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Abstract: Hyperspectral image (HSI) provides both spatial structure and spectral information for
classification, but many traditional methods simply concatenate spatial features and spectral features
together that usually lead to the curse-of-dimensionality and unbalanced representation of different
features. To address this issue, a new dimensionality reduction (DR) method, termed multi-feature
manifold discriminant analysis (MFMDA), was proposed in this paper. At first, MFMDA explores
local binary patterns (LBP) operator to extract textural features for encoding the spatial information
in HSI. Then, under graph embedding framework, the intrinsic and penalty graphs of LBP and
spectral features are constructed to explore the discriminant manifold structure in both spatial
and spectral domains, respectively. After that, a new spatial-spectral DR model for multi-feature
fusion is built to extract discriminant spatial-spectral combined features, and it not only preserves
the similarity relationship between spectral features and LBP features but also possesses strong
discriminating ability in the low-dimensional embedding space. Experiments on Indian Pines, Heihe
and Pavia University (PaviaU) hyperspectral data sets demonstrate that the proposed MFMDA
method performs significantly better than some state-of-the-art methods using only single feature or
simply stacking spectral features and spatial features together, and the classification accuracies of it
can reach 95.43%, 97.19% and 96.60%, respectively.

Keywords: hyperspectral image; multi-feature classification; dimensionality reduction; graph
embedding; spatial-spectral features

1. Introduction

Hyperspectral imagery (HSI) provides hundreds of narrow and continuous adjacent bands
through dense spectral sampling from visible to short-wave infrared regions [1–8]. A fine-spectral-
resolution HSI provides useful information for classifying different types of ground objects, and it
has a variety of applications in many fields such as mineral exploration, environmental monitoring,
precision agriculture, and target recognition [9–13]. Classification of each pixel in HSI plays a crucial
role in these real applications, but complex spectral characteristics within HSI data pose huge challenges
to the traditional spectral feature-based HSI classification [14–19].

Recent investigations have demonstrated that combining spatial and spectral information is
beneficial to the feature extraction and classification of HSI data [20–28]. In recent years, many effective
spatial-based features have been proposed by concerning structure, shape, texture, geometric, etc.
Li et al. [29] extracted textural features of HSI using LBP operator and then classified them through
extreme learning machine (ELM). Mauro et al. [30] designed an extended multi-attribute profiles
(EMAP) algorithm to explore morphological features from HSI, and the extracted features were
classified by a random forest classifier. Li et al. [31] introduced generalized composite kernel machines
to explore spatial information through EMAP, then used the multinomial logistic regression for
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classification. However, in real applications, it is impossible to find a single feature that is suitable for
different image scenes due to the variety and irregular distribution of ground objects. The conventional
method for addressing this issue is to explore a feature stacking (FS) approach for the combination of
different types of features. Li et al. [32] tried to get combined features by fusing spectral features and
EMAP features which improved the classification accuracy of HSI. Song et al. [33] used LBP operator
for extracting textural features, and then stacked spectral features and textural features for classification.
However, the feature stacking method commonly poses the problem of the curse-of-dimensionality for
the increase in the dimension of stacked features, and thus such methods do not necessarily ensure
better performance for HSI classification. Therefore, an urgent challenge in multi-feature classification
of HSI data is how to reduce the dimension of spatial and spectral combined features largely with
some valuable intrinsic information preserved [34].

To solve this problem, many DR methods have been proposed to reduce the number of bands
and obtain some desired information in HSI [35–38]. Principal component analysis (PCA) and Linear
Discriminant Analysis (LDA) are two classical DR methods [39,40]. However, the two subspace methods
cannot analyze the data that lies on or near a submanifold embedded in the original space. Therefore,
the graph-based manifold learning methods have attracted wide attention recently [41]. Such methods
include isometric mapping (Isomap), Laplacian eigenmaps (LE), locality preserving projections (LPP),
locally linear embedding (LLE), neighborhood preserving embedding (NPE), and local tangent space
alignment (LTSA) [42–47]. These graph embedding (GE) methods are unsupervised learning methods
without using the discriminant information in training samples. Some supervised learning methods
were designed to explore the label information of training data to enhance the discriminating ability for
classification, such as marginal Fisher analysis (MFA), locality sensitive discriminant analysis (LSDA),
coupled discriminant multi-manifold analysis (CDMMA), and local geometric structure Fisher analysis
(LGSFA) [48–51]. However, the above DR methods only make use of spectral features in HSI, while
it is commonly accepted that exploiting multiple features, spectral, texture and shape features, brings
significant benefits in terms of improving the classification performance.

To explore DR of multiple features for HSI classification, Fauvel et al. [52] used PCA to reduce the
dimension of EMAP features and stacked them with spectral features to form fused feature vectors.
Huo et al. [53] selected the first three PCs of HSI to extract Gabor textures, then concatenated Gabor
textures and spectral features from the same pixel to form the combined feature for classification.
However, the above multi-feature-based methods simply stacked the reduced spectral and spatial
features together after applying DR on the different types of features, respectively. The embedding
features are obtained in different subspaces that cannot ensure global optimization. Furthermore,
the direct stacking strategy may lead to unbalanced representation of different features.

To overcome above drawbacks, we propose a novel DR algorithm termed multi-feature manifold
discriminant analysis for HSI data. The MFMDA method first exploits the spatial information in HSI by
extracting LBP textural features. Then it constructs the intrinsic graphs and penalty graphs of spectral
features and LBP features within GE framework, which can effectively discover the manifold structure
of spatial features and spectral features. After that, MFMDA learns low-dimensional embedding space
from original spectral features as well as LBP features for compacting the intramanifold samples while
separating intermanifold samples, which will increase the margins between different manifolds. As a result,
the spatial-spectral embedding features possess stronger discriminating ability for HSI classification.
Experimental results on three real hyperspectral data sets show that the proposed MFMDA algorithm can
significantly improve the classification accuracy compared with some state-of-art DR methods, especially
in the case of limited training samples are available.

The remainder of this paper is organized as follows. In Section 2, we briefly introduce the spectral
features, textural features, and the GE framework. The details of our algorithm are introduced in
Section 3. Section 4 gives experimental results to demonstrate the effectiveness of our algorithm.
We give some concluding remarks and suggestions for further work in Section 5.
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2. Related Works

2.1. Spectral and LBP Features of HSI

Spectral and textural information are the fundamental properties of hyperspectral imagery. Spectral
information provides densely sampled reflectance values over a wide range of the electro-magnetic
spectrum to distinguish similar materials, while texture is a typical spatial feature which gives
a description of the homogeneity of an image using the texture element as the fundamental unit. Recent
studies show that combining spatial context into pixel-based spectral classification can substantially
improve the classification performance of HSI [54].

Local binary pattern is a discriminative and computationally local texture descriptor that has
shown promising performance in classification. The original LBP operator represents the pixels of
an image with binary numbers called LBP codes, which encode the local structure around each pixel,
and then the codes are used for further analysis [29]. The procedure of it is shown in Figure 1, where
the 10th band of PaviaU hyperspectral image is used to extract LBP features. As in Figure 1, for a given
center pixel in a 3 × 3 window, the neighbor pixels are assigned with binary labels (“0” or “1”),
depending on whether the gray value of center pixel is larger or not. An 8-digit binary number can be
obtained by concatenating all these binary codes in a clockwise direction starting from the top-left one,
and the derived binary numbers are referred to as LBP code.

