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Abstract: Increase in irrigated area, driven by demand for more food production, in the semi-arid
regions of Asia and Africa is putting pressure on the already strained available water resources.
To cope and manage this situation, monitoring spatial and temporal dynamics of the irrigated
area land use at basin level is needed to ensure proper allocation of water. Publicly available
satellite data at high spatial resolution and advances in remote sensing techniques offer a viable
opportunity. In this study, we developed a new approach using time series of Landsat 8 (L8) data
and Random Forest (RF) machine learning algorithm by introducing a hierarchical post-processing
scheme to extract key Land Use Land Cover (LULC) types. We implemented this approach for
Mashhad basin in Iran to develop a LULC map at 15 m spatial resolution with nine classes for
the crop year 2015/2016. In addition, five irrigated land use types were extracted for three crop
years—2013/2014, 2014/2015, and 2015/2016—using the RF models. The total irrigated area was
estimated at 1796.16 km2, 1581.7 km2 and 1578.26 km2 for the cropping years 2013/2014, 2014/2015
and 2015/2016, respectively. The overall accuracy of the final LULC map was 87.2% with a kappa
coefficient of 0.85. The methodology was implemented using open data and open source libraries.
The ability of the RF models to extract key LULC types at basin level shows the usability of such
approaches for operational near real time monitoring.
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1. Introduction

Globally, there is an increase in population vulnerable to water scarcity and food security [1,2].
In the Asia and Middle East region, water scarcity is mainly driven by changing climate and
unsustainable water use [3,4]. Many studies have reported rapid decrease of the ground water table
in the semi-arid regions owing to the increasing use in irrigation [5–7]. United Nation’s Sustainable
Development Goals (SDG) on “Zero hunger” (Goal 2) and “Clean water and sanitation” (Goal 6) target
achieving food and water security by increasing agricultural productivity and efficient water use to
reduce people susceptible to water scarcity and to feed the increasing population [8]. To improve land
and water use efficiency, it is critical to monitor these at different scales, most importantly at a basin
scale where water allocation to different sectors takes place [9,10]. The biggest share of fresh water
(around 70%) allocation is for irrigation [5,11]. Hence, monitoring the spatial extent and temporal
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dynamics of the irrigated land use would enable managers and policy makers to make timely decisions
to achieve higher crop water productivity [12].

The majority of the irrigation systems around the globe, especially in the Asian and African
countries, lack systems in place for periodic monitoring. The only source of agriculture related data is
through national census by responsible ministries of respective countries. These census data, while
providing some information on irrigated area, are often found to be less useful in monitoring due to
inherent limitations of survey methods [13]. They also lack the ability to capture inter-annual changes
in the extent of irrigated agriculture that are often considerable in semi-arid areas where lands are
left fallow or uncultivated periodically. Since the 1980s, remote sensing has been used in different
studies to map land cover and agricultural areas at various scales [14]. It is a viable alternative where
many countries use these technologies to complement ground surveys [10,15]. Over the past decades,
several national and international agencies have developed remote sensing based land cover maps
that report on the irrigated areas with global or regional coverages. Moderate Resolution Imaging
Spectroradiometer (MODIS) sensor based land cover maps (MCD12Q1), CORINE land cover, Global
Irrigated Area Mapping (GIAM), among others are widely used by researchers to understand the land
cover land use changes at larger scales, including changes in agricultural systems [16–20]. Similarly,
several agricultural monitoring systems have been developed at global and national scale. Examples
are Global Information and Early Warning System (GIEWS), Famine EarlyWarning Systems NETwork
(FEWS NET), MARS crop yield forecasting system (MCYFS), CropWatch, United States Department of
Agriculture-Foreign Agricultural Service (USDA-FAS), GEOGLAM, World Food Programme Seasonal
Monitor, and Anomaly hot Spots of Agricultural Production (ASAP) [21–26]. However, a recent review
[26] comparing the aforementioned monitoring systems identifies the lack of ability to operationalize
the new methods at a basin level as one of the gaps. These systems provide information at coarser scale
meant for global or national assessments, but not always suitable at a basin level monitoring. Besides,
there are lack of systems which enable continuous monitoring of irrigated land use dynamics over time
at regional scale, mainly due to: (i) intensive data processing and storage requirement; and (ii) the need
for locally calibrated models and regional expertise [26–28]. With emerging new techniques in remote
sensing, increasing availability of satellite data at high spatial and temporal resolution, and open data
policies adopted by space agencies, there are more opportunities to establish remote sensing based
monitoring systems at regional scales [26].

