF kernel
requires to fix two parameters, the σ and C. These parameters are tuned by cross-validation of a grid
space of (C, σ). For a comprehensive review of kernel methods, see [44].

2.3. Random Forest Kernel

This section presents the RFK kernel. The main idea of the RFK is to calculate the similarities of
pairwise data directly from the data by means of a discriminative model (i.e., learning the classification
boundaries between classes) [45]. A discriminative approach divides the data into partitions through
algorithms such as clustering or random forest [35]. In these cases, the fundamental idea is that the
data that fall in the same partition are similar, and the data that fall in the different partitions are
dissimilar (e.g., the Random Partition kernel [29]).

Let be ρ a random partition of the dataset, the Random Partition kernel is the average of
occurrences that two samples (xi and xj) fall in the same partition, that is:

K(xi, xj) =
1
m

m

∑
g=1

I[ρg(xi) = ρg(xj)] i, j = 1, . . . , N, (2)

where I is the indicator function. I is equal to one when ρg(xi) = ρg(xj), which means for this case that
the samples xi and xj fall in the same partition; otherwise, it is zero [12]. In addition, g is the number
of the partition in the data created by the eligible algorithms.

Following the idea of the Random Partition kernel, the RFK is generated through creating random
partitions by the RF classifier. As we have said before, RF is composed of trees. Each tree splits the data
into homogeneous terminal nodes [29,46]. Thus, the RFK uses the partitions obtained by the terminal
nodes to calculate the similarity among data. In this instance, if two samples are landed in the same
terminal node of a tree, the similarity is equal to one; otherwise, it is zero. The similarity of each tree
(Ktn(xi, xj)) is obtained by [29]:

Ktn(xi, xj) = I [ t(xi) = t(xj)], (3)

where t is a terminal node and tn is the n− th tree of the RF. Then, the RFK matrix is calculated by the
average of tree kernel matrices

KRFK =
1

Nt

Nt

∑
t=1

Ktn , (4)

Nt being the number of trees used in the RF.
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Moreover, RF can also be used to identify the most important features (MIF) for high dimensional
datasets, and an additional RFK can be derived from a subsequent RF model trained with those
features only (RFK-MIF), which can be used in an SVM (SVM-RFK-MIF).

To assess the dependence of the applied kernels with an ideal kernel, we adopt the
Hilbert–Schmidt Independence Criterion (HSIC) [47]. Given a kernel matrix for training dataset
X (Kx) and the ideal kernel matrix for the class vector Y (Ky), the HSIC is obtained as follows [47]:

HSIC(KX , KY) =
1

m2 Tr(KX HKyH), (5)

where Tr is the trace operator, H is the centering matrix, and m is the number of samples. It has been
proven that lower values of HSIC show the poorer alignment of the kernels with the target (ideal)
kernel, and lower class separability subsequently.

3. Data and Ground Truth

Two high-dimensional data-sets including a time series of multispectral WorldView-2 (WV2)
images and one hyperspectral AVIRIS image are used to evaluate the performance of the RFK. The first
dataset was used to illustrate our work on a complex problem, namely that of classifying time series of
VHR images to map crops. The second dataset was selected because it has been used as a benchmark
dataset in several papers [48,49].

3.1. WorldView-2

A time series of WV2 images acquired over Sukumba area in Mali, West Africa in 2014 is
used to illustrate this study. The WV2 sensor provides data for eight spectral features at a spatial
resolution of 2 m. This dataset includes seven multispectral images that span the cropping season [50].
The acquisition dates include May, June, July, October, and November. Ground truth labels for five
common crops in the test area including cotton, maize, millet, peanut, and sorghum, were collected
through fieldwork. These images and the corresponding ground data are part of the STARS project.
This project, supported by the Bill and Melinda Gates foundation, aims to improve the livelihood
of smallholder farmers. The Sukumba images are atmospherically corrected, co-registered and the
trees and clouds are masked [50]. Figure 3a,b show the study area and the 45 fields contained within
the database.