(10011100)2 = 156
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Figure 1. The procedure of local binary patterns (LBP) operator on the PaviaU image.

According to the aforementioned analysis, spectral features and LBP features represent the
information in HSI from different perspectives. Spectral features provide continuous spectral
measurement across the entire electromagnetic spectrum, while LBP features present a better expression
of detailed local spatial features, such as edges, corners, and knots. Thus, it is promising to apply
LBP features as a supplement to spectral features that lack the consideration of spatial relations
between pixels in HSI. However, both spectral features and LBP features are characterized by high
dimensionality. A common approach to address the problem is to explore DR methods which will
reduce the dimension of high-dimensional features largely without loss of information.

2.2. Graph Embedding

The GE framework is explored to unify many classical DR algorithms such as PCA, LDA, ISOMAP,
LLE, LE, LPP and NPE. In GE, an intrinsic graph is constructed to characterize the statistical or
geometrical properties that need to be preserved, and a penalty graph is explored to describe some
properties which should be avoided. The intrinsic graph GI(X, Ww) and the penalty graph Gp(X, Wb)

are both undirected weighted graphs, where X is the vertex set of graph, Ww ∈ <n×n and Wb ∈ <n×n

are the weight matrices of GI and GP, respectively. ww
ij indicates the similarity between vertices xi and xj

in GI , while wb
ij measures the dissimilarity of vertices xi and xj in GP. Under this framework, MFA has

been proposed for dimensionality reduction of high-dimensioanl data. In MFA, GI connects each
point with its neighbors from the same class to represent intraclass compactness, and GP connects the
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neighbor points which from different classes to represent the interclass separability. In low-dimensional
embedding space, the intraclass compactness and interclass separability should be enhanced. Therefore,
the optimal projection matrix V can be obtained with the following optimization problem:

J(V) = arg min
∑i,j

∥∥VTxi −VTxj
∥∥2ww

ij

∑i,j
∥∥VTxi −VTxj

∥∥2wb
ij

= arg min
tr(VTXLXTV)

tr(VTXLPXTV)
(1)

where L = Dw −Ww is the Laplacian matrix of graph GI , Ww = [ww
ij ]

n
i,j=1, Dw is a diagonal matrix,

Dw = [Dw
ij ]

n
i,j=1, Dw

ii =
N
∑

j=1
ww

ij , and LP = Db −Wb is the Laplacian matrix of graph GP, Wb = [wb
ij]

n
i,j=1,

Db = [Db
ij]

n
i,j=1, Db

ii =
N
∑

j=1
wb

ij.

3. Proposed Approach

Let us suppose that a hyperspectral data set X= [x1,x2,x3, · · · , xN ] ∈ <D×N , where D is the
number of bands and N indicates the number of pixels in HSI data. XS= {xs

i }N
i=1 and XL= {xl

i}
N
i=1

denote the spectral features and LBP features of X, respectively. The class label of xi is indicated by
`(xi) = {1, 2, · · · , c}, where c is the number of classes. The purpose of DR is to find a low-dimensional
embedding space Y= [y1,y2,y3, · · · , yN ] ∈ <d×N , where d (d� D) is the embedding dimensionality
of extracted features.

3.1. Motivation

Since different types of features represent HSI data from different perspectives, multiple feature
fusion will bring benefits to enhance the discrimination capability for classification. The most common
way to combine these features is to simply concatenate different types of features together, and then
a classifier is employed to classify the stacked features. However, such stack-based methods have
witnessed limited performance due to the simple strategy, and they may even perform worse than
using a single feature in HSI data. The reasons for this phenomenon are summarized as follows:

• Simply stacking spatial and spectral features may yield redundant information, and it remains
difficult to achieve an optimal combination for different kinds of features;

• The spatial information and spectral information is not equally represented by simply stacking;
• The stacked features greatly increase the dimensionality of spatial-spectral combined features,

this will make HSI classification fairly challenging for the curse-of-dimensionality problem,
especially when only limited training samples are available.

Many DR methods have been explored to reduce the dimension of stacked features. However,
different types of features usually lie on different manifolds. Performing dimensionality reduction
directly on the simply stacked features cannot reveal the manifold structure of different features in HSI.
As a result, the discriminant information contained by different features is not effectively represented,
which will restrict their discriminant capability for classification.

To overcome the shortcomings as discussed above, a new DR method called MFMDA is introduced
in next section. By exploring the manifold structures of different features, it can effectively extract the
spatial-spectral combined features and subsequently improve the classification performance of HSI.

3.2. MFMDA

The goal of the proposed MFMDA method is to find an optimized projection matrix which can
couple dimensionality reduction and data fusion of original features (from HSI data) and spatial
features (LBP features generated from HSI) based on GE framework. MFMDA simultaneously learns
a low-dimensional embedding space from original spectral features as well as LBP features for



Remote Sens. 2019, 11, 651 5 of 24

compacting the intramanifold samples while separating intermanifold samples, which will increase the
margins between different manifolds. As a result, the obtained embedding features possess stronger
discriminating ability that helps to subsequent classification. The flowchart of MFMDA is shown in
Figure 2.
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Figure 2. The flowchart of multi-feature manifold discriminant analysis.

As illustrated in Figure 2, due to the fact that the similarity relationship between spectral features
and LBP features from the same pixel should be preserved in the low-dimensional embedding space.
Let us assume AS ∈ <D×d and AL ∈ <D×d are the corresponding projection matrices of spectral
features and LBP features, respectively. AS and AL should be explored to minimize the distance
between the two embedding features from the same pixel, and the objective function can be defined
as follows:

J1(AS, AL) = min
N

∑
i=1

∥∥∥AT
S xs

i − AT
L xl

i

∥∥∥2
(2)

With some mathematical operations, Equation (2) can be reduced as:

J1(AS, AL) = min
N
∑

i=1

∥∥∥AT
S xs

i − AT
L xl

i

∥∥∥2

= tr(
N
∑

i=1
(AT

S xs
i − AT

L xl
i)(AT

S xs
i − AT

L xl
i)

T
)

= tr(
N
∑

i=1
(AT

S xs
i (xs

i )
T AS − AT

L xl
i(xs

i )
T AS − AT

S xs
i (xl

i)
T

AL + AT
L xl

i(xl
i)

T
AL))

= tr(

[
B 0
0 C

]T [
(XS)

T 0

0 (XL)
T

] [
XS 0
0 XL

]
L1

[
(XS)

T 0

0 (XL)
T

] [
XS 0
0 XL

] [
B 0
0 C

]
)

= tr(AT EL1ET A)

(3)

where AS and AL are respectively parameterized as AS = XSB and AL = XLC, B and C are projection
matrices that map spectral information and texture information in high-dimensional features to the

low-dimensional embedded space, respectively. A =

[
B 0
0 C

]
, E =

[
(XS)

TXS 0
0 (XL)

TXL

]
,

L1 =

[
I −I
−I I

]
, I is the identity matrix in L.
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From the view point of classification, in the low-dimensional embedding space, we expect that
the samples are as close as possible if they belong to the same manifold, while samples are as far as
possible if they are from different manifolds. To achieve this goal, we define the objective function
as follows:

