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Abstract: Effective mapping and monitoring of soil moisture content (SMC) in space and time is
an expected application of remote sensing for agricultural development and drought mitigation,
particularly in the context of global climate change impact, given that agricultural drought is occurring
more frequently and severely worldwide. This study aims to develop a regional algorithm for
estimating SMC by using Landsat 8 (L8) imagery, based on analyses of the response of soil reflectance,
by corresponding L8 bands with the change of SMC from dry to saturated states, in all 103 soil
samples taken in the central region of Vietnam. The L8 spectral band ratio of the near-infrared band
(NIR: 850–880 nm, band 5) versus the short-wave infrared 2 band (SWIR2: 2110 to 2290 nm, band
7) shows the strongest correlation to SMC by a logarithm function (R2 = 0.73 and the root mean
square error, RMSE ~ 12%) demonstrating the high applicability of this band ratio for estimating
SMC. The resultant maps of SMC estimated from the L8 images were acquired over the northern
part of the Central Highlands of Vietnam in March 2015 and March 2016 showed an agreement with
the pattern of severe droughts that occurred in the region. Further discussions on the relationship
between the estimated SMC and the satellite-based retrieved drought index, the Normal Different
Drought Index, from the L8 image acquired in March 2016, showed a strong correlation between these
two variables within an area with less than 20% dense vegetation (R2 = 0.78 to 0.95), and co-confirms
the bad effect of drought on almost all areas of the northern part of the Central Highlands of Vietnam.
Directly estimating SMC from L8 imagery provides more information for irrigation management and
better drought mitigation than by using the remotely sensed drought index. Further investigations
on various soil types and optical sensors (i.e., Sentinel 2A, 2B) need to be carried out, to extend and
promote the applicability of the prosed algorithm, towards better serving agricultural management
and drought mitigation.

Keywords: landsat 8; soil moisture content; soil spectral feature; tropical region; agricultural drought

1. Introduction

Soil moisture content (SMC) is a key parameter that needs be monitored in order to provide
information for plant growth and crop management, as well as to understand water-associated hazards
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such as flood and drought [1,2]. Particularly, SMC in the top land layer is changed quickly, due to
the changes in climate conditions, such as the magnitude of the solar radiation, precipitation, and
evaporation; therefore, monitoring the change in the SMC of the top land layer helps us to better
understand the change process, and to accurately forecast climate extreme events [3].

Over recent decades, remote sensing has been used in many studies for rapidly measuring and
mapping the surface soil moisture at large spatial scales [4–7]. Although both optical and microwave
remote sensing have been used to estimate SMC, microwave remote sensing is favored, because of
its independence of solar illumination and cloud cover conditions [8]. Passive microwave data have
coarse spatial resolutions (The Advanced Microwave Scanning Radiometer for EOS, AMSR-E: 5 km;
The Soil Moisture and Ocean Salinity, SMOS: 50 km) and are inappropriate for monitoring SMC
variation on a local scale. Active microwave data, which provides even better spatial resolutions
(10–100 m), are still not suitable for monitoring the SMC during the short dry season in tropical regions,
due to its poor temporal resolution and high cost requirements [9,10]. Therefore, finding suitable
optical remote sensing data to couple with microwave remote sensing data for effective monitoring of
SMC has been encouraged and carried out.

The Landsat program has provided data for satellite-based observations over the last 40 years,
particularly changes in anthropogenic activities (e.g., land cover change, urbanization, deforestation,
etc.) and natural processes (e.g., changes in hydrological process, aquatic environment, vegetation,
coastline, etc.) [11]. Additionally, recent Landsat satellites (TM, ETM+, and OLI) provide adequate
spatial and temporal resolution data for the detection of the seasonal variation of objects on the
land surface at large scales, free of charge. For soil moisture monitoring purposes, Landsat 5 and 7
have been rarely used to estimate SMC directly from their spectral bands or band ratios [9,12–14],
but they are more widely estimated through the use of a combination of vegetation-based indices,
such as the Normalized Difference Vegetation Index (NDVI), the Temperature Vegetation Dryness
Index (TVDI), with the Land Surface Temperature (LST), retrieved from these sensors’ signals [15–18].
The newest Landsat, Landsat 8 (L8), which was launched recently in 2013, was also explored for
SMC estimation [19–21]. As with the use of previous Landsats for SMC measurement purposes, the
SMC estimation models using L8 were developed in these studies, mostly based on the empirical
linear relationship between in situ SMC with vegetation indices, such as the Normalized Difference
Tillage Index (NDTI) and TDVI [10], and/or the Normalized Difference Water Index (NDWI) [20]
and/or LST [19] and/or NDVI [22]. The spectral response of various SMCs has not been considered
and integrated in the model development process, making it difficult to interpret and evaluate
the performance of the proposed models. The lack of in situ spectral data of soils at various
SMCs presents a weak physical basis for the proposed models for appropriate SMC monitoring,
particularly when applying them in a region with different temperature conditions and vegetation
coverage characteristics.

The Central Region of Vietnam stretches over approximately 9 degrees of latitude, from 19◦N to
10◦N in the north–south direction, with a total land area of 150,379 km2 and 25,492,000 residents [23].
The region is highly vulnerable to drought disasters during the dry season, which have led to crop loss
and land degradation in recent years [24,25]. Using satellite data to monitor SMC in the region may
help local governors and communities to adjust their crop plans and to build solutions for proactive
responses to the impacts of drought disaster.

This study aims at investigating the response of soil surface reflectance corresponding to L8
band data to various SMC, using the in situ spectral data of soil samples belonging to six soil types
taken from the central region of Vietnam, and proposing a model for estimating the SMC using L8.
The model then is applied to estimate SMC in the central region of Vietnam in early April and May
2015, for further discussion on the compatibility of the estimated SMC for drought monitoring. In this
study, the superiority of the band ratio in reducing the atmosphere effect of the satellite data was also
evaluated through a comparison among the retrieved spectrals and ratios of L8 band 5 (B5), band 7 (B7),
and B5/B7 with concurrent in situ radiometric data. The results of this work are described in Section 3
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(Results and Discussion) and divided into three parts: (1) the response of soil reflectance to various
SMCs, based on the change in the spectral features of the soil samples at 10 various SMCs, from 0% to
the saturated state; (2) the regional L8 band-based SMC estimation model that was developed using
the curve-fit regression of SMC, and reflectance corresponding to the L8 spectral bands; (3) finally,
a discussion is made on the relationship of the estimated SMC and the Normal Difference Drought
Index (NDDI) [26] in drought assessment and mapping.

2. Materials and Methods

2.1. Soil Sampling and Processing

Top soil samples were taken from 21 points distributed over the Nam Can commune of Nghe
An Province in April 2018 (13 topsoil samples) and the northern part of the Central Highlands of
Vietnam (eight topsoil samples) in April 2017, as shown in Figure 1A,B, respectively. According to the
soil map of Vietnam [27], a total of 21 soil samples (Table 1) were taken from six soil types covering
both sampling areas, including: ferric acrisols (15 samples), orthic ferralsols (two samples), rhodic
ferralsols (one sample), acric ferralsols (one sample), eutric fluvisols (one sample), and dystric gleysols
(one sample).Remote Sens. 2019, 11, x FOR PEER REVIEW 4 of 18 
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Figure 1. Locations of the soil sampling sites in Vietnam: (A) Locations of the 13 sampling points in
Nam Can commune, Ky Son district, Nghe An Province; (B) locations of eight sampling points in the
Kon Tum and Gia Lai Provinces, the northern part of the Central Highlands of Vietnam.

At each sampling point, the soil sample taken at the land top layer was uncovered by vegetation
from 0 to 10 cm depth. Approximately 1 kg of topsoil was collected in a soil sample to ensure
the representation of the sample. The locations of soil samples were located by a GPS (the Global
Positioning System) receiver and added onto the soil map [27] to identify the soil types and the
corresponding characteristics of the soil samples.

Soil samples from the northern part of the Central Highlands of Vietnam were first processed
into a dry state at SMC = 0% by oven-drying until the weight remained constant, and then refined
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to a fine grain size (<0.01 mm), to subtract the effects of the grain size difference on soil reflectance.
Each soil sample was then sub-sampled into 10 lots of 20 g samples, to which 10 various amounts
of water were added, to create a series of soil samples with 10 various SMC levels. A total of 80 soil
samples were created from eight samples taken from the northern part of the Central Highlands of
Vietnam (Figure 1b).