3.2. AVIRIS

A Hyperspectral image acquired by the AVIRIS sensor over Salinas Valley (CA, USA) on
9 October 1998 [13] is used to illustrate this study. The Salinas dataset is atmospherically corrected,
and although the image contains 224 bands, they were reduced to 204 by removing water absorption
bands (i.e., bands [104− 108], [150− 163], and 224). AVIRIS provides 3.7 meter spatial resolution.
Ground truth labels are available for all fields and these labels contain 16 classes including vegetables,
bare soils, and vineyard fields. Figure 3c,d show the area of interest and the RGB composite of the image.

(a) (b) (c) (d)
Figure 3. (a) study area of Sukumba site, southeast of Koutiala, Mali; (b) crop polygons for Mali and
(c) study area of Salinas Valley, CA, USA and (d) RGB composite of Salinas.
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4. Preprocessing and Experimental Set-Up

In this section, we describe the preprocessing and main steps of our work, which are also outlined
in Figure 4.

Figure 4. Overview of the steps followed to compare SVM-RFK with RF and SVM-RBF. Notation:
The boxes with Sukumba dataset indicate steps that were only applied to this dataset, and the rest of
the boxes indicate steps applied to both datasets.

4.1. Preprocessing

As shown in Figure 4, the accuracy of the classifiers was analyzed regarding the number of
features. Table 1 shows the number of samples, features, and classes for each dataset. Additional
features were generated (Table 2) for Sukumba dataset by obtaining Vegetation Indices (VIs) and
Gray-Level Co-Occurrence Matrix (GLCM) features from spectral bands. These additional features
were concatenated with the original spectral features to form an extended dataset for Sukumba.

Table 1. Dataset description (N f : Number of features, Ntr total number training samples, Nts total
number test samples and Ncl number of classes).

Dataset Features N f Ntr Nts Ncl

Sukumba Spectral features 56 2043 1858 5
Spectral &additional features 1057

Salinas Spectral features 204 24612 20782 16

Table 2. List of VIs used in this study together with a sort explanation of the them.

Formula Description

NDVI = NIR−Red
NIR+Red

NDVI is a proxy for the amount of vegetation, and helps to distinguish the vegetation
from the soil while minimizing the topographic effects, though does not eliminate the
atmospheric effects [51].

DVI = NIR− Red
DVI also helps to distinguish between soil and vegetation, yet does not deal with the
difference between the reflectance and radiance from atmosphere or shadows [52]
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Table 2. Cont.

Formula Description

RVI = NIR
Red

RVI is the simplest ratio-based index showing high values for the
vegetation and low values for soil, ice, water, etc. This index can
reduce the atmospheric and topographic effects [52].

SAVI = (NIR−Red)∗(1+L)
NIR+Red+L

SAVI is similar to the NDVI, yet it suppresses the soil effects
by using an adjustment factor, L, which is a vegetation canopy
background adjustment factor. L varies from 0 to 1 and often
requires prior knowledge of vegetation densities to be set [53].

MSAVI2 =
2NIR+1−

√
(2NIR+1)2−8(NIR−RED)

2

MSAVI is a developed version of SAVI where the L-factor
dynamically is adjusted using the image data and MSAVI2 is
an iterated version of MSAVI [54].

TCARI =
3[(R700 − R670)− 0.2(R700 − R550)(

R700
R670

)]

TCARI indicates the relative abundance of chlorophyll using
the reflectance at the wavelengths of 700 (i.e., R700), 670 and
550 and reduces the background (soil and non-photosynthetic
components) effects compared to the initial versions of
this index [55].

EVI = 2.5(NIR−Red)
NIR+6Red−7.5Blue+1

EVI is developed to improve the NDVI by optimizing the
vegetation signal with using blue reflectance to correct the soil
background and atmospheric influences [56].