J2(AS, AL) = min(
N

∑
i=1

N

∑
j=1

∥∥∥AT
S xs

i − AT
S xs

j

∥∥∥2

wws
ij +

N

∑
i=1

N

∑
j=1

∥∥∥AT
L xl

i − AT
L xl

j

∥∥∥2

wwl
ij ) (4)

J3(AS, AL) = max(
N

∑
i=1

N

∑
j=1

∥∥∥AT
S xs

i − AT
S xs

j

∥∥∥2

wbs
ij +

N

∑
i=1

N

∑
j=1

∥∥∥AT
L xl

i − AT
L xl

j

∥∥∥2

wbl
ij ) (5)

where wws
ij and wbs

ij are the affinity weights to characterize the similarity between spectral features xs
i

and xs
j of intrinsic graph GS

I as well as the dissimilarity between xs
i and xs

j of the penalty graph GS
P,

wwl
ij and wbl

ij are the affinity weights to characterize the similarity between LBP features xl
i and xl

j of the

intrinsic graph GL
I and the dissimilarity between xl

i and xl
j of the penalty graph GL

P, respectively.

In the intrinsic graph GS
I of spectral features, the vertices xs

i and xs
j are connected by an edge if

l(xi) = l(xj) and they are close to each other in terms of some distance. When it comes to the penalty
graph GS

P, the vertices xs
i and xs

j are connected by an edge if l(xi) 6= l(xj) and xs
j belongs the kb nearest

neighbors of xs
i . The weights wws

ij and wbs
ij in two spectral-based graphs are defined as:

wws
ij =

 exp(−
∥∥∥xs

i−xs
j

∥∥∥2

2(ts
i )

2 ), xs
i ∈ Ns,w(xs

j ) or xs
j ∈ Ns,w(xs

i )

0, otherwise
(6)

wbs
ij =

 exp(−
∥∥∥xs

i−xs
j

∥∥∥2

2(ts
i )

2 ), xs
i ∈ Ns,b(xs

j ) or xs
j ∈ Ns,b(xs

i )

0, otherwise
(7)

where Ns,w(xs
i ) is the nw-intramanifold neighbors of spectral feature xs

i , Ns,b(xs
i ) indicates the

nb-intermanifold neighbors of xs
i , and ts

i =
1
n

n
∑

j=1

∥∥∥xs
i − xs

j

∥∥∥.

In the intrinsic graph GL
I of LBP features, an edge is added between the vertices xl

i and xl
j if

l(xi) = l(xj) and xl
j belongs the kw nearest neighbors of xl

i ; in the penalty graph GL
P, an edge is

connected by xl
i and xl

j if l(xi) 6= l(xj) and xl
j belongs the kb nearest neighbors of xl

i . The weights wwl
ij

and wbl
ij in two LBP-based graphs can be set as:

wwl
ij =

 exp(−
∥∥∥xl

i−xl
j

∥∥∥2

2(tl
i)

2 ), xl
i ∈ Nl,w(xl

j) or xl
j ∈ Nl,w(xl

i)

0, otherwise
(8)

wbl
ij =

 exp(−
∥∥∥xl

i−xl
j

∥∥∥2

2(tl
i)

2 ), xl
i ∈ Nl,b(xl

j) or xl
j ∈ Nl,b(xl

i)

0, otherwise
(9)

where Nl,w(xl
i) is the nw-intramanifold neighbors of spectral feature xl

i , Nl,b(xl
i) indicates the

nb-intermanifold neighbors of xl
i , and tl

i =
1
n

n
∑

j=1

∥∥∥xl
i − xl

j

∥∥∥.

The objective function of J2(AS, AL) in Equation (4) is to minimize the intramanifold distance to
ensuring the samples from the same manifold should be as close as possible, and the objective function
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of J3(AS, AL) in Equation (5) is to maximize the intermanifold distance for enlarging the manifold
margins in the low-dimensional embedding space.

With some mathematical operations, Equations (4) and (5) can be reduced as:

N
∑

i=1

N
∑

j=1

∥∥∥AT
S xs

i − AT
S xs

j

∥∥∥2

wws
ij +

N
∑

i=1

N
∑

j=1

∥∥∥AT
L xl

i − AT
L xl

j

∥∥∥2

wwl
ij

= tr(
N
∑

i=1

N
∑

j=1
(AT

S xs
i wws

ij (xs
i )

T AS − 2AT
S xs

i wws
ij (xs

j )
T AS + AT

S xs
j w

ws
ij (xs

j )
T AS)

+
N
∑

i=1

N
∑

j=1
(AT

L xl
i w

wl
ij (xl

i)
T AL − 2AT

L xl
i w

wl
ij (xl

j)
T AL + AT

L xl
i w

wl
ij (xl

i)
T AL))

= tr(

[
B 0

0 C

]T [
(XS)

T 0

0 (XL)
T

] [
XS 0

0 XL

]
L2

[
(XS)

T 0

0 (XL)
T

] [
XS 0

0 XL

] [
B 0

0 C

]
)

= tr(AT EL2ET A)

(10)

N
∑

i=1

N
∑

j=1

∥∥∥AT
S xs

i − AT
S xs

j

∥∥∥2

wbs
ij +

N
∑

i=1

N
∑

j=1

∥∥∥AT
L xl

i − AT
L xl

j

∥∥∥2

wbl
ij

= tr(
N
∑

i=1

N
∑

j=1
(AT

S xs
i wbs

ij (xs
i )

T AS − 2AT
S xs

i wbs
ij (xs

j )
T AS + AT

S xs
j w

bs
ij (xs

j )
T AS)

+
N
∑

i=1

N
∑

j=1
(AT

L xl
i w

bl
ij (xl

i)
T AL − 2AT

L xl
i w

bl
ij (xl

j)
T AL + AT

L xl
i w

bl
ij (xl

i)
T AL))

= tr(

[
B 0

0 C

]T [
(XS)

T 0

0 (XL)
T

] [
XS 0

0 XL

]
L3

[
(XS)

T 0

0 (XL)
T

] [
XS 0

0 XL

] [
B 0

0 C

]
)

= tr(AT EL3ET A)

(11)

where L2 =

[
2(Dws −Wws) 0

0 2(Dwl −Wwl )

]
, Wws = [wws

ij ]
N
i,j=1, Wwl = [wwl

ij ]
N
i,j=1,

Dws = diag([
N
∑

j=1
wws

ij ]
N
i=1), Dwl = diag([

N
∑

j=1
wwl

ij ]
N
i=1); L3 =

[
2(Dbs −Wbs) 0

0 2(Dbl −Wbl )

]
,

Wbs = [wbs
ij ]

N
i,j=1, Wbl = [wbl

ij ]
N
i,j=1, Dbs = diag([

N
∑

j=1
wbs

ij ]
N
i=1), Dbl = diag([

N
∑

j=1
wbl

ij ]
N
i=1).