Table 1. Features of soil samples and soil types in the study basing the description of FAO [28].

Kind of Soil No. of Sample
Collection

Representative
Color Indicator Features Soil Characteristics

Rhodic
ferralsols 1
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the soil map of Vietnam [27], a total of 21 soil samples (Table 1) were taken from six soil types covering 
both sampling areas, including: ferric acrisols (15 samples), orthic ferralsols (two samples), rhodic 
ferralsols (one sample), acric ferralsols (one sample), eutric fluvisols (one sample), and dystric 
gleysols (one sample). 

Table 1. Features of soil samples and soil types in the study basing the description of FAO [28]. 

Kind of 
Soil 

No. of 
Sample 

Collection 

Representative 
Color 

Indicator 
Features 

Soil Characteristics 

Rhodic 
ferralsols 

1 
 

 

Highest iron, strong acidity and low 
phosphorus, rarely affected by erosion, 
very few reserves of available minerals, 
easily lost topsoil organic matter, low 
resilience and moderate sensitivity 

Orthic 
ferralsols 

2 
 

High iron, strong acidity and low 
phosphorus, rarely affected by erosion, 
very few reserves of available minerals, 
easily lost topsoil organic matter, low 
resilience and moderate sensitivity 

Acric 
ferralsols 

1 
 

Moderate iron, strong acidity and low 
phosphorus, rarely affected by erosion, 
very few reserves of available minerals, 
easily lost topsoil organic matter, low 
resilience and moderate sensitivity 

Ferric 
acrisols 

15 
 

 
Acid, low base status (< 50% base 
saturation) and strongly leached, poor in 
nutrient, easily soil degradation with 
agricultural practices  

Eutric 
fluvisols 1 

 

 
Suitable for intensive agriculture, high 
resilience and low sensitivity 

Dystric 
gleysols 

1 
 

Most fertile soils, organic matter decrease 
due to easily eroded, moderate resilience 
and moderate to low sensitivity. 

At each sampling point, the soil sample taken at the land top layer was uncovered by vegetation 
from 0 to 10 cm depth. Approximately 1 kg of topsoil was collected in a soil sample to ensure the 
representation of the sample. The locations of soil samples were located by a GPS (the Global 
Positioning System) receiver and added onto the soil map [27] to identify the soil types and the 
corresponding characteristics of the soil samples. 

Most fertile soils, organic matter
decrease due to easily eroded,
moderate resilience and moderate to
low sensitivity.

2.2. SMC Determination and Spectral Measurement

The spectral reflectance of these 80 soil samples were measured in a controlled laboratory
environment, using an ASD FieldSpec 3 Max Portable spectroradiometer (ASD. Inc. Boulder, CO, USA)
with fiber optics and an illumination source (ASD Pro Lamp (14.5 V, 50W), Boulder, CO, USA), which
had been corrected for indoor environment. The measurement provided reflectance data every 1 nm
from 350 to 2500 nm for each soil sample. After spectral measurement, these samples were determined
for the SMC by using the standard method [29], where the moisture content (%) is calculated from the
sample weight before and after drying, by Equation (1). Also, the datasets of soil reflectance, Rrs(λ),
and SMC from these 80 soil samples were curve-fit-analyzed, to construct the model for estimating
SMC from the soil surface reflectance:

SMC = (M2/M1) ×100 (1)

where the SMC units in %, M2 is the weight of moist soil, and M1 is the weight of dry soil.
Furthermore, 13 soil samples (ferric acrisols soil types) taken from the topsoil layer at 13 points

over the Nam Can commune (Figure 1a) were also measured in-laboratory for reflectance, and the
SMC was determined. The datasets of Rrs(λ) and SMC from these soil samples were used to examine
the performance of the proposed SMC estimation model, derived from the 80 above-mentioned soil
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samples, and to evaluate the atmospheric correction method for the L8 data obtained concurrently on
11 April 2018.

2.3. L8 Data Extraction and SMC Mapping

The L8 images used in this study (Table 2) were downloaded from the USGS EarthExplorer
website at both levels 1 and 2. L8 level 1 data was geometrically corrected, using ground control points
(GCPs) and a digital elevation model (DEM) to correct for terrain and view angles. The Landsat 8
Surface Reflectance data used in this study was directly ordered and downloaded from the USGS Earth
Explorer, whereas the surface reflectance, Rrs(λ), was retrieved at a 30-m spatial resolution generated
from L8 data, through the application of the Landsat Surface Reflectance Code (LaSRC), which uses
the Moderate Resolution Imaging Spectroradiometer—Climate Modeling Grid-Aerosol Information
as input factors for atmospheric correction [30]. The L8 at level 1 data was radiometrically calibrated
into top-of-atmosphere (TOA) reflectance, using the standard method integrated in the ENVI 5.3
routine [31] and then into bottom-of-atmosphere reflectance, Rrs(λ), using the dark object subtraction
method, DOS [32]. The L8 satellite-retrieved Rrs(λ) outputted from these two atmospheric correction
methods were then evaluated and selected for mapping SMC over the Central Region of Vietnam.
A density slice integrated in ENVI 5.3 was applied to each faction map, using the following intervals:
0 to 10%; 10 to 20%; 20 to 30%; 30 to 40%; 40 to 50%; 50 to 60%; 60 to 70%; 70 to 80%; 80 to 90%; >90%.
Only low-density vegetation areas on the scenes were applied to the SMC estimation model, and to
this classification method.

Table 2. Landsat images used to calculate SMC in this study.

No. Scene ID. Date (mm/dd/yy)

1 LC81240502015065LGN01 03/06/2015
2 LC81240512015065LGN01 03/06/2015
3 LC81250502015088LGN01 03/29/2015
4 LC81240502016068LGN01 03/08/2016
5 LC81240512016068LGN01 03/08/2016
6 LC81250502016091LGN02 03/31/2016
7 LC81280462018101LGN00 04/11/2018

The process to estimate and map SMC in the Central Region of Vietnam is shown in Figure 2
below, which describes the flowchart of methods used in this work.
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3. Results

3.1. Spectral Response of SMC

By the experiment described in Sections 2.1 and 2.2, the results demonstrated that the SMCs at
the saturated state of the soil samples were only slightly different among the soil types, ranging from
44.7% for the rhodic ferralsols soil to 56.7% for the acric ferralsols soil, with an average of 51.9% for all
six soil types. Figure 3 presents the spectral change of the soil at SMC = 0%, and at the saturation state
corresponding to SMC ~51.9%. Accordingly, the mean reflectance, Rrs(λ) of soil with 0% SMC was
approximately double to three times higher than the soil at the saturation state. Over the spectrum from
400 nm to 2500 nm, all of the soil spectral lines of both these SMC levels clearly showed a broad peak
at the regions corresponding to the location of the L8 short-wave infrared band 1 (band 6: B6), and two
negative peaks at the regions corresponding to the locations of L8, B5, and B7, whereas the negative
peak located within the B7 spectral range is sharper and more isolated from the surrounding regions
than the trough located in B5. In both of the soil states, dry and saturation, acric ferralsols has a higher
Rrs(λ) than the other soil types, which may be a consequence of the higher amount of clayish minerals
such as kaolinite consisted in this soil types than the others [28]. The rhodic ferralsols soil samples
had the lowest Rrs(λ) in the dry state, but it had moderate Rrs(λ) at the saturation state, compared
to the others. The sample of rhodic ferralsol soil, which was the highest Fe2O3-containing soil type
(approximately 25%) compared to the other soil types [28], was collected in the weathering crust of
the eruptive basalt rock that is commonly found in the Central Highlands of Vietnam. In that sense,
it can be recognized that it is not only SMC that is affecting the Rrs(λ), but also the physical–chemical
properties contributing to the change in the Rrs(λ) of soil.
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Figure 3. Spectral features of dry soil (SMC = 0%) and saturated soil (SMC ~ 51.9%) of six investigated
soil types laid over the band locations of the L8 multispectral bands. The difference of soil reflectance,
Rrs(λ), at both soil states, (a) dry and (b) saturation, indicates the effect of not only the SMC, but also
other soil components on Rrs(λ).

