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Abstract: Video supervision equipment, which is readily available in most cities, can record the
processes of urban floods in video form. Ubiquitous reference objects, which often appear in
videos, can be used to indicate urban waterlogging depths. This makes video images a valuable
data source for obtaining waterlogging depths. However, the urban waterlogging information
contained in video images has not been effectively mined and utilized. In this paper, we present a
method to automatically estimate urban waterlogging depths from video images based on ubiquitous
reference objects. First, reference objects from video images are detected during the flooding and
non-flooding periods using an object detection model with a convolutional neural network (CNN).
Then, waterlogging depths are estimated using the height differences between the detected reference
objects in these two periods. A case study is used to evaluate the proposed method. The results show
that our proposed method could effectively mine and utilize urban waterlogging depth information
from video images. This method has the advantages of low economic cost, acceptable accuracy, high
spatiotemporal resolution, and wide coverage. It is feasible to promote this proposed method within
cities to monitor urban floods.

Keywords: urban flood; urban waterlogging depth; video image; ubiquitous reference objects; object
detection; convolutional neural network

1. Introduction

As one of the most frequent and serious disasters in cities, urban floods have caused considerable
loss of life and property [1,2]. To mitigate the damage of urban floods, continuous waterlogging depth
information with wide coverage and high resolution is required for early warning and emergency
response [3,4].

Currently, there are four main types of data sources for urban flood depth extraction, including
water level sensors [5], remote sensing [6-9], social-media/crowdsourcing data [3,10], and video
surveillance data [4]. Among these data sources, video surveillance data can record the entire process
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of urban flooding and has the advantages of continuity in time, high resolution, wide coverage in space,
and low cost, which makes it the most attractive data source. Video images provide innovative means
for monitoring urban waterlogging depths. However, the urban waterlogging information contained
in video has not been effectively mined and utilized. It is necessary to extract urban waterlogging
depth information from video images.

To extract waterlogging depths from video images, ubiquitous reference objects (e.g., traffic
buckets, pavement fences, and post boxes) could be used as “rulers”. Waterlogging depths can be
estimated according to the interfaces between the reference objects and water or the parts of the
reference object above the water level. However, current research relies on manual estimation based
on specific reference objects [11-13], which is time-consuming and laborious. The necessary data may
not be immediately available or continuous during urban flooding events. How to automatically
estimate waterlogging depth information from video images using ubiquitous reference objects should
be explored.

There are two potential methods to automatically estimate waterlogging depths from video images
based on reference objects: edge detection methods and object detection methods. The reference/water
interfaces can be detected by edge detection methods, such as the Hough transform, Sobel operator,
and Canny operator. These types of methods have been applied to estimate water levels or water
depths of rivers, lakes, pipelines, etc. [14,15]. The edge detection methods show some promise for
estimating urban waterlogging depths. However, these methods are usually designed for some specific
types of reference objects that rarely appear in the video images of cities, and they cannot be directly
used for other types of reference objects. Moreover, these methods require pre-/post-processing work
and some empirical parameters (e.g., thresholds) set by trial and error. A tremendous amount of effort
would be required to perform this type of work for each camera and each type of reference object.
Therefore, it would be inappropriate and difficult to promote these methods in cities.

Object detection models can detect various types of ubiquitous reference objects and parts of
ubiquitous reference objects above water levels. There are two types of object detection models,
namely, traditional models and models with convolutional neural networks (CNNs). Traditional object
detection models are based on hand-designed features, e.g., scale invariant feature transform (SIFT)
and histogram of oriented gradient (HOG) [16,17]. Object detection models based on features using
a CNN are state-of-the-art models and exhibit higher performance than traditional models [18,19].
More importantly, these methods are easy to use and require no professional skills. Therefore, object
detection models with CNNs are promising for the estimation of urban waterlogging depths.

The objective of this paper is to propose a method for automatically estimating waterlogging
depths based on ubiquitous reference objects by using object detection models with CNNs. We studied
how to detect ubiquitous reference objects from video images and how to estimate the waterlogging
depths using the detected reference objects. The main contributions of this paper are two-fold:

(1) Ubiquitous reference objects in video images, instead of one particular type of reference
object, are used to estimate the waterlogging depths, which makes the proposed method
widely applicable.

(2) The state-of-the-art deep object detection method with a CNN is utilized to automatically detect
ubiquitous reference objects from images, which is more accurate and flexible than traditional
object detection methods.

The rest of this paper is organized as follows. Section 2 presents the details of the methodology.
In Section 3, a case study is used to evaluate the effectiveness of the proposed method. The discussion
is presented in Section 4, and the conclusions and future work are presented in Section 5.