The rapid increase in availability of high resolution satellite imagery by various space
agencies [29,30] together with the advances in algorithms and computational capacity has opened new
possibilities for creating frequent dynamic land cover maps [31]. Newer satellite missions in orbit are
providing weekly observations at the fine resolution of 10–30 m, which are ideal for regional scale
monitoring purposes [29]. These images can provide for the application of advanced algorithms that
allows pixel/object based feature extraction for land use mapping [29]. Additionally, machine learning
and decision tree based approaches in remote sensing has triggered a plethora of studies looking at
its usability in extracting agricultural land use, urban mapping, crop type mapping, etc. [32]. The RF
based methods result in higher accuracy compared to classical distance based approaches [31,33–36].
The resulting time series maps enable us to capture the land use dynamics, especially relevant to
rainfed and irrigated agricultural landscapes. Identifying these land use classes within irrigated area
allows for understanding and locating different existing farming systems and help in formulating
specific policy interventions based on the production system [7,37].

This study focused on developing a RF based irrigated land use monitoring work flow using
time series of L8 optical data. The workflow was designed in such a way that the decision tree-based
prediction mechanism can be automatically applied to upcoming acquisitions. This feature is a key
element in setting up a high resolution near real time agricultural monitoring system. The developed
workflow was tested in Mashhad basin in Iran, which, besides being intensively cultivated, is
characterized by high variability of irrigated area due to changing water availability and rainfall.
We estimated the irrigated area land use dynamics for three crop years starting from November 2013
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to October 2016. For deriving LULC map of the basin including irrigated area for the year 2015/2016,
RF models were developed for each major LULC type from four candidate L8 data. The RF model
was then used to generate irrigated area maps for other years to capture the inter-annual changes in
cropped areas. Further, we estimated irrigated area with double crop, summer crop and winter crops
using seasonal aggregation of irrigated areas derived from time series of L8 data.

2. Study Area

Mashhad basin, located in the north east of Iran (Figure 1) covers an area of 16,750 km2. The basin
has a semi-arid climate with an average annual rainfall of 236 mm. The elevation of the terrain varies
significantly from 391 to 3249 m, with flat and fertile areas concentrated in the central plains. Despite
having limited water resources and low rainfall, the basin has nearly 140,000 ha of irrigated lands to
primarily feed its population of 3.5 million and provide for the booming food processing industry that
aim at export. Surface water resources has long fallen short in supplying the growing demands and
much of the recent economic and agricultural expansions have happened at the expense of depleting
groundwater resources. Estimates show groundwater levels are dropping at a whopping rate of 0.8 m
per year, making groundwater growingly unavailable to some areas and more expensive to pump up in
others [38,39]. Hence, the situation calls for immediate action to curb water consumption in agriculture.
To this end, targeted field level interventions are required to increase water productivity and water use
efficiency. Up to date, reliable and verifiable information on the irrigated agriculture with high spatial
and temporal resolution is, thus, needed to identify priority locations for improvements and inform
strategic decisions in the basin.

Figure 1. Study area: Mashhad basin in the northeast of Iran.