The response of soil reflectance, Rrs(λ) to the change of SMC was further examined and explored
through charts presented in Figure 4. According to these charts, the higher the SMC, the lower the Rrs(λ)
obtained. This trend was demonstrated in all six soil samples corresponding to the six investigated
soil types. In the spectral lines of acric ferralsols (Figure 4a) and dystric gleysols (Figure 4b), the soil
samples rose gradually with the decrease of SMC, and in four other soil-type samples, the spectral lines
rose suddenly at various SMC, depending on the soil type, i.e., at SMC = 8.7% of the rhothic ferrasols
sample (Figure 4c); at SMC = 17.3% of the eutric fluvisol samples (Figure 4d); at SMC = 33.3% of the
orthic ferralsols sample (Figure 4e); at SMC = 25.9% of the ferric acrisol sample (Figure 4f), particularly
within the spectral region from near-infrared (NIR) to short-wave infrared (SWIR).
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Figure 4. Images of the soil sub-samples, and charts presenting the spectral response to various SMC
of six soil samples taken from the northern part of the Central Highlands of Vietnam, indicate the trend
showing a lower Rrs(λ) with higher SMC. The six soil samples in the experiment correspond to the
six investigated soil types: (a) Acric ferralsols; (b) Dystric gleysols; (c) Rhothic ferrasols; (d) Eutric
fluvisols; (e) Orthic ferralsols; (f) Ferric acrisols.

In all of the soil type samples, the spectral trough at the B7 location was clearly presented, and it
increased inversely with SMC. Similarly, the trough within B5 was not clearly presented in several
cases, i.e., in dystric gleysols (Figure 4b) and eutric fluvisols (Figure 4d) samples, but the inverse
trend between Rrs(λ) and SMC was also shown in all cases. The spectral peak located with the same
location of B6 was also presented clearly in all cases, but the inverse trend between Rrs(λ) and SMC
was apparent in several cases, particularly near the saturation and saturation states of dystric gleysols,
rhothic ferrasols, and ferric acrisols soil samples (Figure 4b,c,f). The strong correlations of detected
SMC with B5, B6, and B7 in each soil sample from this study (Table 3) can help us to understand why
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these bands or spectral regions have been used for estimating SMC from satellite data in the preceding
works [12].

Table 3. Correlations (R, Pearson coefficient) of Rrs(λ) corresponding to L8 band (from visible to SWIR2,
B1 to B7) signals and SMC in each soil type sample, and in all cases.

Soil Type Sample RB1 RB2 RB3 RB4 RB5 RB6 RB7

Acric ferralsols −0.76 −0.77 −0.76 −0.68 −0.70 −0.90 −0.91
Dystric gleysols −0.74 −0.75 −0.74 −0.75 −0.75 −0.83 −0.85
Rhothic ferrasols −0.70 −0.67 −0.57 −0.56 −0.56 −0.66 −0.69
Eutric fluvisols −0.69 −0.70 −0.71 −0.73 −0.75 −0.81 −0.81
Orthic ferralsols −0.70 −0.70 −0.64 −0.65 −0.68 −0.86 −0.85

Ferric acrisols −0.83 −0.82 −0.80 −0.78 −0.79 −0.90 −0.91
All soil types −0.46 −0.47 −0.46 −0.48 −0.50 −0.66 −0.73

3.2. L8 Band-Based Model for Estimating SMC

To identify the best band and/or band combination for estimating SMC using L8 images,
the curve-fit regressions of SMC and the strongest correlated band (B7), and the proposed band
ratio and band combinations in preceding studies [9,12,33] were conducted, and results were presented
in Table 4, using the total data of 80 soil sub-samples. Accordingly, SMC has the highest correlation,
with the ratio of L8 B5 versus B7, B5/B7, (R2 = 0.73), and the smallest error (RMSE = 8.85), indicating
the high potential of this band ratio for estimating SMC, using the L8 image. In most regressions, the
logarithm function provides the lowest error compared to other functions, such as exponential, linear,
and power. Two commonly used indexes for SMC monitoring purposes based on field radiometric
data, the Normalized Multi-band Drought Index (NMDI) [34], and the Normalized Difference Soil
Moisture Index (NSMI) [35], were also evaluated by using the L8 spectral bands in this work. NSMI,
which used the difference of the reflectance at 1800 nm and 2119 nm, corresponded to the difference of
the retrieved reflectance of L8, B6, and B7, (B6 − B7)/(B6 + B7), had a moderate correlation with SMC
(R2 = 0.51). This was similar, to the correlation of NMDI, which used the difference of the reflectance at
NIR (860 nm), corresponding to L8 B5, and the differences of the reflectance at 1640 nm and 2130 nm,
corresponding to the differences of B6 and B7, [B5 − (B6 − B7)]/[B5 + (B6 − B7)], and SMC (R2 = 0.34).
This result demonstrated the limitation of these two indexes when applying L8 data for quantifying
SMC in the tropical region.

Table 4. Performance of the band, band ratios, and the combinations used for estimating SMC, using
the dataset of SMC and Rrs(λ) corresponding to the L8 bands of 80 soil sub-samples taken from the
central region of Vietnam.

Band/Band Ratios/ Band
Combinations Minimum Maximum Mean Std.

Deviation R2 RMSE Model

SMC (%) 0.00 56.66 25.08 16.71
B5 − B1 [9] 0.05 0.29 0.13 0.07 0.15 15.81 Logarithmic
B5 − B2 [9] 0.04 0.26 0.12 0.05 0.13 16.00 Logarithmic
B7 − B1 [9] −0.01 0.25 0.08 0.07 0.58 11.09 Linear

B5/B7 (proposed in this work) 0.83 3.91 1.63 0.62 0.73 8.85 Logarithmic
B6/B7 [12] 1.18 2.64 1.76 0.36 0.56 11.43 Logarithmic

(B7−B1)/(B7+B1) [9] −0.08 0.75 0.36 0.18 0.34 13.94 Linear
The Normalized Difference Soil

Moisture Index, NSMI [35] 0.01 0.44 0.20 0.11 0.51 11.94 Logarithmic

The Normalized Multi-band Drought
Index, NMDI [34] 0.18 0.90 0.45 0.19 0.34 13.88 Logarithmic

To further investigate the cross-relationship between the L8 SWIR band, B5/B7, and NSMI and
SMC, scatterplots between SMC and these three variables were created, and they are shown in Figure 3.
Accordingly, the use of the SWIR band (B7) was only seen in several cases, particularly at a range
of SMC that was lower than 30% (Figure 5a). NSMI was proposed for estimating SMC by using
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surface reflectance at two wavelengths, 1800 nm and 2119 nm. The difference between the L8 B6
center wavelength (1610 nm) and 1800 nm may be a factor that reduces the correlation of NSMI with
SMC (Figure 5b). The fit of the observations with the logarithm curve demonstrated the relationship
between SMC and B5/B7 (Figure 5c), providing a scientific base for estimating SMC from the L8
images by the following Equation:

SMC = 8.14 + 40.29 × log(B5/B7) (2)

where SMC units in %, and B5/B7 is the ratio of reflectance corresponding to L8, B5, and B7.
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Figure 6A shows the comparison of SMC estimated from Rrs(λ), corresponding to L8 B5/B7, using
Equation (2), hereafter referred to as L8RSM, and the in situ SMCs of 13 soil samples taken in the Nam
Can commune, Nghe An Province, in April 2018. The SMC of these 13 soil samples ranged from 10.7%
to 33.1%, averaging at 26%, indicating the SMC range of the topsoils over Nam Can commune under
normal weather conditions in April. The spectral features of the 13 soil samples present in Figure 6B
again confirmed the inverse trend of SMC and Rrs(λ). The small difference between these two datasets
(RMSE = 3.21, corresponding to approximately 12% of the mean of in situ SMC) confirmed the high
accuracy of L8RSM for estimating SMC (Figure 6A). In order to apply L8RSM to the estimation of
SMC from the L8 satellite data, the image processing method, i.e., the atmospheric correction method,
should be focused upon, to ensure the accuracy of the derived reflectance.
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Figure 6. (a) Scatterplot showing the validated result of L8RSM for estimating SMC, using SMC
estimated from Rrs(λ) corresponding to L8 B5/B7, and the in situ SMCs of 13 soil samples taken in Nam
Can Commune; (b) the features of Rrs(λ) for these 13 soil samples. The error of L8RSM (RMSE = 3.21)
corresponds to approximately 12% of the mean of the in situ SMC.
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3.3. Mapping SMC Using L8 Images