2. Methodology

Ubiquitous reference objects, such as traffic buckets, pavement fences, and post boxes, have fixed
positions and known heights and often appear in video data of cities (Figure 1). These objects can be
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used to indicate waterlogging depths as rulers. In non-flooding periods, the entire reference object can
be detected, while in flooding periods, only the part of the object above the water level can be detected.
The height difference between the detected reference object in non-flooding periods and the one in
flooding periods can be treated as the waterlogging depth (Figure 2). The proposed methodology
consists of two main steps in sequence.

(1) Detect the reference objects from video images during the flooding and non-flooding periods by
an object detection model with a CNN.

(2) Estimate the waterlogging depths using the height differences between the detected reference
object during non-flooding periods and the object during flooding periods.

(c) (d)

Figure 1. Some types of ubiquitous reference objects, e.g., pavement fence (a), ashbin (b), post box (c),
and traffic bucket (d).

detect the entire reference object detect the part of reference object above water

\
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toad

(@) (b)

Figure 2. The video image in the non-flooding period (a), and the video image in the flooding period (b).
hy is the height of the entire reference object, /1 is the height of the part of the reference object above
water, and depth is the waterlogging depth.
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2.1. Detection of Reference Objects Using an Object Detection Model with a Convolutional Neural Network (CNN)

In recent years, several object detection models with CNNs have been proposed, including
region-based convolutional neural network (R-CNN) [18], single shot detector (SSD) [19], faster
region-based convolutional neural network (Faster R-CNN) [20], region-based fully convolutional
network (R-FCN) [21], and you only look once (YOLO) [22].

Among these object detection models, the SSD is one of the top object detection models in terms of
both accuracy and speed. This model is a fast, single-shot object detector that can predict the bounding
boxes and the class probabilities at once. Moreover, the SSD is robust to scale variations because feature
maps from the convolutional layers at different positions of the network are used for object detection.
The SSD works as follows:

(1) Pass images, which consist of target objects and backgrounds, through a series of convolutional
layers to yield feature maps at different scales;

(2) Obtain multiple prior boxes of target objects on each of the feature maps;

(3) Predict the bounding box offset and class probabilities for each box;

(4) Use non-maximum suppression (NMS) to select the final bounding box for target objects.

More details regarding the SSD are described in reference [19]. In this study, a specific SSD,
i.e., SSD with MobileNet-V1, was used to detect the reference objects from video images during the
non-flooding and flooding periods, respectively. The class name and bounding box of each reference
object were output by the SSD.

2.2. Estimation of Waterlogging Depths

2.2.1. Calculation of the Heights of Detected Reference Objects in the Flooding and Non-Flooding Periods

The height of a detected reference object can be calculated based on its bounding boxes.

H = Ymax - Ymin (1)

Here, H is the height of the detected reference object in pixel units, Y4y is the maximum value of
the bounding box in the y-axis in pixel units, and Y/,;, is the minimum value of the bounding box in
the y-axis in pixel units. The full height of the entire reference object can be calculated from images in
the non-flooding periods, while the height of the part of the reference object above water level can be
calculated from images in the flooding periods.

2.2.2. Estimation of Waterlogging Depths

The waterlogging depth can be estimated by the following Equation (2):

H, — HF
p Py

D =
HP

H, ()

Here, D is the waterlogging depth, Hj, is the full height of the reference object in pixel units, HF,,
is the height of the part of the reference object above water level in pixel units, and H, is the actual
height of the entire reference object.

3. Case Study

3.1. Data Set and Computing Environment

A video data set from a city in Hebei Province, China was used to evaluate the effectiveness of the
proposed method (Figure 3). The video recorded a pluvial event caused by a heavy rainfall on 21 July
2017. The video was converted into 190 images in the joint photographic experts group (JPEG) format.
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The original resolution of these video images was 1280 x 720 pixels. These images were cropped into
small-sized images according to the specific region of interest (Rol).

Figure 3. Sample partial images of the video data set.

In this study, traffic buckets were used as reference objects to estimate the waterlogging depths
from video images. The height of traffic buckets is usually unified within a city (e.g., 825 mm in this
case study). The traffic buckets of each image were labelled using Labellmg software. These images
with annotations were randomly divided into a training set of 150 images and a testing set of
40 images. For the training of the SSD with MobileNet-V1, the video images of the training data set
and corresponding annotation files (including the bounding box of each reference object in the images)
were used. For the testing of the SSD, the video images of the testing data set were inputted into the
trained the SSD to predict the bounding box of each detected reference object.