As discussed, the MFMDA method not only preserves the similarity relationship between spectral
features and LBP features but also possesses strong discriminating ability in the low-dimensional
embedding space. Therefore, a reasonable criterion for choosing a good projection matrix is to optimize
the following objective functions: 

min tr(ATEL1ET A)

min tr(ATEL2ET A)

max tr(ATEL3ET A)

(12)

The multi-objective function optimization problem in Equation (12) can be equivalent to:

J(AS, AL) = min{tr(ATEL1ET A) + α(tr(ATEL2ET A))− β(tr(ATEL3ET A)}
= min{tr(ATELET A)} (13)

where α, β > 0 are two tradeoff parameters which can adjust intramanifold compactness and
intermanifold separability, L = L1 + αL2 − βL3.

A constraint ATEET A = I is imposed to remove an arbitrary scaling factor in the projection, and
the objective function can be recast as follows:{

min(tr(ATELET A))

s.t. ATEET A = I
(14)

With the method of Lagrangian multiplier, the optimization solution is formulated as
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∂

∂A
tr(ATELET A− λ(ATEET A− I)) = 0 (15)

where λ is the Lagrangian multiplier. Then the optimization problem is transformed to solve
a generalized eigenvalue problem, i.e.,

ELET A = λEET A (16)

where the optimal projection matrix A = [a1, a2, · · · , ad] is composed of d minimum eigenvalues of
Equation (16) corresponding eigenvectors. Then the low-dimensional feature is given by:

yi =

[
ys

i
yl

i

]
=

[
AT

S xs
i

AT
L xl

i

]
=

[
(XSB)Txs

i
(XLC)Txl

i

]
=

[
(XSB)T 0

0 (XLC)T

] [
xs

i
xl

i

]

=

[
B 0
0 C

]T [
(XS)

T 0
0 (XL)

T

] [
xs

i
xl

i

] (17)

The proposed MFMDA algorithm is summarized in Algorithm 1.

Algorithm 1 MFMDA.

Input: data set X= [x1,x2,x3, · · · , xN ] ∈ <D×N , corresponding class labels `(xi) = {1, 2, · · · , c},

the number of intraclass neighbor points nw and the number of interclass neighbor points nb,

balance parameter α and β.

1: Get LBP features generated from the data set, XS= {xs
i }N

i=1 ∈ <D×N and XL= {xl
i}

N
i=1 ∈ <D×N

denote the spectral and LBP features.

2: Find the nw intraclass neighbor points and nb interclass neighbor points of spectral features and

LBP features, respectively.

3: Calculate the edge weights of the intrinsic and penalty graphs by Equations (6)–(9).

4: Compute the Dws , Dwl , Dbs and Dbl by Dws = diag([
N
∑

j=1
wws

ij ]
N
i=1), Dwl = diag([

N
∑

j=1
wwl

ij ]
N
i=1),

Dbs = diag([
N
∑

j=1
wbs

ij ]
N
i=1) and Dbl = diag([

N
∑

j=1
wbl

ij ]
N
i=1), respectively.

5: Obtain the Lagrangian matrix which contain manifold structure through L = L1 + αL2 − βL3.

6: Calculate matrix E by E =

[
(XS)

TXS 0
0 (XL)

TXL

]
.

7: Construct the matrix A = [a1, a2, · · · , ad] according to Equation (16).

8: Obtain the projection matrix of spectral and LBP features by A =

[
B 0
0 C

]
, AS = XSB and

AL = XLC.

9: Achieve the low-dimensional features Y through Equation (17).

Output: Y = [y1,y2,y3, · · · , yN ] ∈ <d×N , d � D; Projection matrix of spectral and LBP features:

AS = XSB and AL = XLC.
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4. Experimental Results and Discussion

In this section, experiments are conducted on three real HSI data sets to evaluate the effectiveness
of the proposed MFMDA method.

4.1. Experiment Data Set

Indian Pines data set: This HSI data set was collected by NASA using the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) sensor in Northwest Indiana. After removing water
absorption bands, the remaining 200 bands were used in the experiments. The size of this image is
145 × 145 pixels with a spatial resolution of 20 m, and it contains sixteen land cover types such as
Wheat, Woods and Oats. This scene in false color and its corresponding ground truth are shown
in Figure 3, and the values in brackets indicate the sample size of each class.

Figure 3. Indian Pines hyperspectral image. (a) HSI in false-color (bands 50, 27 and 17 for RGB);
(b) Ground-truth map (please note that the number of samples is given in parentheses).

Heihe data set [55,56]: This data set is provided by Heihe Plan Science Data Center which
is sponsored by the integrated research on the eco-hydrological process of the Heihe River Basin
of the National Natural Science Foundation of China, and it was captured by Compact Airborne
Spectrographic Imager (CASI)/Shortwave Infrared Airborne Spectrogrpahic Imager (SASI) in Zhangye
basin which is located in the middle reaches of Heihe watershed, Gansu Province, China. The data
possesses a spatial size of 684× 453 pixels, and it has a geometric resolution of 2.4 m. Exactly 135 bands
remained after removal of 14 bands which have noise and atmospheric effects. The data contains
9 different kinds of land covers. The scene in false color and its ground-truth map are shown in Figure 4.

PaviaU data set: This data set is a scene of the PaviaU collected by the reflective optics system
imaging spectrometer (ROSIS) sensor. It consists of 610 × 340 pixels and the spatial resolution is 1.3 m.
103 spectral bands remained after the removal of some channels as a result of dense water vapor and
atmospheric effects. There are nine classes of ground objects are considered in the data set such as trees,
soil and meadows. This HSI in false color and its corresponding ground truth are shown in Figure 5.
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Figure 4. Heihe hyperspectral image. (a) HSI in false-color (bands 57, 19 and 80 for RGB);
(b) Ground-truth map (please note that the number of samples is given in parentheses).

Figure 5. PaviaU hyperspectral image. (a) HSI in false-color (bands 60, 100 and 20 for RGB);
(b) Ground-truth map (please note that the number of samples is given in parentheses).

4.2. Experimental Setup

In each experiment, the HSI data set was randomly divided into training and test sets. For the
classes that are very small, i.e., Alfalfa, Grass/pasture-mowed, and Oats in Indian Pines data set,
the number of training samples was set to 10 per class. The training samples are used to learn
a low-dimensional embedding space, then all test samples are mapped into the embedding space for
extracting low-dimensional features. After that, support vector machine (SVM) with the radial basis
function (RBF) kernel were used to classify test samples, and the library for SVM (LibSVM) Toolbox
was employed to implement SVM [57]. The parameters for SVM were optimized by a grid search.
The classification accuracy for each class, overall classification accuracies (OAs), average classification
accuracies (AAs), and kappa coefficient (k) are used to evaluate the classification performance of
different DR methods. To robustly evaluate the performance of different methods under different
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conditions, we repeated the experiments 10 times in each condition, and presented the results in the
form of mean with standard deviation (STD).

The proposed MFMDA algorithm was compared with some state-of-art DR algorithms including
Baseline, PCA [39], LDA [40], NPE [46], LPP [44], MFA [48] and LGSFA [51], where Baseline represents
that test samples are classified directly by a classifier without dimensionality reduction. To verify the
effectiveness of MFMDA, the above DR algorithms were applied to spectral features, LBP features
and stacked features, respectively. Notice that LBP features are obtained by the “uniform LBP”
pattern, and the ratio of neighborhood radius and the number of sampling points are set to 1 and 8,
respectively [58]. The stacked features refer to stack original spectral features and LBP features after
applying normalization.