There are two distinct cropping season in this basin. Winter crops, dominated by wheat and
barley, are planted in November/December and harvested by June in the following year. Summer
crops, mainly vegetables, are planted in July/August and harvested by October. Each crop year is
defined by 12 months starting from October to September the next year, constituting both winter and
summer cropping periods.
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3. Methods

The proposed methodology has two major steps: (i) developing single class RF model for each
major class (see Table 1) and preparing LULC map of Mashhad basin for the year 2015/2016 at
15 m spatial resolution; and (ii) developing irrigated land use maps of Mashhad basin for the crop
years 2013/2014, 2014/2015 and 2015/2016 using the RF models. The entire methodology and data
acquisition were implemented using open source libraries. The pre-processing of L8 time series data,
which includes data fusion to resample spectral data using HPFA technique, was implemented in
GRASS GIS version 7.4 [40] and the RF model training and classification was implemented in Orfeo
Toolbox version 5.8.0 [41]. The following subsections explain the implemented approach in details.

3.1. Satellite Data

Data acquired from the Operational Land Imager (OLI) instrument aboard L8 satellite launched in
February 2013 were used in this study. L8 has a temporal cycle of 16 days, which ensures a maximum
of two images per month over the study area. All L8 acquisitions over the study area in the time
period from November 2013 to October 2016 were processed. The entire study area can be covered by
five tiles of L8, as shown in Figure 2. The L8 data with more than 30% of cloud cover were discarded
from further analysis. The images available in these tiles for the study period are listed in Figure 3.
To automate the acquisition and pre-processing of the L8 data using scripts, we used Amazon public
bucket (https://aws.amazon.com/public-datasets/landsat/) and Amazon Web Service Command
Line Interface(AWS CLI), which facilitates bulk downloading without pre-ordering. The L8 data from
tile 158/035 (Path = 158, Row = 35) and 159/034 were used only for developing LULC map of the year
2015/2016. As the basin area covered exclusively in these tiles were negligible (2% of total basin area),
we discarded them from irrigated area land use estimates.

Figure 2. Five Landsat tiles covering the study area. The numbers indicate the path and row, for
example 160/034 represents path 160 and row 34.

https://aws.amazon.com/public-datasets/landsat/
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Figure 3. List of L8 data used in this study over five tiles. The dates in black were used for extracting
summer crop area and those in red were used for winter crop area. The blue points represent dates
used to develop RF models. The dates given in gray area for the year 2016 were used for developing
the LULC map. Note that L8 data from path 158 were used only for LULC map and the data acquired
on 16 March 2017 were used only for developing RF model.

3.2. Pre-Processing Landsat 8 Data

The acquired L8 data were pre-processed to create a time series of reflectance bands from all the
valid cloud-free pixels. The pre-processing step included conversion from Digital Number (DN) to
Top Of Atmosphere (TOA) reflectances (Radiometric calibration), cloud removal using the Quality
Assessment (QA) band, resampling the spectral bands (2–7) from 30 to 15 m spatial resolution using
panchromatic band (band 8) and converting the reflectances to integers.

The DN values were converted into TOA reflectances using Equations (1) and (2) [42].
The required parameters to apply the calibration is provided in the metadata file of each L8 data.

ρ′λ = Mi ∗ DN + Ai (1)

where ρ′λ is the TOA reflectance without solar elevation angle correction, DN is digital number (pixel
value), and Mi and Ai are multiplicative and additive reflectance scaling factors, respectively, for
the spectral band i. However, ρ′λ is not corrected for the solar elevation angle, and this correction
is applied using Equation (2). Mi and Ai are provided as REFLECTANCEW_MULT_BAND_n and
REFLECTANCE_ADD_BAND_N, respectively, in the metadata file.

ρλ = ρ′λ/sinθs (2)

where ρλ is TOA reflectance and θs is the solar elevation angle given in the metadata file. After the
calibration, the gridded spectral bands had a spatial resolution of 30 m and the panchromatic band
with a resolution of 15 m.