The calculation time of the training phase and the testing phase was measured using a NVIDIA
Corporation GM200GL [Tesla M40] and NVIDIA UNIX x86_64 Kernel Module 384.66 on a Linux
system (i.e., Ubuntu 5.4.0-6ubuntul~16.04.5) with an Intel(R) Xeon(R) CPU E5-2682 v4 @ 2.50 GHz.

3.2. Results

3.2.1. Detection of Reference Objects from Images

The SSD was used to detect traffic buckets from the images. All traffic buckets in the images were
detected by the SSD. The heights of the bounding boxes detected by handwork were treated as the
“observations”, and the heights detected by the SSD were treated as the “estimations”. Overall, it was
found that the estimations agreed well with the observations (Figure 4). The root mean square error
(RMSE) and the mean absolute percentage error (MAPE) were used to evaluate the accuracy of the
heights of the detected reference objects. During the training phase, the RMSE value and the MAPE
value were 0.847 pixels and 2.677%, respectively. During the testing phase, the RMSE value and the
MAPE value were 0.958 pixels and 2.765%, respectively.
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Figure 4. The height of the reference object detected by handwork (i.e., observations) and the height
detected by the single shot detector (SSD) (i.e., estimations).

3.2.2. Accuracy of the Estimated Waterlogging Depths

The above heights of bounding boxes of the reference objects detected by handwork and the
SSD model were used to estimate the waterlogging depths according to Equation (2), respectively.
The waterlogging depths estimated by hand were treated as the “observations”, and the depths
estimated by the SSD were treated as the “estimations”. Figure 5 shows acceptable agreement between
the observations and the estimations.
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Figure 5. Waterlogging depths estimated by handwork (i.e., observations) and the depths estimated by
the single shot detector (SSD) (i.e., estimations).

The RMSE and the MAPE were used to evaluate the accuracy of the estimated waterlogging
depths. During the training phase, the RMSE value and the MAPE value were 0.023 m and 19.945%,
respectively. During the testing phase, the RMSE value and the MAPE value were 0.026 m and
19.968%, respectively.

3.2.3. Computational Efficiency

The average training time and average testing time were used to evaluate the efficiency of the
method in the aforementioned computing environment. The average training time was 1.853 min,
and the average testing time was 0.406 s.
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4. Discussion

4.1. Advantages and Disadvantages

The video supervision equipment, which is readily available in cities, is treated as a new data
sources to obtain waterlogging depths. The use of this equipment means that the cost of data
acquisition will be greatly reduced for the proposed method. The input data of training object
detection models with a CNN are images with annotations, which can be easily accomplished by
persons without professional knowledge. It is feasible to promote our proposed method within
cities. Video cameras distributed in urban areas usually have high resolutions, which is conducive to
obtaining high-resolution and accurate waterlogging depth information. The temporal resolution of
video data is very high, which is important for the detailed analysis of urban flooding. Moreover, this
proposed method could obtain a wide coverage of urban flooding information in cities with a high
density of cameras.

Compared with the existing methods, the proposed method achieves a balance between accuracy
and cost. More importantly, it can obtain waterlogging information over large regions in real-time and
low-cost ways using readily available video supervision equipment in most cities. The comparison
with existing methods is discussed in the following. Water level sensors have high monitoring
accuracy [5], but they are expensive. Usually only a small number of sensors are distributed in
limited urban areas [3]. Although the proposed method has lower accuracy than water level sensors,
especially when waterlogging is shallow, it is very cheap and could have a wide monitoring coverage.
The remote sensing method can monitor urban flooding with wide coverage [9]. However, remote
sensing images are usually affected by weather and occlusion, and often have low spatiotemporal
resolutions [3,9]. Compared with the remote sensing method, this proposed method has higher
spatiotemporal resolution and accuracy, and it is less prone to be affected by weather and occlusion,
but monitoring coverage may be smaller due to the limitation of camera distributions. The method
based on social media/crowdsourcing data can obtain urban flooding information with a wide
coverage. However, the necessary data may not be immediately available during flood events, and the
monitoring accuracy still needs to be improved [3,10]. Compared with this method, the proposed
method is more accurate and reliable, but monitoring locations are fixed. So, our proposed method
has the advantages of low economic cost, acceptable accuracy, high spatiotemporal resolution,
and wide coverage.

Although the RMSE values in this study were small, when waterlogging is shallow, the relative
error may be large. For example, the waterlogging depth observation from the third video image in
the testing step was 0.083 m, and the waterlogging depth estimation was 0.053 m, the relative error
was about 36%. The proposed method can be used in urban areas where video data and ubiquitous
reference objects are available. In the urban areas where video data set or ubiquitous reference objects
are unavailable, the proposed method would be inapplicable.