Mapping SMC in space and time provides useful information for agriculture management,
particularly in areas that are frequently affected by drought, such as the Central Highlands of Vietnam.
Passive satellite remote sensing uses signals from the emission and reflection of electromagnetic energy
by the soil surface, to estimate SMC. The effects of atmosphere, land-cover, surface roughness, and soil
texture on these signals are still challenges for estimating and mapping SMC from satellite data [36].
The use of the spectral band ratio, as in this work, has been proven to reduce the effects of not only
the atmosphere [37], but also the roughness of the topographic surface [38] on the satellite-derived
reflectance. Figure 7 presents an improved accuracy of the spectral band ratio compared to the single
spectral bands after processing by two atmospheric correction methods: DOS and LaSRC (Figure 7c),
using two datasets of in situ Rrs(λ) measured at seven soil sampling points in the Nam Can commune,
and the retrieved Rrs(λ) of seven corresponding free-cloud pixels of the L8 image, acquired concurrently
over the commune area on 11 April 2018. Accordingly, L8-retrieved Rrs(λ) from single bands, band 5
(Figure 7a) and band 7 (Figure 7b) were nearly three times higher than in situ Rrs(λ), with the RMSE
being 0.02 and 0.03, respectively. The L8-retrieved spectral ratio of band 5 versus band 7 (B5/B7)
showed a consistent fit to the range of in situ data (Figure 7c) with a small RMSE (0.20, corresponding
to 12% of the mean of in-situ dataset). This implicates that the L8-derived single band reflectance for
SMC estimation may be limited due to large uncertainties in the atmospheric correction methods, but
the band ratio model is less subject to errors in the atmospheric correction. Therefore, L8RSM is suitable
for use in SMC estimation and mapping using the L8 images, which are atmospheric corrected by
DOS method.
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Figure 7. Comparisons of in situ Rrs(λ) and retrieved Rrs(λ) corresponding to (a) the L8 NIR band
(band 5: B5), (b) the L8 SWIR-2 band (band 7: B7), and (c) the spectral ratio corresponding to B5/B7,
obtained via two atmospheric correction methods: DOS and LaSRC. While the retrieved Rrs(λ) of B5
and B7 indicates significant biases with respect to in situ Rrs(λ), the retrieved B5/B7 (c) demonstrates a
smaller dependency of the data on atmospheric correction, and it is consistent with in situ data, and
therefore suitable for use in SMC estimation.

The estimation of SMC at seven sampling points using the L8 scene, which is taken over Nam Can
commune and atmospheric corrected by DOS, and L8RSM was presented in Figure 8. Figure 8a shows
the map of sampling point overlaid the estimated SMC result. Figure 8b is the scatterplot showing
the validated result of L8RSM for estimating SMC using in situ SMC at seven sampling points in Nam
Can commune and estimated SMC from the L8 image presented in Figure 8a. Accordingly, estimated
SMC has a highly correlation with in situ SMC (R2 = 0.68) and a reasonable error (RMSE = 5.80)
demonstrating the high possibility of L8RSM and studied methods for quantifying and mapping SMC
in a tropical region using L8 images.

Figure 9 presents the maps of SMC, as estimated from L8 images (Table 2) acquired over the
northern part of the Central Highlands of Vietnam in the late dry season of 2015 and 2016, March
2015 and March 2016, using Equation (2). As mentioned, to subtract the effects of vegetation, only
the SMCs of uncovered soils and/or soils covered by thinly vegetated areas where NDVI ranges
from 0 to 0.4, corresponding to cropland and non-vegetated lands, such as bare soil and built-up
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landcover types [39], were estimated and mapped from the L8 images. Areas with dense vegetation
(NDVI > 0.4) appeared in these two maps as “not observed” areas, and they are filled in green. The
drought-affected districts reported by local provincial governments [40–42] and non-governmental
organizations, NGOs [43,44], present in these two maps are shown as oblique-lined areas.
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Figure 9. Maps of SMC estimated from the L8 images acquired over the northern part of the Central
Highlands of Vietnam in March 2015 (a) and March 2016 (b), showing that almost all of the observed
land areas were covered by soils with SMC < 40%, which nearly fit the drought-affected districts
reported by the local government and management (the oblique lined pattern areas).

The resultant SMC distribution maps in March 2015 and March 2016 showed that almost all soils
in the observed areas were characterized by a low SMC level (SMC < 40%), evidence of the occurrence
of severe droughts in the area; the drought disaster in 2016 was more severe than the one in 2015, which
was manifested through the expansion of the SMC < 40% areas in the 2016 map (Figure 9a), compared
to the 2015 map (Figure 9b). From the maps, soils in the northern part of the Central Highlands were
under water stress for crop growth, particularly for the growth of popular local farming plants, such as
coffee, rice, maize, peanut, soybeans, and greens. According to the Vietnamese Standard published by
the Vietnamese Ministry of Agriculture and Rural Development [45], the optimal SMC for these plants
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growing is the range from 60% to 85%, and at a SMC lower than 40%, all of these plants were shriveled
up (Figure 10). The SMC distribution maps provided evidence, and they were conformable to local
district reports on the effect of drought disasters in these areas for agricultural activities, particularly
in areas where the yields were reported as a dead-loss [41,42].Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 18 

 

 

Figure 10. Images of agricultural products damaged by the drought in March 2016: (a) Coffee trees in 
a farm in the Ia Grai district, Gia Lai Province were shriveled up, due to a lack of irrigation during the 
drought [46]; and (b) a farmer in Gia Lai Province on his rice farm with yield losses [47]. 

4. Discussion 

The effect of soil moisture on soil spectral feature has been long addressed in preceding studies 
with two highlighted features: more SMC lowers reflectance but does not change the shape of soil 
spectral line; clear presence of water absorption at 1400 nm, 1900 nm and 2200 nm [48,49]. The use of 
reflectance at 2.2 µm to identify clay minerals is constrained by the influence of SMC [50]. The L8 
SWIR2 band (band 7) data within 2110–2290 nm has been designed to estimate moisture content of 
soil and vegetation in thin cloudy condition [51]. The reflectance corresponding to the L8 NIR band 
has been often used to discriminate between the vegetation covered areas and bare soil areas [52] or 
to infer plant water stress and subsequent reduction of plant productivities [53]. As mentioned, water 
strongly absorbs in the middle-infrared region (MIR) and is a major factor controlling the spectral 
properties of surface materials, thus use of reflectance within the MIR region (the L8 bands 6 and 7) 
is suggested to estimate the water content in surface materials. Many studies show the 
appropriateness of using the reflectance within 1550–1650 nm (corresponding the L8 band 6) for 
estimating the leaf water content [53,54], and in which the reflectance near 820 nm (corresponding L8 
NIR band) has been used as a reference factor that helps clearly reflect the change in reflectance 
within 1550–1650 nm, accompanied by change in leaf water content. Figure 4 shows clearly the effect 
of SMC to the depth of the negative peak of reflectance at L8 band 7, but no peak related to a strong 
water absorption at the L8 band 6 (1570–1650 nm) was observed. Therefore, the use of spectral band 
ratio of band 5 versus band 7 (NIR/SWIR2) reflects more sensitively to the change of SMC, which 
helps more accurately estimate SMC from reflectance data. 

Three drought types are commonly recognized; i.e., meteorological, hydrological, and 
agricultural drought [55], of which agricultural drought is directly affected by the local economy and 
by social development. Agricultural drought is defined as the reduction of soil moisture availability 
to plants at the SMC level, as crop growth is adversely affected, and therefore, crop yield, and hence, 
agricultural production, is decreased [56]. According to this definition, agricultural drought can be 
proactively predicted in a reasonable manner by monitoring SMC [57]. The traditional in situ-based 
drought monitoring method (including ground measurements of hydro-climatic variables such as 
precipitation, temperature, relative humidity, evaporation and SMC, etc.) provides accurate data at 
point locations, but not the spatial dynamics over a large area. The requirement for spatial impact of 
drought leads to the wide use of remote sensing-based drought indices for agriculture management. 
Several agricultural drought indices that use remote sensing, such as NDDI [26], the vegetation health 
index (VHI) [58], the Shortwave Infrared Water Stress Index (SIWSI) [59], the Normalized Multiband 
Drought Index (NMDI) [34], and the Vegetation Temperature Condition Index (VTCI) [60], have been 
proposed. Among these indices, NDDI, as proposed by Gao [26], has been widely used, because it 
combines vegetation health and surface wetness conditions, and does not require ground-based data 
[61–64]. 