To remove the cloud pixels, we used the QA band provided with the L8 data to develop cloud
masks. The L8 QA band contains 16 bit integers representing certain atmospheric conditions, as shown
in Figure 4. All the bit combinations showing mid to high confidence clouds were used to create cloud
masks. If the masked area was greater than 30% of the total tile area, then that scene was discarded
from further analysis.
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Figure 4. L8 QA band bits and its explanation (Source: https://landsat.usgs.gov/qualityband).

The L8 panchromatic band was used to resample the spectral bands (2–7) from 30 to 15 m. We
used a High Pass Filter Additive (HPFA) fusion technique, as explained in [43], to resample the spectral
data. All the spectral bands were then multiplied by 10,000 and converted to integer data type to
optimize the performance of RF model. The L8 spectral bands 2–7 were stacked together for each
image and used for classification.

3.3. Training and Validation Samples

The spatial and temporal samples representing the major LULC types (hereafter, also referred
as classes) in the study area are the major components of any supervised classification approach [44].
Table 1 lists the major LULC types and irrigated sub-classes extracted for Mashhad basin in this study.

Table 1. Major LULC types and irrigated sub-classes of Mashhad basin extracted in this study.

Class ID Major LULC Type Sub-Classes

1 Impervious/urban area N.A
2 Orchards/parks/dense trees N.A
3 Water bodies N.A
4 Sparse vegetation N.A
5 Cropland/rainfed N.A
6 Irrigated area Double crop

Single summer crop
Single winter crop
Summer crop
Winter crop

7 Fallow cropland N.A
8 Urban cropland N.A
9 Urban vegetation N.A

Four candidate cloud free L8 images acquired on 26 February 2016, 19 July 2016, 23 October 2016
and 16 March 2017 (Figure 3) for tile 159/035 were selected to delineate the training samples for RF
models. Tile 159/035 was selected because more than 80% of the Mashhad basin area is covered by
this tile (Figure 2). The urban classes (8–9) urban cropland and urban vegetation were derived from
impervious/urban area class (Table 1), as explained in the next section. Hence, training samples for
seven major LULC types (1–7 in Table 1) were delineated from the candidate images. Samples for each
major class were digitized from candidate L8 images with the support of very high resolution spatial
and temporal images available in Google Earth. A total of 28 different multi-polygon sets (7 LULC
types X 4 candidate images) were developed for training the RF models. Each of these polygon set has
two attributes—“LULC type” and “other LULC types”. These samples were used only for RF model
training and validation (not for LULC map validation).

Further field survey data were collected from the basin by a regional expert team. A pre-designed
database with Kobo toolbox (http://www.kobotoolbox.org/) as front end was used by the team to
collect data from the field. The Kobo toolbox is available as an Android application and supports

https://landsat.usgs.gov/qualityband
http://www.kobotoolbox.org/
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offline cache while in areas with no internet coverage. The data were stored in Amazon cloud services,
and were then extracted and mapped. In total, 52 samples were collected from the study area, which
were used only for the validation of LULC map. The field survey points covered only five major LULC
types except water bodies and fallow cropland, and had very few samples per class. Therefore, to
do a comprehensive accuracy assessment, 221 random stratified points were extracted and assigned
classes using images provided in Google Earth for validating the final LULC map. Figure 5 shows the
validation points collected from the field and stratified random samples. These validation samples
were generated independent of the training samples for RF models and used only for LULC map
validation. Accuracy assessment was performed separately for these two sets of training samples and
also by combining them.

Figure 5. Validation points collected from field (red) and stratified random points (blue) used for
accuracy assessment.