The Sukumba dataset, which originally contains 56 bands, was extended by Normalized
Difference Vegetation Index (NDVI), Difference Vegetation Index (DVI), Ratio Vegetation Index
(RVI), Soil Adjusted Vegetation Index (SAVI), Modified Soil-Adjusted Vegetation Index (MSAVI),
Transformed Chlorophyll Absorption Reflectance Index (TCARI), and Enhanced vegetation index
(EVI) increasing the number of the features until 105. Next, the number of features for Sukumba
dataset was extended by adding the GLCM textures to the spectral features and VIs. Texture analysis
using the Gray-Level Co-Occurrence Matrix is a statistical method of examining texture that considers
the spatial relationship of pixels [57]. The GLCM textures derived for Sukumba dataset are presented
and explained comprehensively in [58]. For each spectral feature, statistical textures including angular
second moment, correlation, inverse difference moment, sum variance, entropy, difference entropy,
information measures of correlation, dissimilarity, inertia, cluster shade, and cluster prominence are
obtained [58]. Concatenating spectral, VI and GLCM features increase the number of features to 1057.
Salinas dataset with 204 features used as a benchmarking dataset with its original number of features.

4.2. Experimental Set-Up

First, the polygons of the Sukumba dataset were split into four sub-polygons of approximately
the same size to extract the training and test samples. Unlike a random selection of train and test
samples, this step avoids selecting close samples in the training and test sets, which would inflate
the performance of the classifiers. Two sub-polygons were selected to choose the training samples
and the other two, the test samples. Both the train and test sets were split into ten random subsets,
with a balanced number of subsets per class (130 and 100 samples per class for training and test,
respectively). A random sampling was used in the Salinas dataset (like in previous studies using this
dataset). The samples were randomly split into train and test sets and 10 subsets are selected randomly
from train and test sets separately, with the number of samples per class balanced (again, 130 and
100 samples per class for training and test).

In all the experiments, the optimization of the classifier parameters was required. The number
of trees in RF was set to 500, according to the literature. The mtry parameter influence partially
on the classification results of RF [11,39]. Hence, we explored the influence of mtry on the
SVM-RFK classification results. First, the RFK is obtained by training RF with the default value
of this parameter. Next, an RFK was obtained by optimizing mtry parameter for RF in a range of
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[N f
(−1/2) − 10, N f

(−1/2) + 10] in steps of two. Then, the RFKs were obtained from the corresponding
RF classifiers.

Taking the advantage of RF to select the most important features in high dimensional datasets,
this method was used to select the top features in the extended dataset of Sukumba. The feature
importance values provided by RF were used to select the 100 MIF, and an RFK was obtained using a
subsequent RF model trained with the 100 features. Using RFKs in an SVM, a 5-fold cross-validation
approach was used to find the optimal C value in the range [5, 500]. For the RBF kernel, we use the
same range for the C parameter and the optimum bandwidth was found using the range [0.1, 0.9] of the

quantiles of the pairwise Euclidean distances (D = ‖x− x
′‖2

) between the training samples. In all the
cases, the one-versus-one multiclass strategy implemented in LibSVM [59] was used. An equal number
of 11 candidates is considered when optimizing mtry for RF, as well as the bandwidth parameter of
SVM-RBF. Classification results are compared in terms of their Overall Accuracy (OA), their Cohen’s
kappa index (κ), the F-scores of each class, and the timing of the methods. The computational times for
each classifier were estimated using the ksvm function in the kernlab package of R [60]. The built-in
and custom kernel of this package were respectively used to obtain RBF and RFKs classifications
in an SVM. To obtain RF models and RFKs, randomForest package of R is used [61]. In addition,
the generated RF-based and RBF kernels are compared through both visualization and HSIC measures.
Finally, crop classifications maps are provided for the best classifiers.

5. Results and Discussion

This section presents the classification results obtained with the proposed RF-based kernels and
with the standard RF and SVM classifiers. All results were obtained by averaging the results of the
10 subsets used in each experiment. Results obtained with the default value of mtry are shown with
RFd and RFKd, and those obtained with optimized mtry are shown by RF and RFK.

The OA and κ index averages of ten subsets are shown in Table 3 and Figure 5. In both
cases, Sukumba and Salinas, results show high accuracies for all the classifiers for spectral features.
The computational times for each classifier are depicted in Figure 6.

