Supplementary Materials: Trends in Woody and Herbaceous Vegetation in the Savannas of West Africa

Julius Y. Anchang, Lara Prihodko, Armel T. Kaptué, Christopher W. Ross, Wenjie Ji, Sanath S. Kumar , Brianna Lind, Mamadou A. Sarr, Abdoul A. Diouf and Niall P. Hanan

Google Earth Engine code used to retrieve and prepare NDVI and rainfall data for trend analysis:
iNDVI: https://code.earthengine.google.com/5ad235ae90ef916d7b2e0cdf446dc348
i Rain: https://code.earthengine.google.com/42398cc10e53835e7a03b8364f82bea0

Figure 1. Yearly anomalies (in units of standard deviation) of a) iNDVI and b) iRain, averaged for the study area.

Figure 2. Map of Senegal showing locations of 24 sites with long-term in situ biomass data used to validate/support pixel-based trends.

Table 1. Summary of in situ data used to support pixel-based vegetation trend.

Pixel trend inferred from RUE change	Site name	Number of years of available data	Woody leaf biomass trend ($\mathrm{kg} \mathrm{ha}^{-1}$ year $^{-1}$)	herbaceous biomass trend ($\mathrm{kg} \mathrm{ha}^{-1}$ year $^{-1}$)
RUE concept not applicable (2 sites)	C4L7	26	NA	NA
	C4L8	23	NA	NA
no change (8 sites)	C23L2	21	$(\checkmark) 24.93$	$(\checkmark) 21.04$
	C2L2	27	(X) 19.22*	$(\checkmark) 16.29$
	C2L3	25	(X) 28.13*	(\checkmark)-2.39
	C2L4	25	(X) 7.87^{*}	(\checkmark)-3.10
	C2L7	24	$(\checkmark) 9.48$	(\checkmark)-8.48
	C3L4	25	(X) 47.49*	$(\checkmark) 7.54$
	C3L8	27	(X) 96.57*	(\checkmark)-13.70
	C5L2	16	(X) 84.53*	(\checkmark)-19.35
herbaceous loss no woody change (1 site)	C3L7	17	(X) 48.61*	(X) -30.11
woody gain herbaceous loss (3 sites)	C3L5	30	(\checkmark) $50.32{ }^{*}$	$(\checkmark)-15.85^{*}$
	C3L6	20	$(\checkmark) 38.85 *$	(X) -28.68
	C4L5	24	$(\checkmark) 28.77^{*}$	(X) 13.91
woody gain no herbaceous change (10 sites)	C1L5	24	(X) -. 90	$(\checkmark) 17.93$
	C2L1	26	(\checkmark) $14.40{ }^{*}$	$(\checkmark) 7.17$
	C2L5	26	$(\checkmark) 28.78{ }^{*}$	$(\checkmark)-14.55$
	C2L6	28	$(\checkmark) 50.88 *$	(X) -43.94*
	C2L8	26	$(\checkmark) 67.45^{*}$	(\checkmark)-13.30
	C3L1	25	(X) 7.74	$(\checkmark) 1.60$
	C3L2	29	(X) 14.82	$(\checkmark) 12.62$
	C4L1	25	(X) 14.98	$(\checkmark) 7.06$
	C4L3	20	$(\checkmark) 38.03^{*}$	(\checkmark)-12.82
	C5L1	26	$(\checkmark) 34.74 *$	(X) $29.54 *$
			$\checkmark=50 \%$	$\checkmark=77 \%$
			$X=50 \%$	X $=23 \%$

[^0]

Figure 3. Comparison of mean in situ biomass trends ($\mathrm{kg} \mathrm{ha}^{-1}$ year $^{-1}$) across vegetation change categories inferred from RUE change analysis (See Figures 9 and S2 for categories). Error whiskers indicate a 95% confidence interval.

[^0]: *significant trend (p -value of slope of biomass vs time <0.05), RUE = rain use efficiency
 © $)=$ in situ data agrees with pixel trend
 X $=$ in situ data does not agree with pixel trend
 Agreement determined using sign, $+/-$, and statistical significance of trend at each site