3.4. Classification Using Random Forest (RF)

Random Forest is an ensemble classifier that uses multiple decision trees followed by majority
voting to predict a class. The RF classifier uses bootstrap samples to develop each tree and the samples
that are not used to construct the tree are called Out Of Bag (OOB) samples. Internally, RF model
prediction is validated using these samples and the estimated error rate is referred to as OOB error [45].
The two steps of the classification process were: (i) train RF classifier; and (ii) classify using RF model.
The first step “train RF classifier” was to train and develop RF models for each of the major LULC
types (except for urban classes 8 and 9 in Table 1) from the resampled spectral bands (2–7) of four
candidate L8 scenes (Figure 3) for tile 159/035. Training and validation sample ratio of 0.5 was used,
meaning half of the samples were used to check the accuracy of model prediction and estimate OOB
error. A maximum number of 50 decision trees with a maximum depth of 25 were used for training RF
model. Minimum number of samples at each node of the decision tree was set to 25. In the second part
of the classification, all valid pixels in the pre-processed L8 data (see Figure 3) were assigned classes by
the RF models.

The classification approach has following key steps, as depicted in Figure 6:
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• Developing seven single class RF models from the four candidate L8 data.
• Applying those single class RF models to individual scenes of all the required tiles to extract

single class maps for each acquisition and tile.
• Applying majority fusion to aggregate over multiple acquisitions to single class maps for each tile.
• For irrigated area class, applying a single occurrence selection method to aggregate the single

class maps for each tile.
• Mosaicking the single class maps for each tile to a single class maps for entire Mashhad basin.
• Conditionally patching all the single class maps for basin to a multi-class LULC map for the year.
• Seasonally aggregating to derive land use types for irrigated area.

 
Training/Validation 

samples 
 

Step 1

Train RF classifier

Random Forest 
Single class

models 
MC=1:7

Landsat 8 
Scenes 

Step 2

RF classification
Temporal single

class maps 
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Majority Filter

Step 4

Temporal Aggregation
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Validation

Annual multi
class LULC map 
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Seasonal Aggregation

Irrigated landuse 
maps 

Annual single
class map 

Figure 6. Block diagram showing the key steps of the methodology used in this study. For each Major
Class (MC), Steps 1–3 were repeated to develop single class maps, followed by temporal aggregation.

For all the major classes except the irrigated area, the majority fusion technique was applied to
aggregate the single class map from individual L8 scenes. Each output pixel was assigned the value
of most frequent class in the input single class maps, which was either the “LULC type” or “other
LULC type”. In the absence of unique majority, the pixel was labeled as “undecided”. The single class
maps, developed for the entire basin (seven maps), were patched together to produce a multi class
LULC map for the year 2015/2016. The patching was performed conditionally using RF model kappa
estimate as decisive factor. Thus, those classes with higher kappa estimates were prioritized while
patching. The gaps mainly due to pixels with “undecided” labels were filled using spatial filter with
“maximum” method over 5 by 5 moving window. After extracting the seven major classes for the entire
basin, the urban classes (8 and 9) were derived by reclassifying irrigated area class to urban cropland
and orchards/parks to urban vegetation class within the Mashhad city boundary.

Irrigated area change dynamically in both space and time over a crop year. A single occurrence
selection method was used to develop yearly irrigated area maps for crop years 2013/2014, 2014/2015
and 2015/2016. If a pixel belongs to irrigated area at least once over multiple L8 acquisitions, then
it was assigned to this class. Subsequently, the irrigated area class was divided into five sub-classes
representing agricultural land use regimes for the three crop years: double crop, single summer crop,
single winter crop, summer crop and winter crop. All irrigated area pixels derived from the L8 data
acquired in the time period from January to June were labeled as winter crops (see Figure 3), while all
the irrigated area pixels derived from the L8 data acquired in the time period from July to November
were labeled as summer crops. Those pixels that were classified as irrigated area in both seasons
were labeled as double crop. If a pixel was irrigated area only in one of the two seasons, then it was
labeled as single summer or single winter crop area, accordingly. Finally, the fallow cropland class was
updated by removing those pixels that were irrigated at least once in the three crop years.
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4. Results

4.1. Resampling L8 Spectral Bands

According to the correlation estimates, resampled bands could retain around 98% of the spectral
details while improving the spatial resolution to 15 m. Table 2 lists the performance indicators of
L8 data acquired on 26 February 2016 before and after resampling. Within the candidate images,
an average correlation coefficient of 0.98 was reported. The mean and standard deviation computed
from each spectral band, before and after the resampling were in the same range (Table 2).