Table 3 and Figure 5 show that the three classifiers compete closely in the experiments using
only spectral features. Comparing SVM-RFK and RF, SVM-RFK improves the results compared to RF
in terms of OA and κ for all Sukumba and Salinas datasets. Focusing on only the spectral features,
the RFK improvement is marginal. Optimizing the mtry parameter also helps the RF and SVM-RFK to
outperform marginally compared to the models with the default values of the mtry. Although RF and
RFK get better results by optimizing mtry parameter, the higher optimization cost required allows us
to avoid it (Figure 6). This fact also make evident that optimizing the RF parameters is not crucial for
obtaining an RFK.

Focusing on spectral features, the SVM-RBF yields slightly better results than SVM-RFK in terms
OA and κ, reaching a difference of 1.41% and 0.74% in OA for Salinas dataset and Sukumba datasets,
respectively. However, considering the Standard Deviation (SD) of these OAs, the performances of the
classifiers are virtually identical (Table 3). Moreover, Figure 6 shows that the computational time for
RFK is considerably lower than the RBF kernel for Salinas specifically without the mtry optimization.
For spectral features of Sukumba, RFK and RBF computational times are at about the same level.

A notable fact is that SVM-RFK results improve considerably by extending the Sukumba dataset
from 56 to 1057 dimensions, whereas RF and SVM-RBF classifiers get less accuracy with the extended
dataset. For the extended Sukumba dataset, SVM-RFK outperforms SVM-RBF and RF with a difference
of 4.34% and 1.48% in OA, respectively. Furthermore, RFK gets similar results for both mtry default
and mtry optimized, whereas the computational time is three times higher using optimized parameter
(Figure 6). Moreover, the time required to perform SVM-RFKd is also about seven times less than that
of SVM-RBF (Figure 6). This fact could be seen as the first evidence of the potential of RFKs to deal
with data coming from the latest generation of Earth observation sensors, which are able to acquire
and deliver high dimensional data at global scales.
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Figure 5. Comparison of OA and κ̄ obtained for RF, SVM-RBF, and SVM-RFK classifiers. Notation: OA
(in %) is the overall accuracy averaged over 10 test samples, κ̄ is the Cohen’s kappa index averaged
over 10 test samples, and the standard deviations for OA and κ values are shown with error bars.
RF and SVM-RFK denote classifiers created with an optimized mtry value, and RFd and SVM-RFKd
denote classifiers created with the default mtry value.

More evidence for the advantages of the RFKs is presented in Table 4 by exploiting the RF
characteristics. This table shows that employing the RF to define the top 100 features (out of
1057 features) for Sukumba dataset, and obtaining the RFK based on a new RF model trained only
with top 100 features improved the OA of the SVM-RFK by 2.66%.

Moreover, the HSIC measures presented in Table 5 reveal the alignment of the kernels with an
ideal kernel for the training datasets. The lower separability of the classes results in poorer alignment
between input and the ideal kernel matrices, and that leads in a lower value of HSIC [47]. Focusing on
the spectral features, RFKs slightly outperform RBF for both Salinas and Sukumba datasets while both
show almost equal alignment with an ideal kernel. The higher value of the HSIC measure for the RFKs
compared to RBF is noticeable when the number of features is increased for the Sukumba dataset.
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Table 3. Classification results of Sukumba with 56 features (Spectral features), and with 1057 features
(Spectral features, VIs and GLCM textures), and Salinas with 204 features (Spectral features). Notation:
OA (in %) is the overall accuracy averaged over 10 test samples, SD (in %) is the standard deviation for
OA values, κ̄ is the Cohen’s kappa index averaged over 10 test samples, SDκ is the standard deviation
for κ values.