Figure 11 showcases the relationship between the estimated SMC and NDDI, retrieved from L8 
images that were taken over the northern part of the Central Highland of Vietnam in March 2015. 

Figure 10. Images of agricultural products damaged by the drought in March 2016: (a) Coffee trees in a
farm in the Ia Grai district, Gia Lai Province were shriveled up, due to a lack of irrigation during the
drought [46]; and (b) a farmer in Gia Lai Province on his rice farm with yield losses [47].

4. Discussion

The effect of soil moisture on soil spectral feature has been long addressed in preceding studies
with two highlighted features: more SMC lowers reflectance but does not change the shape of soil
spectral line; clear presence of water absorption at 1400 nm, 1900 nm and 2200 nm [48,49]. The use
of reflectance at 2.2 µm to identify clay minerals is constrained by the influence of SMC [50]. The L8
SWIR2 band (band 7) data within 2110–2290 nm has been designed to estimate moisture content of soil
and vegetation in thin cloudy condition [51]. The reflectance corresponding to the L8 NIR band has
been often used to discriminate between the vegetation covered areas and bare soil areas [52] or to
infer plant water stress and subsequent reduction of plant productivities [53]. As mentioned, water
strongly absorbs in the middle-infrared region (MIR) and is a major factor controlling the spectral
properties of surface materials, thus use of reflectance within the MIR region (the L8 bands 6 and 7) is
suggested to estimate the water content in surface materials. Many studies show the appropriateness
of using the reflectance within 1550–1650 nm (corresponding the L8 band 6) for estimating the leaf
water content [53,54], and in which the reflectance near 820 nm (corresponding L8 NIR band) has been
used as a reference factor that helps clearly reflect the change in reflectance within 1550–1650 nm,
accompanied by change in leaf water content. Figure 4 shows clearly the effect of SMC to the depth of
the negative peak of reflectance at L8 band 7, but no peak related to a strong water absorption at the L8
band 6 (1570–1650 nm) was observed. Therefore, the use of spectral band ratio of band 5 versus band 7
(NIR/SWIR2) reflects more sensitively to the change of SMC, which helps more accurately estimate
SMC from reflectance data.

Three drought types are commonly recognized; i.e., meteorological, hydrological, and agricultural
drought [55], of which agricultural drought is directly affected by the local economy and by social
development. Agricultural drought is defined as the reduction of soil moisture availability to plants at
the SMC level, as crop growth is adversely affected, and therefore, crop yield, and hence, agricultural
production, is decreased [56]. According to this definition, agricultural drought can be proactively
predicted in a reasonable manner by monitoring SMC [57]. The traditional in situ-based drought
monitoring method (including ground measurements of hydro-climatic variables such as precipitation,
temperature, relative humidity, evaporation and SMC, etc.) provides accurate data at point locations,
but not the spatial dynamics over a large area. The requirement for spatial impact of drought leads to
the wide use of remote sensing-based drought indices for agriculture management. Several agricultural
drought indices that use remote sensing, such as NDDI [26], the vegetation health index (VHI) [58],
the Shortwave Infrared Water Stress Index (SIWSI) [59], the Normalized Multiband Drought Index
(NMDI) [34], and the Vegetation Temperature Condition Index (VTCI) [60], have been proposed.
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Among these indices, NDDI, as proposed by Gao [26], has been widely used, because it combines
vegetation health and surface wetness conditions, and does not require ground-based data [61–64].

Figure 11 showcases the relationship between the estimated SMC and NDDI, retrieved from
L8 images that were taken over the northern part of the Central Highland of Vietnam in March
2015. Accordingly, the “abnormal dry” level predicted by NDDI approximately corresponded to the
SMC range of 30% to 40%, which is a state of water stress in growing plants. The weak point of the
NDDI is the low applicability of this index for monitoring of short-term drought [65], due to the lag
time between the surface soil and vegetation in the dry state, when a region has been affected by
drought. Therefore, direct monitoring and mapping of the estimated SMC from L8 data helps with
early forecasting of drought disaster, and management of irrigation activities to mitigate bad impacts
from drought. Further investigation of the relationship of SMC and NDDI shows that the estimated
SMC is negatively correlated with the NDDI value, particularly in area cover, mostly by NDVI < 0.4,
corresponding to medium-to thin vegetation-covered areas (R2 = 0.95; Figure 11c). Along with the
increase of areas covered by thick vegetation (NDVI > 0.4), the correlation of SMC and NDDI tends
towards a decrease: R2 = 0.78 over the area covered by less than 20% thick vegetation (Figure 11a), and
R2 = 0.03 over the area that is covered by more than 40% thick vegetation (Figure 11b). This tendency
indicates a lower accuracy of L8RSM in estimating SMC from a pixel, as thick vegetation covers more
than a 20% area of the pixel. Figure 11 also indicates that when the estimated SMC is lower than 40%
in almost medium-to-thin levels of vegetation cover, the region is affected by severe drought, and
furthermore, the richness of vegetation is a vital factor for water retention in the soil.
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Figure 11. Map of the retrieved NDDI-overlaid estimated SMC from L8 images acquired over the
northern part of the Central Highlands of Vietnam in March 2015, which demonstrates the spatial
relationship between these two variables: (A) within the area, 20–30% is dense vegetation coverage;
(B) within the area, more than 40% is dense vegetation coverage; (C) within the area with lower than
20% dense vegetation coverage.

As mentioned, agricultural drought is closely connected to soil moisture and crop water deficit,
and therefore SMC is the most direct and important indicator for assessing and monitoring an
agricultural drought event [66]. Remote sensing-based drought indices are mostly developed by using
vegetation health conditions such as NDVI, VHI, TVDI, VI, NDDI, NDTI, the vegetation condition
index, VCI [58], etc. However, vegetation-based drought indices are reported to fail as early warnings
of agricultural drought [65,67], because the time that needs to elapse before leaf greenness is destroyed
is much longer than the elapsed time for a decrease in the SMC to a level at which plants are under
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water stress (SMC < 40%) [68]. The L8RSM proposed in this work helps to directly and frequently
estimate SMC, in order to identify the areas in which plants are under water stress, for early warning
and proactive planning, in order to respond and mitigate agricultural drought.

L8RSM was also exploited to predict agricultural drought in previous studies through the use
of several indices; i.e., Moisture Stress Index [54], Normalized Difference Infrared Index [69], and
Surface Water Index [70]; these were proposed for the observation of leaf moisture in densely vegetated
areas. In a sense, this spectral ratio was demonstrated to be suitable for estimating the moisture
content of the top-surface materials by using satellite data, despite differences in the soil components
of various soil types (six soil types as mentioned in this study) or the canopy values of the leaves. More
investigations and analyses on the hyperspectral features of the leaves at various moisture contents,
and/or hyperspectral features of SMC in other top-soil types should be carried out, to evaluate the
performance of this spectral ratio for estimating the moisture content of the land surfaces, and for
prediction of drought effects.

5. Conclusions

Literature review indicates the rare use of optical satellite data, such as Landsat, for directly
estimating SMC in the topsoil, instead of indirectly estimating the moisture of other land cover types
(i.e., the leaf moisture content, the moisture of dense vegetation cover), by proposing several vegetation
and/or water indices. An addition to the challenge comes from the diversity of the landcover types,
and knowledge of the principle responses of the reflectance spectra to various SMC is still limited.
This study demonstrates the appropriateness of the spectral ratio of the L8 band NIR-to-SWIR2 for
estimating the SMC, L8RSM, through analyses of the spectral response corresponding L8 band data,
with various SMC over various soil types, which are obtained from in-laboratory measurements of
Rrs(λ) and SMC (R2 = 0.73 and RMSE ~ 12%). The hyperspectral features of a total of 103 soil samples
taken from the Central Region of Vietnam clearly show the adverse effects of SMC on Rrs(λ), particularly
within the NIR-SWIR region. The appropriateness of the spectral ratio of the L8 band NIR-to-SWIR2
for estimating the SMC observed in this study provides a physical base and explains why this ratio
has been used in previous studies for the estimation of surface moisture content when using remote
optic data. The resultant maps of the spatial distribution of the estimated SMCs from L8 images
acquired in March 2015 and March 2016 over the northern part of the Central Highlands of Vietnam
were conformable to the practical droughts occurring in the region at the same time. The spatial
relationship between the estimated SMCs and the retrieved NDDI, a widely used remote sensing index
for agricultural drought monitoring, from L8 images in March 2016, presents a strong correlation for
these two variables, when they are obtained within areas with less than 20% dense vegetation coverage.
Directly estimating SMC from the L8 images is better for the management of irrigation during the
drought occurrence period, compared to NDDI, because of the large time-lag between the decrease
of SMC and decrease of leaf greenness. With a view towards effectively monitoring SMC by using
optical satellite data, more investigations into the response of Rrs(λ) to different SMC over various soil
types or landcovers should be carried out in the near future. Other optical data, such as Sentinel 2A
and 2B, should also be exploited to shorten the observation period, in order to perform better drought
disaster mitigation.