Table 2. Correlation analysis results of L8 image dated 26 February 2016. R (correlation coefficient),
Intercept and Slope are linear regression outputs, Mean_orig and SD_Orig are mean and standard
deviation of original spectral bands, respectively; and Mean_HPFA and SD_HPFA are mean and
standard deviation of resampled spectral bands, respectively.

Spectral Band R Intercept Slope Mean_orig SD_orig Mean_HPFA SD_HPFA

B2 0.98 −7.2 1 0.15 0.03 0.15 0.03
B3 0.99 6.2 1 0.15 0.04 0.16 0.04
B4 0.99 23.5 0.99 0.18 0.05 0.18 0.05
B5 0.98 67.6 0.97 0.24 0.06 0.24 0.06
B6 0.97 40.1 0.98 0.26 0.08 0.26 0.08
B7 0.98 33.8 0.98 0.23 0.08 0.22 0.08

Figure 7(a1–a3,b1–b3) shows the L8 data before and after resampling respectively. Visual
inspection shows considerable increase in the sharpness of edges due to the high pass filter applied
and higher spatial resolution.

Figure 7. (a) Shows the False Color Composite(FCC) from spectral bands in 30 m; (b) shows the FCC
in 15 m; and (c) shows the extracted irrigated area in 15 m for the respective dates.
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4.2. RF Model Performance

Table 3 lists the model validation indicators for each of the seven major LULC classes. The lowest
OOB error of 0.005 and the highest kappa estimate of 0.99 was observed for water bodies class.
The highest OOB error of 0.08 and lowest kappa estimate of 0.85 was observed for sparse vegetation
class. These indicators do not represent the actual accuracy of the LULC map, whereas they indicate
how well the model predicted the OOB samples. Figure 7c1–c3 shows the extracted irrigated area by
the RF model from the L8 data.

Table 3. RF model prediction indicators. OOB, Out Of Box error.

Class ID Major Land Cover Observed Accuracy OOB Kappa

1 Impervious/urban area 95% 0.05 0.91
2 Orchards/parks 98% 0.02 0.97
3 Water bodies 100% 0.005 0.99
4 Sparse vegetation 92% 0.08 0.85
5 Cropland/rainfed 97% 0.03 0.93
6 Irrigated area 97% 0.03 0.95
7 Fallow cropland 95% 0.05 0.91

4.3. Classification and Accuracy Assessment

A LULC map at a spatial resolution of 15 m was created for Mashhad basin for the year 2015/2016.
Figure 8 shows the LULC map with nine classes as listed in Table 1. Table 4 lists the area in km2 of
each class in 2015/2016 computed from the LULC map. Around 75% of the total area was covered
with sparse vegetation, followed by irrigated area and cropland/rainfed class. The impervious/urban
area was reported to be 230.2 km2 with 8.2 km2 of urban cropland and 43.2 km2 of urban vegetation.

Figure 8. Classified land cover map of Mashhad basin for 2015/2016.
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Table 4. Reported user’s accuracy, kappa estimates and surface area of major land cover classes.

Class ID Land Cover User’s Accuracy Kappa Area (Sq.Km)

1 Impervious/urban area 95.8% 0.95 230.2
2 Orchards/parks 88.6% 0.87 140.6
3 Water bodies 100% 1 4.8
4 Sparse vegetation 88.2% 0.81 12,442.4
5 Cropland/rainfed 72.7% 0.68 1442.5
6 Irrigated area 87.2% 0.85 1578.3
7 Fallow cropland 88.8% 0.87 886.7

The accuracy assessment using combined field survey and stratified random points reported
an overall accuracy of 87.2% with an estimated kappa of 0.85 over all the classes. The highest user’s
accuracies of 100% and 95.8% were reported for water bodies and impervious/urban area, respectively,
while lowest user’s accuracy of 72.7% was reported for cropland/rainfed class. Table 4 lists the user’s
accuracy and estimated kappa for major classes. The overall accuracy reported were 84.5% and 91.2%
using stratified random and field survey points, respectively.