For all methods, the parameters are optimized by using cross validation to achieve good results.
The numbers of neighbors for NPE and LPP is set to 9. For MFA and LGSFA, the numbers of intraclass
and interclass neighbors are chosen as 9 and 180, respectively. All experiments were performed on
a personal computer with i7-7800X central processing unit, 32-G memory, and 64-bit Windows 10
using MATLAB 2014b.

4.3. Dimension Selection

To analyze the influence of different embedding dimensions on each DR algorithm, 40 samples
were randomly selected from the stacked features of each class in three HSI data sets for training,
and the remaining samples were tested. Figure 6 shows the overall classification accuracy under
different embedding sizes.

Figure 6. Classification results with different dimensions on the Indian Pines, Heihe and PaviaU data
sets. (a) Indian Pines; (b) Heihe; (c) PaviaU.

As shown in Figure 6, with the increase of embedding dimension, the OAs of all methods are
gradually improved. The reason for this is that the more discriminant information can be contained
with the increase of embedding features, which is helpful for classification. However, when the
dimension has been increased to a certain extent, the low-dimensional embedding space contains
enough information for classification, and then the increase of embedding dimension has little effect
on the improvement of classification performance. Meanwhile, MFMDA achieves better classification
results than other methods, because the MFMDA can better characterize the intrinsic manifold structure
of HSI and obtain more effective low-dimensional discriminant features. To achieve better classification
performance for each algorithm, the embedding dimensions of all methods are set to 40. When it
comes to LDA, the embedding dimension is set to c− 1, and c is the class number of the data set.

4.4. Experiments on the Indian Pines Data Set

In this section, the experiments were conducted on the Indian Pines data set to evaluate the
effectiveness of the proposed algorithm. The proposed MFMDA method has different parameters,
and we conducted experiments to analysis the sensitivity of parameters. In the experiments, 40 samples
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per class were randomly selected for training, and the remaining ones for testing. The SVM classifier is
used for classification. To investigate the classification influence on intraclass and interclass neighbors,
parameters nw and nb are tuned with a set of {1,2,3,· · · ,9} and a set of {2,4,6,· · · ,20}, respectively.
Figure 7a shows the OAs with different values of nw and nb. When it comes to tradeoff parameters,
parameters α and β are all tuned with the set of {0,0.1,0.2,· · · ,1}. The OAs with different values of α

and β are displayed in Figure 7b.

Figure 7. The experiments for parameter analysis of MFMDA on Indian Pines data set. (a) Classification
results of MFMDA with different values of nw and nb; (b) Classification results of MFMDA with
different parameters α and β.

As can be seen in Figure 7a, with the increase of nw, the classification accuracy improves and then
tends to be stable, for the reason is that a large number of intraclass neighbors are conducive to reveal
the intrinsic structure of HSI data. When the value of nw is lower than 7, the OAs maintain a stable
value with an increase of nb, but the OAs significantly decline when the value of nb exceeded 10.
The reason is that too large values of nb will cause the phenomenon of over-learning in the margins
between interclass samples. In Figure 7b, the classification performance improves with the increase
of parameter α and then slightly fluctuates. While the proposed method can achieve good results at
a wide range. However, when β has a very large value, the effect of the intraclass separability will be
limited. Thus, parameters α and β can balance the contribution between intraclass compactness and
interclass separability. According to this figure, we set the parameters nw and nb to 6 and 4, α and β to
0.8 and 0.5 for achieving a satisfactory performance.

To analyze the classification performance of each algorithm under different numbers of training
samples, ni (ni = 5, 10, 20, 30, 40) samples were randomly selected from each class for training, and the
remaining data were used as test samples. Table 1 shows the average OAs with STD for different DR
methods with different numbers of training samples.

According to Table 1, with the increase in the sample size of training set, the OAs of all methods
continuously raise, for the reason is that a large training set contains more available information to learn
discriminant features for classification. Furthermore, the classification results of each algorithm on LBP
features are superior to that of spectral features, this is because LBP features are spatial-based features
which bring benefits to classification. However, the classification performance of simply stacked
features is even worse than LBP features, this may be due to the fact that spatial features and spectral
features are not equally represented by simply stacking. While the proposed MFMDA algorithm
produces a better classification effect than other methods in all conditions, especially when there are
only a small number of labeled samples. The reason for this is that the proposed algorithm not only
guarantees the similarity for spectral features and LBP features of the same pixel in the low-dimensional
embedding space, but also discovers the manifold structure in the hyperspectral data by constructing
intrinsic graphs and penalty graphs, and then extracts the spatial-spectral combined discriminant
features to achieve the compactness for intraclass data and the separability for interclass data.
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Table 1. Classification results using different methods with different classifiers for the Indian Pines
data set. [Overall Accuracy ± Std (%)].

Algorithm ni = 5 ni = 10 ni = 20 ni = 30 ni = 40

Baseline 42.21 ± 4.63 53.72 ± 3.97 64.05 ± 2.03 69.72 ± 1.25 69.78 ± 1.58
PCA 42.00 ± 5.56 53.35 ± 4.70 64.04 ± 1.73 68.07 ± 1.05 68.72 ± 1.59

Spectral LDA 40.27 ± 4.46 40.29 ± 1.76 52.93 ± 1.44 61.00 ± 0.84 63.51 ± 1.23
Features NPE 34.25 ± 6.33 48.49 ± 3.36 60.61 ± 1.45 65.82 ± 1.76 67.22 ± 1.63

LPP 35.40 ± 5.40 47.41 ± 2.77 60.14 ± 2.37 66.64 ± 1.82 69.10 ± 1.51
MFA 42.98 ± 4.78 49.66 ± 1.71 60.38 ± 2.59 64.09 ± 1.87 66.16 ± 0.89

LGSFA 41.26 ± 5.35 49.57 ± 3.00 60.95 ± 1.91 66.40 ± 0.65 68.81 ± 1.36

Baseline 68.12 ± 5.00 79.07 ± 2.97 87.58 ± 1.66 90.36 ± 2.82 93.54 ± 1.53
PCA 65.72 ± 6.98 75.50 ± 4.09 83.89 ± 2.15 86.37 ± 3.40 89.80 ± 1.35

LBP LDA 71.30 ± 3.75 79.69 ± 3.24 87.62 ± 1.78 91.02 ± 2.04 93.63 ± 1.25
Features NPE 66.71 ± 4.61 75.06 ± 4.32 84.60 ± 1.95 86.55 ± 1.89 89.87 ± 1.24

LPP 65.88 ± 2.80 75.73 ± 4.51 85.17 ± 1.97 87.71 ± 1.55 89.77 ± 0.85
MFA 65.60 ± 7.20 75.69 ± 4.70 84.68 ± 1.63 85.73 ± 2.55 90.34 ± 1.24

LGSFA 65.59 ± 2.11 74.90 ± 5.18 84.92 ± 1.70 87.86 ± 1.67 91.34 ± 1.34

Baseline 56.36 ± 5.70 73.25 ± 2.15 82.74 ± 2.33 89.46 ± 1.49 90.83 ± 1.62
PCA 54.22 ± 5.04 68.83 ± 2.83 76.39 ± 1.66 81.34 ± 1.30 83.71 ± 1.25

Stacked LDA 70.06 ± 4.65 84.37 ± 2.34 89.58 ± 2.52 92.93 ± 0.59 94.24 ± 1.26
Features NPE 56.02 ± 6.91 66.73 ± 3.68 74.37 ± 2.51 76.28 ± 1.71 78.62 ± 0.91

LPP 58.08 ± 4.73 70.81 ± 2.49 74.43 ± 2.54 78.59 ± 1.36 79.30 ± 0.73
MFA 53.94 ± 2.49 69.44 ± 2.47 77.15 ± 2.12 80.57 ± 2.70 82.94 ± 1.83

LGSFA 63.83 ± 5.17 73.35 ± 1.03 79.10 ± 0.37 83.15 ± 1.77 84.57 ± 0.57

MFMDA 74.01 ± 5.72 85.74 ± 2.42 91.79 ± 2.39 94.61 ± 1.15 96.19 ± 0.89

Notes: The bold numbers represent the maximum OA of the column.