Author Contributions: Conceptualization, N.T.T.H. and D.N.T.; methodology, D.N.T., N.T.T.H. and K.K.;
validation, D.N.T., Q.T.D. and N.M.T.; investigation, D.N.T., N.T.T.H. and K.K.; writing—original draft preparation,
D.N.T.; writing—review and editing, N.T.T.H. and K.K.; project administration, Q.T.D. and N.M.T.; funding
acquisition, Q.T.D. and N.M.T.

Funding: This research was funded by the National Science and Technology Program for Sustainable Development
of Vietnam’s Northwest Region, project code: KHCN-TB.19C/13-18.

Acknowledgments: The authors gratefully acknowledge partial support from the project code
KHCN-TB.19C/13-18 of the National Science and Technology Program for Sustainable Development of Vietnam’s
Northwest Region. The authors also would like to thank the Power Engineering Consulting Joint Stock Company



Remote Sens. 2019, 11, 716 15 of 18

1 (PECC1), and the U.S. Geological Survey and NASA for providing the raw soil samples and the Landsat 8
Surface Reflectance data, respectively.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Komma, J.; Blöschl, G.; Reszler, C. Soil moisture updating by Ensemble Kalman Filtering in real-time flood
forecasting. J. Hydrol. 2008, 357, 228–242. [CrossRef]

2. Loew, A.; Schwank, M.; Schlenz, F. Assimilation of an L-band microwave soil moisture proxy to compensate
for uncertainties in precipitation data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2606–2616. [CrossRef]

3. Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Teuling, A.J. Investigating soil
moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev. 2010, 99, 125–161. [CrossRef]

4. Dubois, P.C.; Van Zyl, J.; Engman, T. Measuring soil moisture with imaging radars. IEEE Trans. Geosci.
Remote Sens. 1995, 33, 915–926. [CrossRef]

5. Neusch, T.; Sties, M. Application of the Dubois-model using experimental synthetic aperture radar data
for the determination of soil moisture and surface roughness. ISPRS J. Photogramm. Remote Sens. 1999, 54,
273–278. [CrossRef]

6. Patel, N.R.; Anapashsha, R.; Kumar, S.; Saha, S.K.; Dadhwal, V.K. Assessing potential of MODIS derived
Temperature/Vegetation Condition Index (TVDI) to infer soil moisture status. Int. J. Remote Sens. 2009, 30,
23–39. [CrossRef]

7. Prakash, R.; Singh, D.; Pathak, N.P. A fusion approach to retrieve soil moisture with SAR and optical data.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 196–206. [CrossRef]

8. Barrett, B.W.; Dwyer, E.; Whelan, P. Soil moisture retrieval from active spaceborne microwave observations:
An evaluation of current techniques. Remote Sens. 2009, 1, 210–242. [CrossRef]

9. Rijal, S.; Zhang, X.; Jia, X. Estimating surface soil water content in the Red River Valley of the North using
Landsat 5 TM data. Soil Sci. Soc. Am. J. 2013, 77, 1133–1143. [CrossRef]

10. Li, B.; Ti, C.; Zhao, Y.; Yan, X. Estimating soil moisture with Landsat data and its application in extracting the
spatial distribution of winter flooded paddies. Remote Sens. 2016, 8, 38. [CrossRef]

11. Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat
MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [CrossRef]

12. Musick, H.B.; Pelletier, R.E. Response of some Thematic Mapper band ratios to variation in soil water content.
Photogramm. Eng. Remote Sens. 1986, 52, 1661–1668.

13. Hatanaka, T.; Nishimune, A.; Nira, R.; Fukuhara, M. Estimation of available moisture holding capacity of
upland soils using Landsat TM data. Soil Sci. Plant Nutr. 1995, 41, 577–586. [CrossRef]

14. Shih, S.F.; Jordan, J.D. Use of Landsat thermal-IR data and GIS in soil moisture assessment. J. Irrig. Drain. Eng.
1993, 119, 868–879. [CrossRef]

15. Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation
index space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [CrossRef]

16. Gao, Z.; Gao, W.; Chang, N.B. Integrating temperature vegetation dryness index (TVDI) and regional water
stress index (RWSI) for drought assessment with the aid of LANDSAT TM/ETM+ images. Int. J. Appl. Earth
Obs. Geoinf. 2011, 13, 495–503. [CrossRef]

17. Chen, S.; Wen, Z.; Jiang, H.; Zhao, Q.; Zhang, X.; Chen, Y. Temperature vegetation dryness index estimation
of soil moisture under different tree species. Sustainability 2015, 7, 11401–11417. [CrossRef]

18. Shafian, S.; Maas, S.J. Index of soil moisture using raw Landsat image digital count data in Texas high plains.
Remote Sens. 2015, 7, 2352–2372. [CrossRef]

19. Mobasheri, M.R.; Amani, M. Soil moisture content assessment based on Landsat 8 Red, Near-Infrared, and
Thermal channels. J. Appl. Remote Sens. 2016, 10, 026011. [CrossRef]

20. Burapapol, K.; Nagasawa, R. Mapping Soil Moisture as an Indicator of Wildfire Risk Using Landsat 8 Images
in Sri Lanna National Park, Northern Thailand. J. Agric. Sci. 2016, 8, 107. [CrossRef]

21. Amani, M.; Parsian, S.; MirMazloumi, S.M.; Aieneh, O. Two new soil moisture indices based on the NIR-red
triangle space of Landsat-8 data. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 176–186. [CrossRef]

http://dx.doi.org/10.1016/j.jhydrol.2008.05.020
http://dx.doi.org/10.1109/TGRS.2009.2014846
http://dx.doi.org/10.1016/j.earscirev.2010.02.004
http://dx.doi.org/10.1109/36.406677
http://dx.doi.org/10.1016/S0924-2716(99)00019-2
http://dx.doi.org/10.1080/01431160802108497
http://dx.doi.org/10.1109/JSTARS.2011.2169236
http://dx.doi.org/10.3390/rs1030210
http://dx.doi.org/10.2136/sssaj2012.0295
http://dx.doi.org/10.3390/rs8010038
http://dx.doi.org/10.1016/j.rse.2009.01.007
http://dx.doi.org/10.1080/00380768.1995.10419619
http://dx.doi.org/10.1061/(ASCE)0733-9437(1993)119:5(868)
http://dx.doi.org/10.1016/S0034-4257(01)00274-7
http://dx.doi.org/10.1016/j.jag.2010.10.005
http://dx.doi.org/10.3390/su70911401
http://dx.doi.org/10.3390/rs70302352
http://dx.doi.org/10.1117/1.JRS.10.026011
http://dx.doi.org/10.5539/jas.v8n10p107
http://dx.doi.org/10.1016/j.jag.2016.03.018


Remote Sens. 2019, 11, 716 16 of 18

22. Roy, D.P.; Kovalskyy, V.; Zhang, H.K.; Vermote, E.F.; Yan, L.; Kumar, S.S.; Egorov, A. Characterization
of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity.
Remote Sens. Environ. 2016, 185, 57–70. [CrossRef]

23. General Statisitic Office of Vietnam. Statistical Yearbook of Viet Nam 2015; Statistical Publishing House:
Hanoi, Vietnam, 2015; 948p. Available online: http://www.gso.gov.vn/default_en.aspx?tabid=515&idmid=
&ItemID=16052 (accessed on 5 November 2018).