Tests Methods OA SD κ̄ SDκ

Sukumba

RF 81.08 1.34 0.76 0.02
RFd 80.64 0.98 0.75 0.01

Spectral features SVM-RBF 82.08 2.21 0.77 0.03
SVM-RFK 81.34 1.27 0.76 0.02
SVM-RFKd 80.68 1.12 0.75 0.01

RF 80.82 1.31 0.76 0.02
Spectral features RFd 80.46 1.20 0.75 0.01

and additional features SVM-RBF 77.96 1.26 0.72 0.02
SVM-RFK 82.30 1.02 0.77 0.01
SVM-RFKd 82.14 0.84 0.77 0.01

Salinas

RF 94.16 0.5 0.93 0.004
RFd 94.10 0.48 0.93 0.005

Spectral features SVM-RBF 95.83 0.52 0.95 0.01
SVM-RFK 94.42 0.56 0.94 0.005
SVM-RFKd 94.38 0.47 0.94 0.005

Figure 6. Classification time required by SVM classifiers.

Table 4. Classification results for Sukumba with the top 100 features. Notation: OA (in %) is the
overall accuracy averaged over 10 test samples, SD (in %) is the standard deviation for OA values, κ̄ is
the Cohen’s kappa index averaged over 10 test samples, SDκ is the standard deviation for κ values,
and MIF is the most important features.

Methods OA SD κ̄ SDκ

RF-MIF 79.68 1.31 0.74 0.01
SVM-RFK-MIF 84.96 1.66 0.81 0.02



Remote Sens. 2019, 11, 575 12 of 20

Table 5. HSIC measures for RF and RBF kernels. Notation: Sp is spectral features, Sp&Ad is spectral
features and additional features.

Kernels Sukumba: Sp Sukumba: Sp&Ad Salinas

RFK 0.016 0.021 0.041
RFK_d 0.018 0.021 0.042

RBF 0.010 0.004 0.029

The analysis of the classifications results for each class is carried out by mean of the F-scores.
Tables 6 and 7 show the results of F for each classifier, spectral case and dataset. In Sukumba
(Table 6), the F has little variability, with standard deviations smaller or equal to 0.04. Furthermore,
all classes have an F value larger than 0.75 (i.e., good balance between precision and recall). The classes
Millet, Sorghum have the best F values, whereas the classes Maize and Peanut are harder to classify,
irrespective of the chosen classifier. Focusing on the SVM-RBF and SVM-RFK classifiers, we see that
the relative outperformance of SVM-RBF in terms of OA for spectral features (Table 3 and Figure 5) is
mainly caused by the Maize and Millet classes, and this is while SVM-RFK and SVM-RBF show equal
F values for classes Peanut and Sorghum, and SVM-RFK improves slightly the F value for the class
Cotton compared to SVM-RBF. Moreover, SVM-RFKd competes closely with SVM-RFK and SVM-RBF
while presenting slightly poorer F values.

Table 6. F-score average (F) and standard deviation (SD) of the different classifiers using 56 features
(Spectral features) and 1057 features (Spectral, VIs, and GLCM features) for the Sukumba dataset.
Notation: RF and SVM-RFK denote classifiers created with an optimized mtry value, and RFd and
SVM-RFKd denote classifiers created with the default mtry value.

Test Classes RF RFd SVM-RBF SVM-RFK SVM-RFKd

F SD F SD F SD F SD F SD

Maize 0.78 0.03 0.77 0.025 0.80 0.02 0.78 0.02 0.76 0.02
Millet 0.86 0.02 0.85 0.02 0.87 0.03 0.85 0.02 0.84 0.02

Spectral features Peanut 0.78 0.02 0.78 0.02 0.79 0.04 0.79 0.02 0.77 0.01
Sorghum 0.84 0.02 0.84 0.009 0.86 0.02 0.86 0.02 0.84 0.01
Cotton 0.79 0.02 0.79 0.02 0.79 0.03 0.80 0.02 0.79 0.02

Maize 0.77 0.04 0.76 0.03 0.75 0.03 0.77 0.03 0.76 0.02
Millet 0.85 0.02 0.84 0.01 0.83 0.02 0.87 0.02 0.86 0.01