The computational time required to extract the waterlogging depths from one image was
relatively short (e.g., the average time was 0.406 s using the SSD in our computation environment).
However, extracting the real-time waterlogging depths from hundreds of thousands of images within
a city requires a large amount of computational power. Additionally, it takes a long time to train the
models with a very large amount of data. Cloud computing technology and faster, real-time object
detection models should be used to meet this challenge.

4.2. Error Sources

There are usually vehicles, pedestrians, and other objects in video images, which may affect the
results of reference object detection. To alleviate this impact, the part of images within a specific Rol
was used instead of the entire image. However, if the size of the Rol was relatively large, then the
results of reference object detection could be unsatisfactory because other objects may be recognized
as reference objects by mistake. For example, as shown in Figure 6, it was found that vehicles could
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be mistakenly recognized as reference objects (i.e., traffic buckets) by the SSD using a relatively large
size of the Rol. This mistake will lead to incorrect bounding boxes for the reference objects, which
then leads to an incorrect waterlogging depth. The above problem causes the estimated waterlogging
depths to change sharply, which can be captured and removed or estimated according to the trend in
previous periods.

(a) (b)

Figure 6. An example of one car being mistakenly recognized as a traffic bucket (a), and an example of
the traffic bucket being correctly detected (b) using a relatively large size for the region of interest (Rol).
The green box is the bounding box. Due to the low resolution of available video data, these images are
not very clear.

Training object detection models with a CNN depends on manual image annotations.
However, there may be some errors during the process of manual image annotations, which may affect
the accuracy of the detection of reference objects. The pixel dimension of images is also an important
factor that affects the accuracy of estimating waterlogging depths. The real height of the traffic bucket
was 0.825 m in this case study. The traffic bucket heights detected by hand work and the SSD were
30 and 29.773 in pixel units, respectively. The dimension of the pixel in meters by hand work and the
SSD were both about 0.028 m/pixel, respectively. The dimension of the pixel was comparable with
the RMSE value in this study. The smaller the pixel dimension is, the smaller the RMSE value will be.
The accuracy of the estimated waterlogging depths will be improved when video images of higher
resolution are used. In addition, the metric extent of the field of view and distortions introduced by
camera lenses may also affect the accuracy.

5. Conclusions and Future Work

In this paper, we presented a method to automatically estimate urban waterlogging depths
from video images based on ubiquitous reference objects. First, reference objects were detected from
video images during flooding and non-flooding periods by an object detection model with a CNN.
Then, waterlogging depths were estimated using the height differences between the detected reference
object in the non-flooding period and the object in the flooding period. In the case study, traffic buckets
were used as ubiquitous reference objects to estimate waterlogging depths, and a state-of-the-art object
detection model with a CNN, i.e., SSD, was employed to detect the traffic buckets in video images.
The RMSE value and MAPE value of the estimated waterlogging depths were 0.026 m and 19.968%,
respectively during the testing phase. The average computational time was 0.406 s during the testing
phase. The results showed that video is a valuable data source for monitoring urban floods, and our
proposed method could effectively mine and utilize urban waterlogging depth information from video
images. The proposed method has the advantages of low economic cost, acceptable accuracy, high
spatiotemporal resolution, and wide coverage. However, this proposed method would result in large
relative errors when water depth values are very small.
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It is feasible to promote our proposed method within cities. On one hand, city managers do not
need to spend a lot of money to install monitoring sensors, on the other hand, they can keep abreast of
urban flooding situations in an intelligent way. This proposed method could complement the existing
means for monitoring urban flooding. Moreover, this proposed method can be further applied to the
early warning and forecast of urban flooding, validation, and data assimilation of hydraulic models.
It is also helpful for urban drainage scheduling and traffic administration in times of rainstorms.
This method can be extended to monitor water levels or depths of other types of water bodies (e.g.,
lakes, rivers, and reservoirs).

It should be noted that only one video data set was used because of the data sharing policy of the
local government. We would like to evaluate this proposed method by using more video datasets in
our future work. In addition to traffic buckets, other types of ubiquitous reference objects with fixed
positions and known heights (e.g., pavement fences and post boxes) can also be utilized to estimate
waterlogging depths by our proposed method. Many other types of objects with unfixed positions
(e.g., vehicles and pedestrians) often appear in video images and could be treated as common reference
objects. We would attempt to utilize multiple objects to extract waterlogging depths in the future so
that the accuracy and applicability of this method can be improved.
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