To explore the classification performance of MFMDA on each class, 3% samples per class were
randomly selected for training, and remaining samples were used for testing. We can see from Table 1,
the experimental results of DR methods on LBP features are better than spectral features and stacked
features, and thus LBP features were chosen for comparison in the following experiments. Table 2
lists the classification accuracy of each class, OAs, AAs, and Kappa coefficients of different methods,
and Figure 8 shows the corresponding classification maps.

Table 2. Classification results of each class samples via different DR methods in Indian Pines data set (%).

Class
Samples DR with SVM Classifier

Train Test Baseline PCA LDA NPE LPP MFA LGSFA MFMDA

1 10 36 99.72 99.17 98.89 99.44 99.72 99.44 99.44 96.67
2 43 1385 93.91 92.94 93.86 92.25 93.23 94.09 93.10 93.33
3 25 805 94.31 92.42 93.74 92.01 91.69 91.66 92.46 92.57
4 10 227 95.37 94.85 94.98 92.73 93.66 94.98 94.23 93.17
5 14 469 84.54 82.41 83.22 83.71 84.86 82.90 84.61 90.00
6 22 708 93.29 92.97 92.19 92.13 91.44 92.20 91.91 98.18
7 10 18 100 100 100 100 100 100 100 98.89
8 14 464 98.53 98.38 98.41 97.91 98.38 97.80 97.95 99.74
9 10 10 100 100 100 100 100 100 99.00 100

10 29 943 89.72 88.23 90.38 88.29 87.41 89.00 88.09 91.56
11 74 2381 95.46 94.93 95.72 94.51 94.49 95.08 95.09 97.96
12 18 575 87.84 83.34 88.52 85.63 85.76 86.73 87.06 92.28
13 10 195 96.36 95.74 95.85 94.67 95.49 94.72 95.85 98.15
14 38 1227 96.85 96.27 97.42 95.98 96.09 96.10 95.75 99.62
15 12 374 87.86 89.12 84.47 87.54 88.34 86.47 87.99 96.52
16 10 83 95.78 96.27 92.89 96.39 96.39 96.27 95.42 99.52

OA 93.57 92.57 93.43 92.29 92.43 92.78 92.72 95.71
AA 94.35 93.56 93.78 93.33 93.56 93.59 93.62 96.14

Kappa 0.93 0.92 0.92 0.91 0.91 0.92 0.92 0.95

Notes: The bold numbers represent the maximum OA of the row.
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As illustrated in Table 2, the MFMDA algorithm achieved good classification results in most classes,
especially for the areas labeled as Wheat, Grass/Trees, Soybeans-min and Woods. By observing Figure 8,
the classification map of MFMDA algorithm produced more homogenous regions than other methods.

The above results show that the proposed method compacts spectral features and LBP features
from the same class and separates the features belong to different classes in low-dimensional
embedding space, it can make better use of the manifold structure hidden in hyperspectral data.

Figure 8. Classification results of different algorithms on Indian pines data set. (a) Ground truth;
(b) Baseline(93.57%, 0.93); (c) PCA(92.57%, 0.92); (d) LDA(93.43%, 0.92); (e) NPE(92.29%, 0.91);
(f) LPP(92.43%, 0.91); (g) MFA(92.78%, 0.92); (h) LGSFA(92.72%, 0.92); (i) MFMDA(95.71%, 0.95).
Please note that OA and k coefficients are given in parentheses.

4.5. Experiments on the Heihe Data Set

In this section, the Heihe hyperspectral image was used to further evaluate the classification
performance of the proposed algorithm. In the parameter sensitivity experiments, we randomly
selected 40 samples from each class for training and the rest for testing. At first, we analyze the influence
of different parameters on MFMDA algorithm, and the OAs with different values of parameters are
displayed in Figure 9.
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Figure 9. The experiments for parameter analysis of MFMDA on Heihe data set. (a) OAs of MFMDA
with different values of nw and nb; (b) OAs of MFMDA with different values of α and β.

As in Figure 9a, the OA increases and then declines with the increase of nw, it is because a small
value of nw cannot get enough information to represent the intraclass structure, and a large value of nw

will lead to overfitting. At the same time, an appropriate size of interclass neighbor points can prevent
overfitting and effectively obtain discriminant information of HSI data. In Figure 9b, it can be observed
that the OAs increase and then maintain slight fluctuation with the increase of α, and a too small value
of β will lead to unsatisfactory classification performance. This indicates that the suitable α and β can
balance the intramanifold and intermanifold relations of spectral features and textual features. Based
on the above analysis, we set the parameters nw and nb to 24 and 6, α and β to 0.8 and 0.4.

To compare the MFMDA algorithm with other DR methods under different numbers of training
samples, we randomly selected ni samples from each class for training, and the remaining samples
were used for testing. Table 3 is the classification results of various algorithms.

Table 3. Classification results using different methods with different classifiers for the Heihe data set.
[Overall Accuracy ± Std (%)].

Algorithm ni = 5 ni = 10 ni = 20 ni = 30 ni = 40

Baseline 80.88 ± 3.47 85.48 ± 2.93 90.17 ± 0.96 91.04 ± 1.00 91.95 ± 1.15
PCA 80.88 ± 3.46 85.47 ± 2.93 90.17 ± 0.96 91.03 ± 1.00 91.95 ± 1.15

Spectral LDA 74.72 ± 5.42 80.12 ± 3.43 89.85 ± 1.94 92.07 ± 0.77 92.99 ± 0.96
Features NPE 78.33 ± 4.65 83.39 ± 3.29 88.70 ± 1.50 90.16 ± 1.36 91.36 ± 1.21

LPP 69.60 ± 5.10 72.35 ± 11.48 91.62 ± 1.44 93.02 ± 0.84 93.34 ± 0.88
MFA 83.27 ± 3.48 88.49 ± 3.93 92.26 ± 1.34 92.77 ± 1.01 93.14 ± 0.67

LGSFA 80.00 ± 4.15 87.93 ± 1.87 90.47 ± 1.65 91.86 ± 0.77 93.42 ± 0.80

Baseline 75.82 ± 6.15 84.21 ± 2.59 89.95 ± 1.75 92.52 ± 1.08 93.58 ± 0.69
PCA 75.79 ± 6.17 83.19 ± 3.16 89.02 ± 2.20 92.50 ± 1.05 93.74 ± 1.27