Spectral features Peanut 0.80 0.02 0.79 0.02 0.77 0.02 0.82 0.02 0.81 0.01
and additional features Sorghum 0.82 0.02 0.82 0.02 0.81 0.03 0.84 0.02 0.84 0.02

Cotton 0.80 0.02 0.80 0.02 0.73 0.02 0.82 0.02 0.83 0.01

Regarding Salinas, the F show results above 0.91 for all the classes except for Grapes untrained,
and Vineyard untrained. For the latter two classes, the F are respectively around 0.69 and 0.71 for the
RF-based classifiers. However, SVM-RFK improves the F values to 0.76 for both these classes. In this
dataset, the SD values have also little variability (same as the ones found in Sukumba), with standard
deviations smaller or equal to 0.05. For Salinas dataset, SVM-RFKd also competes closely with
SVM-RFK and SVM-RBF while it presents slightly poorer F values.

A deeper analysis of the SVM-based classifiers can be achieved by visualizing their kernels.
Figure 7 shows the pairwise similarity of training and test samples sorted by class. Here, we only
visualize the RFK (with optimized mtry) because of the similarity of the results to RFKd.
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Table 7. F-score average (F) and standard deviation (SD) of the different classifiers using 204 features
(Spectral features). Notation: RF and SVM-RFK are respectively RF and SVM-RFK with optimized
mtry, and RFd and SVM-RFKd are respectively RF and SVM-RFK with default mtry.

Test Classes RF RFd SVM-RBF SVM-RFK SVM-RFKd

F SD F SD F SD F SD F SD

1:Brocoli_1 1.00 0.008 1.00 0.007 1.00 0.005 1.00 0.005 1.00 0.007
2:Brocoli_2 0.99 0.009 0.99 0.009 1.00 0.005 1.00 0.006 0.99 0.007
3:Fallow 0.97 0.018 0.97 0.017 0.98 0.012 0.97 0.014 0.97 0.015
4:Fallow_rough 0.99 0.008 0.99 0.008 0.99 0.007 0.99 0.007 0.99 0.007
5:Fallow_smooth 0.98 0.010 0.98 0.009 0.99 0.012 0.98 0.010 0.98 0.011
6:Stubble 1.00 0.003 1.00 0.003 1.00 0.002 1.00 0.004 1.00 0.005
7:Celery 0.99 0.006 0.99 0.005 1.00 0.004 0.99 0.007 0.99 0.007

Sp
ec

tr
al

fe
at

ur
es 8:Grapes_untr. 0.69 0.032 0.69 0.039 0.76 0.026 0.70 0.042 0.69 0.041

9:Soil_Vineyard 0.99 0.009 0.98 0.009 0.99 0.006 0.99 0.007 0.99 0.007
10:Corn 0.91 0.011 0.91 0.014 0.94 0.019 0.91 0.009 0.91 0.009
11:Lettuce_4wk 0.96 0.011 0.96 0.008 0.98 0.010 0.97 0.011 0.97 0.011
12:Lettuce_5wk 0.98 0.010 0.98 0.011 0.98 0.008 0.98 0.011 0.98 0.010
13:Lettuce_6wk 0.97 0.012 0.97 0.011 0.99 0.010 0.98 0.012 0.98 0.012
14:Lettuce_7wk 0.95 0.018 0.95 0.018 0.98 0.014 0.96 0.016 0.96 0.017
15:Vineyard_untr. 0.71 0.036 0.72 0.045 0.76 0.033 0.71 0.051 0.71 0.044
16:Vineyard_vertical 0.98 0.013 0.98 0.014 0.99 0.006 0.98 0.013 0.98 0.012