4.4. Spatial and Temporal Crop Patterns

Five irrigated land use types for three crop years were extracted. Figure 9 shows variation in
surface area of fallow, irrigated and five irrigated land use types over three crop years. Total irrigated
area in the Mashhad basin was reported to be 1796.16 km2, 1578.48 km2, and 1578.33 km2 for the
crop years 2013/2014, 2014/2015, and 2015/2016, respectively. Fallow crop area was reported to be
668.75 km2, 886.43 km2 and 886.86 km2, respectively. Irrigated area with winter crops was 1447.37 km2,
1324.84 km2, and 1451.80 km2, and summer crops was 1155.37 km2, 698.78 km2 and 1164.41 km2 for
the crop years 2013/2014, 2014/2015, and 2015/2016, respectively. An average area of 764.68 km2 was
irrigated twice during summer and winter over the three crop years. Around one third of the summer
and winter irrigated area was only irrigated once over the three years.

Figure 9. Bar graph showing annual surface area of fallow, irrigated and five irrigated land use types.
Note that the classes “summer crop” and “winter crop” include “double crop” area.

5. Discussion

Machine learning and decision tree based approaches to classify time series of satellite data
have shown great promise in recent years with higher level of accuracy (>85%) compared to classical
approaches [31]. Recent studies explore the usability of machine learning algorithms in setting up
an operational monitoring system using high resolution satellite data [33,34]. Being an ensemble
classifier, RF provides more accurate classification output and is more robust in handling noise
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compared to other classifiers [31,34,35]. The new method to monitor irrigated area from time series
of L8 data implemented in this study reiterates the usability of RF models for such applications.
The novelty of this approach is that single class RF models were used to extract respective classes
followed by a post processing scheme to create a LULC map of the basin. The advantage is being
able to extract single LULC type of interest depending on the application, for example as shown in
this study to monitor the irrigated area dynamics in the basin. In an operational monitoring system,
a key step would be to extract the extent of irrigated area from a newly acquired L8 data and compare
it with the extent extracted from the previous L8 acquisition. Hence, this approach can be used for
continuous monitoring of a LULC type, although there needs to be a system in place to periodically
validate the results and subsequent fine tuning of the models. The irrigated area estimates could not be
validated due to the lack of official statistics at basin scale, however the higher accuracy obtained for
the LULC map demonstrates the usability of this method. The new approach is “hierarchical” because
the patching of single class maps was performed by prioritizing them based on model prediction
indicators. Seasonal aggregation of predicted irrigated area maps gives winter and summer crop
area extent. We obtained an average OOB error of 0.04 and observed accuracy of 96% for the single
class models demonstrating good prediction capability of the RF models. Accuracy assessment of
final LULC map reported an overall accuracy of 87.2%, which is in line with similar studies [34,35].
The lowest user’s accuracy of 72.7% with 0.68 kappa was reported for the class cropland/rainfed class.
Separating rainfed cropland from irrigated area is challenging, if a single date imagery is used. In this
study, we used training samples from different time periods over a crop year corresponding to the L8
acquisition dates, thus RF model could differentiate both classes at an acceptable accuracy.