LBP LDA 77.91 ± 5.19 83.35 ± 4.33 89.95 ± 2.16 92.86 ± 0.91 93.86 ± 0.74
Features NPE 75.18 ± 6.35 84.65 ± 3.17 91.38 ± 1.35 93.22 ± 0.89 94.62 ± 0.78

LPP 55.31 ± 23.12 68.39 ± 12.66 87.84 ± 4.25 93.94 ± 1.00 94.57 ± 0.87
MFA 73.51 ± 6.93 83.35 ± 3.93 91.18 ± 1.52 94.62 ± 0.65 95.11 ± 0.74

LGSFA 76.39 ± 6.42 82.99 ± 4.48 90.04 ± 1.96 93.05 ± 0.65 94.32 ± 0.61

Baseline 80.91 ± 3.44 85.68 ± 2.99 90.21 ± 0.97 91.35 ± 1.15 91.87 ± 1.17
PCA 80.90 ± 3.44 85.67 ± 2.99 90.20 ± 0.97 91.38 ± 1.10 92.04 ± 1.15

Stacked LDA 79.30 ± 3.29 90.75 ± 2.13 94.25 ± 0.80 94.93 ± 1.01 95.62 ± 0.54
Features NPE 80.22 ± 3.87 88.19 ± 1.46 89.44 ± 1.45 90.78 ± 1.22 91.90 ± 1.02

LPP 80.30 ± 2.64 87.52 ± 3.18 93.32 ± 1.53 94.16 ± 0.99 94.44 ± 0.65
MFA 84.04 ± 3.22 90.05 ± 3.00 92.78 ± 1.47 93.96 ± 1.05 94.58 ± 0.57

LGSFA 82.72 ± 3.36 91.30 ± 1.84 94.46 ± 1.43 95.68 ± 1.20 96.34 ± 0.80

MFMDA 89.32 ± 3.52 91.87 ± 2.53 95.92 ± 0.82 96.82 ± 0.54 97.41 ± 0.48

Notes: The bold numbers represent the maximum OA of the column.
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According to Table 3, the classification accuracy increases as the number of training samples
increases. Meanwhile, the experimental results of supervised learning methods, LDA, MFA and
LGSFA, are superior to the unsupervised ones in most conditions, because the class information of data
are used to enhance the discriminating capability of embedded features. The proposed method is more
effective than other methods under various conditions, especially when a training set contains few
samples. This shows that MFMDA can extract effective spatial-spectral joint features by exploring the
inherent manifold structure of HSI data on the basis of GE, and then improve the classification accuracy.

To further show the classification results of each class, 0.1% samples were randomly selected for
training, and the rest were used as test samples. The classification results of different methods on the
Heihe data set is shown in Table 4, and Figure 10 shows the corresponding classification maps.

As illustrated in Table 4, it can be concluded that the proposed method achieves good classification
performance on many classes, such as Endive Sprout and Artificial Surfaces. In addition, it possesses
a smoother classification map, which is more conductive to practical application scenarios.

Table 4. Classification results of each class samples via different DR methods in Heihe data set (%).

Class
Samples DR with SVM Classifier

Train Test Baseline PCA LDA NPE LPP MFA LGSFA MFMDA

1 42 41029 96.23 95.87 98.49 97.33 98.07 97.64 98.56 97.86
2 29 28557 97.86 97.53 98.74 96.77 96.89 98.06 97.93 81.23
3 21 20334 95.46 95.26 97.24 95.27 95.77 96.54 95.45 95.66
4 10 7598 81.20 80.72 59.71 63.93 67.57 71.42 59.28 81.00
5 10 3752 84.81 84.21 72.62 84.03 73.25 78.11 72.79 83.31
6 10 1665 84.25 87.98 61.65 61.77 68.06 74.43 61.37 99.53
7 10 975 88.76 88.18 73.56 81.12 69.66 76.39 72.91 79.27
8 10 865 90.97 90.98 92.91 88.31 89.99 89.49 93.57 94.45

OA 94.72 94.45 93.71 93.09 93.40 94.31 93.14 95.64
AA 89.94 90.09 81.87 83.57 82.41 85.26 81.48 89.04

Kappa 0.93 0.92 0.92 0.91 0.90 0.91 0.92 0.94

Notes: The bold numbers represent the maximum OA of the row.
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Figure 10. Classification results of different algorithms on Heihe data set. (a) Ground truth;
(b) Baseline (94.72%, 0.93); (c) PCA (94.45%, 0.92); (d) LDA (93.71%, 0.92); (e) NPE (93.09%, 0.91);
(f) LPP (93.40%, 0.90); (g) MFA (94.31%, 0.91); (h) LGSFA (93.14%, 0.92); (i) MFMDA (95.64%, 0.94).
Please note that OA and k coefficients are given in parentheses.

4.6. Experiments on the PaviaU Data Set

In this section, we used PaviaU data set to analyze the classification performance of the proposed
algorithm under different scenes. We randomly selected 40 samples per class as training set to explore
OAs with respect to different parameters. The results are displayed in Figure 11.

In Figure 11a, as the increase of nw, the OA rises first and then decreases slightly, the reason
for this is that a small number of intraclass neighbor points cannot effectively explore intramanifold
structure, while a large value of nw will include redundant information and lead to a decrease in
classification accuracy. At the same time, when nb is lower than 8, the OAs can maintain a stable
value. As shown in Figure 11b, the classification accuracy can fluctuate in a small range when the
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values of α and β continue to increase. It shows that α and β can balance the information between the
intramanifold and intermanifold structures in HSI data. To achieve good classification performance,
we selected nw, nb, α and β as 28, 4, 0.5, 0.3, respectively.

Figure 11. The experiments for parameter analysis of MFMDA on PaviaU data set. (a) Classification
results of MFMDA with different parameters of nw and nb; (b) Classification results of MFMDA with
different parameters α and β.

To verify the effectiveness of the proposed algorithm, we randomly selected ni (ni = 5, 10, 20, 30, 40)
samples from each class for training and remaining samples for testing. The average OAs with STD are
given in Table 5.

Table 5. Classification results using different methods with different classifiers for the PaviaU data set.
[Overall Accuracy ± Std (%)].

Algorithm ni = 5 ni = 10 ni = 20 ni = 30 ni = 40

Baseline 57.16 ± 9.94 69.72 ± 4.19 78.07 ± 2.88 81.11 ± 3.91 82.97 ± 2.33
PCA 57.16 ± 9.94 69.72 ± 4.19 78.01 ± 2.98 81.11 ± 3.91 83.13 ± 2.35

Spectral LDA 53.09 ± 5.85 57.87 ± 3.84 65.79 ± 3.21 70.08 ± 3.11 74.14 ± 2.15
Features NPE 57.64 ± 9.81 67.02 ± 4.68 73.50 ± 4.81 79.98 ± 3.71 81.54 ± 2.47

LPP 49.70 ± 5.35 50.66 ± 5.65 66.37 ± 2.23 73.57 ± 1.53 75.84 ± 2.25
MFA 62.24 ± 5.56 75.16 ± 3.27 77.51 ± 2.17 80.97 ± 2.70 82.26 ± 3.68