Focusing on the spectral features, this figure shows that the kernels obtained for Salinas are more
“blocky” than those obtained for Sukumba. This makes it evident that a higher number of relevant
features can improve the representation of the kernel. It also shows that the RFKs generated for
Sukumba are less noisy than the RBF kernels. However, the similarity values of the RFKs are lower
than those obtained for the RBF kernels. The visualization of the kernels confirms the higher F values
found in the Salinas dataset. A detailed inspection of the RFKs obtained from this dataset shows low
similarity values for classes 8 and 15, which correspond to Grapes untrained and Vineyard untrained.
As stated before, these classes have the largest imbalance between precision and recall. Increasing the
number of features to 1057 by extending the spectral features for Sukumba dataset represents a blockier
kernel, by improving only the intraclass similarity values. However, the RBF kernel loses the class
separability by increasing both intraclass and interclass similarity values by increasing the number
of features for Sukumba dataset; this can be observed by RFK visualizations in Figure 7 and f-score
values in Table 6. Focusing on the RFK, there are samples that their similarity values to other samples
in their class are low for the RFK (Gaps inside the blocks), these samples could be outliers since RFK is
based on the classes and the features while the RBF kernel is based on the Euclidean distances between
the samples. Thus, removing outliers using RF can improve the representation of the RFK. Figure 8
shows the kernel visualization of RFK based on the 100 most important features selected by RF. As it
can be observed in this figure, the similarity between the samples in the same classes is increased in
particular for the classes one and five compared to the kernel using all 1057 features.

Finally, we present the classification maps obtained using the trained classifiers with spectral
features. For Sukumba dataset, we also obtain the classification maps using SVM-RFK based on the
top 100 features. For visibility reasons, we only present classified fields for Sukumba and classification
maps for Salinas. In particular, Figure 9 shows two fields for each of the classes considered in Sukumba.
These fields were classified using the best training subset of the ten subsets, and the percentage of
pixels correctly classified are included on the top of each field. In general, the SVM classifiers perform
better than the RF classifiers. Focusing on the various kernels, the RFKs outperform the results of RBF
for the majority of the polygons.

Moreover, we observe a great improvement in the OA for all polygons by using the SVM-RFK-MIF.
This means that RF can be used intuitively to define an RFK based on only the top 100 features, and this
kernel can improve the results significantly compared to RF, SVM-RBF, and SVM-RFK.
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Figure 7. RBF Kernels (top) and RFKs (bottom) for the datasets from left to right: Salinas (Spectral
features), Sukumba (Spectral features), and Sukumba (Spectral features and additional features).
Class labels are shown on the bottom of the kernels. The class labels go from 1 to 5 for Sukumba,
and from 1 to 16 for Salinas.

Figure 8. RF Kernel for top 100 features selected by RF (out of 1057). Class labels are shown on the
bottom of the kernel. The class labels go from 1 to 5 for Sukumba.
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Figure 9. Two crop classified fields per ground truth class along with the overall accuracy for the
different classifiers using spectral features, and the top 100 features for SVM-RFK-MIF. The trees within
the crops were excluded from the classification (masked, unclassified).

Classification maps for Salinas and their corresponding OAs are depicted in Figure 10. In this
dataset, all classifiers have difficulties with fields where Brocoli_2 (class 2) and Soil_Vineyard (class 9)
are grown. Moreover, it is worth mentioning that the performance of three classifiers is at about
the same level. However, the SVM-RFK classifier has a marginally higher OA than the RF classifier,
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and SVM-RBF slightly outperforms SVM-RFK. This can be explained by the relatively high number
of training samples used to train the classifiers compared with the dimensionality of the Salinas
image. However, the computational time of classification for SVM-RBF is higher compared to RF and
SVM-RFK (Figure 6).

Ground truth RF SVM-RBF SVM-RFK
94.56 95.73 94.73

11

1
2

3
4
5
6
7
8

9
10

12
13

14
15
16

Figure 10. Ground truth and three classification maps (and the OA (%) calculated using all the pixels in
the dataset on the top) for the RF, SVM-RBF, and SVM-RFK classifiers using the AVIRIS spectral features.