Although L8 data are available every sixteen days, cloud coverage and snow reduce the availability
of valid observations over the study area (see Figure 3). This may affect the seasonal aggregation
of irrigated land use types due to lack of valid data to represent all the irrigated pixels in a season.
However, an irrigation cycle covers multiple months, thus the model would be able to capture the
standing crop if there is a cloud free image once in 1–2 months during the growing seasons. Due to
lack of official statistics for this basin over the study period, we could not validate our results on
extent of irrigated land use types. Parameterization of RF model is an important and tedious step
that determines the model performance [33]. These parameters often depend on the input data used,
number of variables and geographical area, especially for classification [31]. Here, we determined
them by training the model with multiple combination of input parameters and subsequently checking
the performance using prediction indicators and the classification results. The prediction indicators of
the RF models must be taken in to account with the caveat that lower OOB and higher Kappa do not
ensure higher accuracy in classification. Instead, it shows how well the model can predict random
validation samples (OOB samples). Although the OOB error is unbiased because it is computed
from randomly selected OOB, lower estimate could be attributed to over fitting of the classes due to
unbalanced sampling sizes [36]. The resampling of L8 data to 15 m preserved the spectral properties
of the other bands (Table 2), although it did not improve the spectral quality of the data. The impact of
this step on accuracy of LULC map was not covered in this study.

One of the major advantages of using RF is that it can run on large datasets efficiently in less
time. For Mashhad, to run a RF model on tile 159/035 which cover more than 80% of the basin, it took
2.4 min on a Linux machine with Intel R© CoreTM i7-3770 Quad-Core processor and 32 GB RAM. The use
of open source software ensured reproducibility and extendibility, although not investigated in this
study. The advantage of using GRASS GIS and OrfeoToolbox is that their functionalities can be scripted
together using the command line interfaces or the Python API’s enabling complete automation of the
method established [40,41]. The usability of the model to predict “classes” from future acquisitions of
satellite data is key in establishing an operational monitoring system. Future work can look into ways
to add Sentinel 1 Synthetic Aperture Radar (SAR) and Sentinel 2A/B optical data in order to maximize
the number of valid observations from space. It would also be interesting to see how well the model
developed for Mashhad basin predicts classes for other semi-arid regions with similar climate and
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topographical features. This would open up a lot of opportunities in building workflows for periodic
land use monitoring at larger scale using one comprehensive unsupervised model for similar regions.

6. Conclusions

The study developed a new approach to extract irrigated land use types from time series of L8 data
and using Random Forest machine learning algorithm. This approach was used to develop a LULC
map of 2015/2016 with nine major classes for Mashhad basin in north east of Iran, and to extract
five irrigated land use types for three crop years—2013/2014, 2014/2015, and 2015/2016. We used
HPF based data fusion technique to develop LULC map at spatial resolution of 15 m. The correlation
between spectral bands before and after the resampling were reported to be 0.98 averaged over all the
spectral bands. Major steps included: (i) developing RF models to extract single classes; (ii) applying
a majority filter over time to develop single class map over a year; (iii) hierarchical aggregation
based on prediction indicators to derive multi-class LULC map; and (iv) seasonal aggregation to
derive five irrigated land use types. An overall accuracy of 87.2% was reported for the LULC map
with an estimated kappa of 0.85. The RF models reported an average OOB error of 0.04 and kappa
of 0.92. Total irrigated area in the Mashhad basin was estimated to be 1796.16 km2, 1578.48 km2,
and 1578.33 km2 for the crop years 2013/2014, 2014/2015, and 2015/2016, respectively.

Irrigated area dynamics over multiple seasons can give critical information about pattern of
agricultural land use and corresponding consumptive water use. Agriculture is the dominant water
use of both surface and subsurface resources, thus spatially and temporally distributed data on land
and water use are essential to identify location specific issues, and then finding solutions applicable
to improve water use efficiency and water productivity. The method presented in this study can
be adapted to an operational monitoring system using remotely sensed satellite data and machine
learning based classification approach. The approach uses open source libraries that provide vast
opportunities in optimizing the performance and allows extending the method with limited cost.
Finally, such a system has the potential to support water and agricultural officials, managers, planners,
and decision makers to monitor and plan resources for sustainable use. Information flow can be
customized depending on the level of expertise, be it technical, decisive, spatial, infographics or simple
text, catering to a wider audience.
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