LGSFA 57.38 ± 4.50 62.91 ± 3.32 69.37 ± 3.36 71.11 ± 2.37 75.97 ± 1.76

Baseline 52.05 ± 8.27 72.01 ± 5.50 81.38 ± 2.22 86.32 ± 1.91 88.22 ± 1.21
PCA 50.44 ± 7.55 67.93 ± 6.81 78.23 ± 3.68 81.71 ± 7.89 85.68 ± 2.42

LBP LDA 60.31 ± 6.87 76.02 ± 2.59 82.54 ± 1.32 86.70 ± 1.27 88.88 ± 0.56
Features NPE 55.73 ± 6.77 73.68 ± 5.81 75.50 ± 3.50 85.69 ± 2.68 86.45 ± 1.41

LPP 43.22 ± 11.11 55.85 ± 13.49 76.32 ± 4.19 84.27 ± 3.10 85.03 ± 2.62
MFA 57.35 ± 7.51 71.79 ± 4.28 81.39 ± 1.93 85.63 ± 2.69 86.86 ± 1.43

LGSFA 63.02 ± 6.49 73.59 ± 3.66 81.54 ± 2.42 85.81 ± 2.66 86.75 ± 2.16

Baseline 59.40 ± 5.75 68.29 ± 5.54 80.06 ± 4.65 83.93 ± 2.53 85.73 ± 2.31
PCA 57.52 ± 10.11 70.67 ± 3.63 77.52 ± 6.12 82.69 ± 3.33 85.63 ± 1.87

Stacked LDA 59.89 ± 5.94 76.62 ± 2.74 81.85 ± 2.89 85.14 ± 3.80 87.28 ± 2.22
Features NPE 57.50 ± 10.99 75.35 ± 2.34 77.89 ± 3.47 84.53 ± 3.87 85.62 ± 2.73

LPP 64.96 ± 6.68 71.29 ± 3.56 78.12 ± 3.83 86.07 ± 1.68 87.86 ± 1.92
MFA 61.57 ± 8.86 74.61 ± 4.66 79.07 ± 2.08 81.58 ± 2.30 82.34 ± 2.66

LGSFA 64.45 ± 4.72 78.79 ± 2.68 88.03 ± 2.26 92.94 ± 2.02 94.15 ± 1.42

MFMDA 78.70 ± 2.70 84.60 ± 2.34 92.66 ± 2.32 95.10 ± 1.84 96.09 ± 0.97

Notes: The bold numbers represent the maximum OA of the column.
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It can be seen from Table 5, the OAs of each method are improved when more samples are used for
training. MFMDA achieves better results than other algorithms in most cases, the reason is that it can
increase the margins between different classes, so the discriminant features are obtained for classification.

To compare the classification performance of various DR methods, we randomly selected 1% data in
each class for training, and remaining data were used as test samples. As shown in Table 5, LBP features
and stacked features achieve better experiment results than spectral features, so we choose stacked
features compared with the MFMDA method. Table 6 gives the classification accuracies of different
methods and Figure 12 shows the corresponding classification maps.

Table 6. Classification results of each class samples via different DR methods in PaviaU data set (%).

Class
Samples DR with SVM Classifier

Train Test Baseline PCA LDA NPE LPP MFA LGSFA MFMDA

1 10 6565 89.98 89.77 92.95 89.24 93.72 90.37 92.43 97.90
2 186 18463 97.93 97.41 98.04 97.63 98.03 97.46 97.27 99.79
3 21 2078 72.28 69.59 75.81 68.50 73.39 69.82 77.02 94.02
4 31 3033 85.50 85.32 89.52 85.38 87.94 86.74 89.10 84.89
5 13 1332 98.97 98.84 99.65 98.74 99.29 99.41 99.64 99.99
6 50 4979 85.45 80.95 84.26 83.02 80.26 80.16 80.90 99.14
7 13 1317 81.97 76.74 67.06 78.02 67.56 74.68 69.35 96.10
8 37 3645 85.48 84.37 86.75 83.81 89.99 84.82 88.13 98.06
9 10 937 99.73 99.68 94.26 99.75 99.86 99.79 99.61 60.91

OA 91.59 90.39 91.96 90.59 91.78 90.52 91.49 96.95
AA 88.59 86.96 87.59 87.12 87.78 87.03 88.16 92.31

Kappa 0.89 0.87 0.89 0.87 0.89 0.87 0.89 0.96

Notes: The bold numbers represent the maximum OA of the row.

As shown in Table 6, the proposed method obtained the best classification results in most classes,
especially in Asphalt, Gravel, Bare Soil, Bitumen, Bricks. The reason is that the MFMDA algorithm
effectively fuses the multiple features by compacting spectral features and LBP features from the same
class in low-dimensional space. As displayed in Figure 12, MFMDA algorithm has fewer misclassified
points and the classification map is smoother than other methods.
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Figure 12. Classification results of different algorithms on PaviaU data set. (a) Ground truth;
(b) Baseline(91.59%, 0.89); (c) PCA(90.39%, 0.87); (d) LDA(91.96%, 0.89); (e) NPE(90.59%, 0.87);
(f) LPP(91.78%, 0.89); (g) MFA(90.52%, 0.87); (h) LGSFA(91.49%, 0.89); (i) MFMDA(96.95%, 0.96).
Please note that OA and k coefficients are given in parentheses.
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4.7. Discussion

The experiments on three HSI data sets reveal some interesting points.

• As shown in Tables 1, 3 and 5, the classification performance of simply stacked features is even
worse than LBP features in most cases, for the reason that simply stacked spatial and spectral
features may yield redundant information and even lead to the curse-of-dimensionality.

• From the experimental results, it is obviously that DR methods on LBP features or spectral features
usually perform better than DR methods on the simply stacked features. This may be due to
the fact that performing dimensionality reduction directly on the simply stacked features cannot
reveal the manifold structure of different features in HSI, which will restrict their discriminant
capability for classification.

• The proposed MFMDA algorithm is superior to other DR methods under different training
conditions. The reason is that MFMDA constructs the intrinsic graphs and penalty graphs of
spectral features and LBP features to discover the manifold structure of spatial features and
spectral features, then it learns low-dimensional embedding space from original spectral features
as well as LBP features for compacting the intramanifold samples while separating intermanifold
samples. As a result, the spatial-spectral embedding features possess stronger discriminating
ability for HSI classification.

5. Conclusions

Traditional methods explore only a single feature or simply stacked features in hyperspectral
image, which will restrict their discriminant capability for classification. In this paper, we proposed
a new dimensionality reduction method termed MFMDA to couple DR and fusion of spectral and
textual features of HSI data. MFMDA first explores LBP operator to extract textural features for
encoding the spatial information in HSI. Then, within GE framework, the intrinsic and penalty graphs
of LBP and spectral features are constructed to explore the discriminant manifold structure in both
spatial and spectral domains, respectively. After that, a new spatial-spectral DR model is built to extract
discriminant spatial-spectral combined features which not only preserve the similarity relationship
between spectral features and LBP features but also possess strong discriminating ability in the
low-dimensional embedding space. Experiments on Indian Pines, Heihe and PaviaU hyperspectral
data sets demonstrate that the proposed MFMDA method can significantly improve classification
performance and result in smoother classification maps than some state-of-the-art methods, and with
fewer training samples, the classification accuracy can reach 95.43%, 97.19% and 96.60%, respectively.
In the future, we will focus on conducting a more detailed investigation of other possible features to
further improve the performance of MFMDA.
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