24. Anh, D.T.N.; Phi, N.Q.; Son, N.H. Research methods agricultural drought warning in downstream of Ca
River. Vietnam J. Water Resour. Environ. Eng. 2017, 56, 24–33. (In Vietnamese)

25. Ha NT, T.; Nhuan, M.T.; Canh, B.D.; Thao NT, P. Mapping Droughts over the Central Highland of Vietnam
in El Niño Years Using Landsat Imageries. VNU J. Sci. 2016, 32, 255–263.

26. Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from
space. Remote Sens. Environ. 1996, 58, 257–266. [CrossRef]

27. ADB. Asian Development Bank/Environment Operations Center (www.gms-eoc.org) based on
UN FAO Digital Soil Map of the World V. 3.6 (www.fao.org/geonetwork). 2016. Available
online: https://vietnam.opendevelopmentmekong.net/vi/dataset/?id=soil-types-invietnam&search_
query=P3M9c29pbA== (accessed on 15 November 2018).

28. FAO; UNESCO. Soil Map of the World; United Nations Educational, Scientific and Cultural Organization: Paris,
France, 1979; Available online: http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/
faounesco-soil-map-of-the-world/en/ (accessed on 8 December 2018).

29. Vietnam Institute for Building Scirnce and Tẹhnology—IBST. TCVN 4196:2012 The Vietnam National Standards
on Soils—Laboratory Methods for Determination of Moisture and Hydroscopic Water Amount; Vietnam Ministry
of Science and Technology: Hanoi, Vietnam, 2012. Available online: http://tieuchuan.mard.gov.vn/
ViewDetails.aspx?id=7942&lv=8&cap=1 (accessed on 22 November 2018).

30. Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat
8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [CrossRef]

31. Exelis Visual Information Solutions. ENVI Services Engine 5.3 User Guide; Harris Geospatial Solutions, Inc.:
Boulder, CO, USA, 2015; 102p, Available online: https://www.harrisgeospatial.com/docs/pdf/ESE_help.
pdf (accessed on 5 December 2018).

32. Chavez, P.S., Jr. An improved dark-object subtraction technique for atmospheric scattering correction of
multispectral data. Remote Sens. Environ. 1988, 24, 459–479. [CrossRef]

33. Welikhe, P.; Quansah, J.E.; Fall, S. Elhenney WMc. Estimation of Soil Moisture Percentage Using
LANDSAT-based Moisture Stress Index. J Remote Sens. Gis 2017, 6, 2.

34. Wang, L.; Qu, J.J. NMDI: A normalized multi-band drought index for monitoring soil and vegetation
moisture with satellite remote sensing. Geophys. Res. Lett. 2007, 34. [CrossRef]

35. Haubrock, S.N.; Chabrillat, S.; Lemmnitz, C.; Kaufmann, H. Surface soil moisture quantification models
from reflectance data under field conditions. Int. J. Remote Sens. 2008, 29, 3–29. [CrossRef]

36. Petropoulos, G.P.; Ireland, G.; Barrett, B. Surface soil moisture retrievals from remote sensing: Current status,
products & future trends. Phys. Chem. Earth 2015, A/B/C 83, 36–56.

37. Pham, Q.; Ha, N.; Pahlevan, N.; Oanh, L.; Nguyen, T.; Nguyen, N. Using Landsat-8 Images for Quantifying
Suspended Sediment Concentration in Red River (Northern Vietnam). Remote Sens. 2018, 10, 1841. [CrossRef]

38. Holben, B.; Justice, C. An examination of spectral band ratioing to reduce the topographic effect on remotely
sensed data. Int. J. Remote Sens. 1981, 2, 115–133. [CrossRef]

39. Zaitunah, A.; Ahmad, A.G.; Safitri, R.A. Normalized Difference Vegetation Index (NDVI) analysis for land
cover types using landsat 8 OLI in besitang watershed, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2018,
126, 012112. [CrossRef]

40. People’s Committee of Kon Tum Province. Decision No. 2735/KH-UBND dated November
23rd 2014 on the Annoucement of Plan for Drought Disaster Prevention and Mitigation during
Winter-Spring Crop in 2015–2016 Affected by El Niño of Kon Tum Province. 2015. Available
online: https://thuvienphapluat.vn/van-ban/Tai-nguyen-Moi-truong/Ke-hoach-2735-KH-UBND-phong-
chong-han-vu-Dong-xuan-Kon-Tum-2015-2016-305023.aspx (accessed on 15 December 2018).

http://dx.doi.org/10.1016/j.rse.2015.12.024
http://www.gso.gov.vn /default_en.aspx?tabid=515&idmid=&ItemID=16052
http://www.gso.gov.vn /default_en.aspx?tabid=515&idmid=&ItemID=16052
http://dx.doi.org/10.1016/S0034-4257(96)00067-3
https://vietnam.opendevelopmentmekong.net/vi/dataset/?id=soil-types-invietnam&search_query=P3M9c29pbA==
https://vietnam.opendevelopmentmekong.net/vi/dataset/?id=soil-types-invietnam&search_query=P3M9c29pbA==
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/
http://tieuchuan.mard.gov.vn/ViewDetails.aspx?id=7942&lv=8&cap=1
http://tieuchuan.mard.gov.vn/ViewDetails.aspx?id=7942&lv=8&cap=1
http://dx.doi.org/10.1016/j.rse.2016.04.008
https://www.harrisgeospatial.com/docs/pdf/ESE_help.pdf
https://www.harrisgeospatial.com/docs/pdf/ESE_help.pdf
http://dx.doi.org/10.1016/0034-4257(88)90019-3
http://dx.doi.org/10.1029/2007GL031021
http://dx.doi.org/10.1080/01431160701294695
http://dx.doi.org/10.3390/rs10111841
http://dx.doi.org/10.1080/01431168108948349
http://dx.doi.org/10.1088/1755-1315/126/1/012112
https://thuvienphapluat.vn/van-ban/Tai-nguyen-Moi-truong/Ke-hoach-2735-KH-UBND-phong-chong-han-vu-Dong-xuan-Kon-Tum-2015-2016-305023.aspx
https://thuvienphapluat.vn/van-ban/Tai-nguyen-Moi-truong/Ke-hoach-2735-KH-UBND-phong-chong-han-vu-Dong-xuan-Kon-Tum-2015-2016-305023.aspx


Remote Sens. 2019, 11, 716 17 of 18

41. People’s Committee of Kon Tum Province. Decision No. 240/QĐ-UBND dated March 16th 2016 on “The
Announcement of the Most Severe Level Drought Disaster Occurred in Kon Tum Province”. 2016. Available
online: http://kontum.gov.vn/tintuc/Lists/Posts/Post.aspx?List=2fa21aca-fe02-41ba-bc47-77d530847b32&
ID=12706 (accessed on 15 December 2018).

42. People’s Committee of Gia Lai Province. Decision No. 2735/QĐ-UBND Dated March 3rd 2016 on
“The Announcement of the Most Severe Level Drought Disaster Occurred in Gia Lai Province. 2016.
Available online: http://gialai.gov.vn (accessed on 16 December 2018).

43. DMC—Disaster Management Policy and Techlonogy Center. Drought in 05 Provinces Contains the
Central Highlands and South Central Coast (Ninh Thuan, Binh Thuan & Khanh Hoa). Available
online: http://dmc.gov.vn/chi-tiet-thien-tai/han-han-tai-05-tinh-tay-nguyen-va-cac-tinh-duyen-hai-
nam-trung-bo-ninh-thuan-binh-thuan-va-khanh-hoa-nam-2016-dis166.html?lang=vi-VN (accessed on
14 December 2018).

44. CGIAR Research Centers in Southeast Asia. The Drought Crisis in the Central Highlands of Vietnam
Assessment Report.Kon Tum, Gia Lai, Dak Lak, Vietnam. 2016. Available online: https://cgspace.cgiar.org/
rest/bitstreams/78532/retrieve (accessed on 15 December 2018).

45. The Center for Water research and Engineering application. TCVN 8641: 2011 The Vietnam National
Standards on Hydraulic Structures—Irrigation and Drainage Techniques for Provisions Crops; Vietnam Ministry of
Agriculture and Rural Development: Hanoi, Vietnam, 2011. Available online: http://tieuchuan.mard.gov.
vn/Documents/Uploads/TCVN%208641-2011.doc (accessed on 22 December 2018).