6. Conclusions

In this work, we evaluate the added value of using an RF-based kernel in an SVM classifier
(i.e., RFK) by comparing its performance against that of standard RF and SVM-RBF classifiers.
This comparison is done using two datasets: a time series of WV2 images acquired over Sukumba
(Mali), and a hyperspectral AVIRIS image over Salinas (CA, USA). The obtained OAs and their SD
values indicate that three classifiers perform at about the same level in most of the experiments.
Our findings show that there are alternatives to the expensive tuning process of SVM-RBF classifiers.
The proposed RFK led to competitive results for the datasets with a lower number of features
while reducing the cost of the classification. Our findings prove that optimizing the mtry for RF
leads to minor changes in the SVM-RFK. Thus, with a small trade-off in OA for the datasets with
a low number of features, the cost of the classification can be reduced through skipping the mtry
optimization. More importantly, our results show that RFKs created using high dimensional and
noisy features considerably improve the classification accuracies obtained by the standard SVM-RBF
while reducing the cost of classification. For the higher number of features, SVM-RFK results are
also slightly better than the ones obtained by the standard RF classifier. Moreover, by exploiting the
RF characteristics through defining the most important features, the results of the classification for
SVM-RFK considerably improve, with OA around 7% better than those obtained with an SVM-RBF
classifier. In short, our results indicate that RFK can outperform standard RF and SVM-RBF classifiers
in problems with high data dimensionality. Further work is required to evaluate this kernel in
additional classification problems and against other land cover classification approaches (e.g., based on
deep learning). Other characteristics of RF (outlier detection) can be exploited to estimate the RFK
more accurately. Furthermore, the proposed RFK is based on a rough estimation of the similarity
between samples according to their terminal node. Future work is required to design and test more
advanced and alternative estimations of similarity using RF classification results.



Remote Sens. 2019, 11, 575 17 of 20

Author Contributions: A.Z., R.Z.-M. and E.I.-V. together conceptualized the study and designed the methodology
and experiments. A.Z. performed the experiments, and prepared the first draft of the manuscript. R.Z.-M. and
E.I.-V. reviewed, expanded and edited the manuscript. A.Z. prepared the figures, with help from E.I.-V.
R.Z.-M. supervised the work.

Funding: This research was partially supported by the Bill and Melinda Gates Foundation via the STARS Grant
Agreement (1094229-2014). This research also received financial support from the Erasmus Mundus (SALAM2)
scholarship (2SAL1300020).

Acknowledgments: We wish to express our gratitude to all the STARS partners and, in particular, to the
ICRISAT-led team for organizing and collecting the required field data in Mali and to the STARS ITC team
for pre-processing the WorldView-2 images. The authors would like to thank Erwan Scornet (Institut Universitaire
de France) for their help and suggestions on the use of random forest kernels and Claudio Persello (University of
Twente) for his help and feedback on the methodology.

Conflicts of Interest: "The authors declare no conflicts of interest."

Abbreviations

The following abbreviations are used in this manuscript:

AVIRIS Airborne Visible Infrared Imaging Spectrometer
DVI Difference Vegetation Index
EVI Enhanced Vegetation Index
ML Maximum Likelihood
MIF Most Important Features
MSAVI2 Modified Soil-Adjusted Vegetation Index
NDVI Normalized Vegetation Index
NN Neural Networks
PRI Photochemical Reflectance Index
OA Overall Accuracy
OSAVI Optimized Soil Adjusted Vegetation Index
RBF Radial Basis Function
SVM-RBF Radial Basis Function Support Vector Machine classifier
RF Random Forest
RF-BD Best Depth Random Forest Classifier
RF-FG Full Grown Random Forest Classifier
RFK Random Forest Kernel
RFK-BD-SVM Best Depth Random Forest Kernel Support Vector Machine Classifier
RFK-FG-SVM Full Grown Random Forest Kernel Support Vector Machine Classifier
RGB Red, Green and Blue Color
RS Remote Sensing
RKHS Reproducing Kernel Hilbert Space
RVI Ratio-Based Vegetation Indices
SAVI Soil Adjusted Vegetation Index
SD Standard Deviation
SVM Support Vector Machine
TCARI Transformed Chlorophyll Absorption Reflectance Index
VI Vegetation Index
WBI Water Band Index
WV2 WorldView-2
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