46. Gia Lai: 6000 Hectares of Coffee Burned by Drought (Gia Lai: 6000 hecta cà phê khô cháy vì nắH-UBND
dated November 23rd 2014 on the Annoucement of Plan for Drought Disaster Prng hạn). To Quoc. Available
online: http://toquoc.vn/gia-lai-6000-hecta-ca-phe-kho-chay-vi-nang-han-99143818.htm (accessed on
15 January 2019).

47. Gia Lai: Drought Damaged Approximately 373 Billion VND (Gia Lai: Hạn hán gây thiệt hại gần 373 tỷ
đồng). Tai nguyen va Moi Truong. Available online: https://baotainguyenmoitruong.vn/moi-truong/gia-
lai-han-han-gay-thiet-hai-gan-373-ty-dong-1056745.html (accessed on 15 January 2019).

48. Bowers, S.A.; Hanks, R.J. Reflection of radiant energy from soils. Soil Sci. 1965, 100, 130–138. [CrossRef]
49. Skidmore, E.L.; Dickerson, J.D.; Schimmelpfennig, H. Evaluating Surface-Soil Water Content by Measuring

Reflectance. Soil Sci. Soc. Am. J. 1975, 39, 238–242. [CrossRef]
50. Lobell, D.B.; Asner, G.P. Moisture effects on soil reflectance. Soil Sci. Soc. Am. J. 2002, 66, 722–727. [CrossRef]
51. Amatya, D.; Williams, T.; Bren, L.; de Jong, C. Forest Hydrology: Processes, Management and Assessment; CABI:

Oxfordshire, UK, 2016.
52. Yoshioka, H.; Miura, T.; Demattê, J.A.; Batchily, K.; Huete, A.R. Soil line influences on two-band vegetation

indices and vegetation isolines: A numerical study. Remote Sens. 2010, 2, 545–561. [CrossRef]
53. Tucker, C.J. Remote sensing of leaf water content in the near infrared. Remote Sens. Environ. 1980, 10, 23–32.

[CrossRef]
54. Hunt, E.R., Jr.; Rock, B.N. Detection of changes in leaf water content using near-and middle-infrared

reflectances. Remote Sens. Environ. 1989, 30, 43–54.
55. Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [CrossRef]
56. Panu, U.S.; Sharma, T.C. Challenges in drought research: Some perspectives and future directions. Hydrol.

Sci. J. 2002, 47, S19–S30. [CrossRef]
57. Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water

Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109.
58. Kogan, F. World droughts in the new millennium from AVHRR-based vegetation health indices. EOS Trans.

Am. Geophys. Union 2002, 83, 557–563. [CrossRef]
59. Fensholt, R.; Sandholt, I. Derivation of a shortwave infrared water stress index from MODIS near-and

shortwave infrared data in a semiarid environment. Remote Sens. Environ. 2003, 87, 111–121. [CrossRef]
60. Wang, P.X.; Li, X.W.; Gong, J.Y.; Song, C. Vegetation temperature condition index and its application

for drought monitoring. In Proceedings of the IEEE 2001 International Geoscience and Remote Sensing
Symposium, IGARSS’01, Sydney, Australia, 9–13 July 2001.

61. Gu, Y.; Brown, J.F.; Verdin, J.P.; Wardlow, B. A five-year analysis of MODIS NDVI and NDWI for grassland
drought assessment over the central Great Plains of the United States. Geophys. Res. Lett. 2007, 34. [CrossRef]

http://kontum.gov.vn/tintuc /Lists/Posts/Post.aspx?List=2fa21aca-fe02-41ba-bc47-77d530847b32&ID=12706
http://kontum.gov.vn/tintuc /Lists/Posts/Post.aspx?List=2fa21aca-fe02-41ba-bc47-77d530847b32&ID=12706
http://gialai.gov.vn
http://dmc.gov.vn/chi-tiet-thien-tai/han-han-tai-05-tinh-tay-nguyen-va-cac-tinh-duyen-hai-nam-trung-bo-ninh-thuan-binh-thuan-va-khanh-hoa-nam-2016-dis166.html?lang=vi-VN
http://dmc.gov.vn/chi-tiet-thien-tai/han-han-tai-05-tinh-tay-nguyen-va-cac-tinh-duyen-hai-nam-trung-bo-ninh-thuan-binh-thuan-va-khanh-hoa-nam-2016-dis166.html?lang=vi-VN
https://cgspace.cgiar.org/rest/bitstreams/78532/retrieve
https://cgspace.cgiar.org/rest/bitstreams/78532/retrieve
http://tieuchuan.mard.gov.vn/Documents/Uploads/TCVN%208641-2011.doc
http://tieuchuan.mard.gov.vn/Documents/Uploads/TCVN%208641-2011.doc
http://toquoc.vn/gia-lai-6000-hecta-ca-phe-kho-chay-vi-nang-han-99143818.htm
https://baotainguyenmoitruong.vn/moi-truong/gia-lai-han-han-gay-thiet-hai-gan-373-ty-dong-1056745.html
https://baotainguyenmoitruong.vn/moi-truong/gia-lai-han-han-gay-thiet-hai-gan-373-ty-dong-1056745.html
http://dx.doi.org/10.1097/00010694-196508000-00009
http://dx.doi.org/10.2136/sssaj1975.03615995003900020009x
http://dx.doi.org/10.2136/sssaj2002.7220
http://dx.doi.org/10.3390/rs2020545
http://dx.doi.org/10.1016/0034-4257(80)90096-6
http://dx.doi.org/10.1016/j.jhydrol.2010.07.012
http://dx.doi.org/10.1080/02626660209493019
http://dx.doi.org/10.1029/2002EO000382
http://dx.doi.org/10.1016/j.rse.2003.07.002
http://dx.doi.org/10.1029/2006GL029127


Remote Sens. 2019, 11, 716 18 of 18

62. Cheng-lin, L.; Jian-jun, W. Crop drought monitoring using MODIS NDDI over mid-territory of China.
In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2008, Boston,
MA, USA, 7–11 July 2008.

63. Gulácsi, A.; Kovács, F. Drought monitoring with spectral indices calculated from MODIS satellite images in
Hungary. J. Environ. Geogr. 2015, 8, 11–20. [CrossRef]

64. Du TL, T.; Bui, D.D.; Nguyen, M.D.; Lee, H. Satellite-Based, Multi-Indices for Evaluation of Agricultural
Droughts in a Highly Dynamic Tropical Catchment, Central Vietnam. Water 2018, 10, 659.

65. Hazaymeh, K.; Hassan, Q.K. Remote sensing of agricultural drought monitoring: A state of art review.
AIMS Environ. Sci. 2016, 3, 604–630. [CrossRef]

66. Nam, W.H.; Choi, J.Y.; Yoo, S.H.; Jang, M.W. A decision support system for agricultural drought management
using risk assessment. Paddy Water Environ. 2012, 10, 197–207. [CrossRef]

67. Liu, X.; Zhu, X.; Pan, Y.; Li, S.; Liu, Y.; Ma, Y. Agricultural drought monitoring: Progress, challenges, and
prospects. J. Geogr. Sci. 2016, 26, 750–767. [CrossRef]

68. Jacobson, A.B.; Starman, T.W.; Lombardini, L. Substrate moisture content effects on growth and shelf life of
Angelonia angustifolia. HortScience 2015, 50, 272–278. [CrossRef]

69. Hardisky, M.A.; Klemas, V.; Smart, R.M. The influence of soft salinity, growth form, mad leaf moisture on
the spectral reflectance of Spartina alterniflora canopies. Photogramm. Eng. Remote Sens. 1983, 49, 77–83.

70. Xiao, X.; Hollinger, D.; Aber, J.; Goltz, M.; Davidson, E.A.; Zhang, Q.; Moore, B., III. Satellite-based modeling
of gross primary production in an evergreen needleleaf forest. Remote Sens. Environ. 2004, 89, 519–534.
[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1515/jengeo-2015-0008
http://dx.doi.org/10.3934/environsci.2016.4.604
http://dx.doi.org/10.1007/s10333-012-0329-z
http://dx.doi.org/10.1007/s11442-016-1297-9
http://dx.doi.org/10.21273/HORTSCI.50.2.272
http://dx.doi.org/10.1016/j.rse.2003.11.008
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Soil Sampling and Processing 
	SMC Determination and Spectral Measurement 
	L8 Data Extraction and SMC Mapping 

	Results 
	Spectral Response of SMC 
	L8 Band-Based Model for Estimating SMC 
	Mapping SMC Using L8 Images 

	Discussion 
	Conclusions 
	References

