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Abstract: Automatic 3D forest mapping and individual tree characteristics estimation are essential for
forest management and ecosystem maintenance. The low-cost unmanned aerial vehicle (UAV) laser
scanning (ULS) is a newly developed tool for cost-effectively collecting 3D information and attempts
to use it for 3D forest mapping have been made, due to its capability to provide 3D information with
a lower cost and higher flexibility than the standard ULS and airborne laser scanning (ALS). As the
direct georeferenced point clouds may suffer from distortion caused by the poor performance of a
low-cost inertial measurement unit (IMU), and 3D forest mapping using low-cost ULS poses a great
challenge. Therefore, this paper utilized global navigation satellite system (GNSS) and IMU aided
Structure-from-Motion (SfM) for trajectory estimation, and, hence, overcomes the poor performance
of low-cost IMUs. The accuracy of the low-cost ULS point clouds was compared with the ground
truth data collected by a commercial ULS system. Furthermore, the effectiveness of individual trees
segmentation and tree characteristics estimation derived from the low-cost ULS point clouds were
accessed. Experiments were undertaken in Dongtai forest farm, Yancheng City, Jiangsu Province,
China. The results showed that the low-cost ULS achieved good point clouds quality from visual
inspection and comparable individual tree segmentation results (P = 0.87, r = 0.84, F = 0.85) with the
commercial system. Individual tree height estimation performed well (coefficient of determination
(R2) = 0.998, root-mean-square error (RMSE) = 0.323 m) using the low-cost ULS. As for individual
tree crown diameter estimation, low-cost ULS achieved good results (R2 = 0.806, RMSE = 0.195 m)
after eliminating outliers. In general, such results illustrated the high potential of the low-cost ULS in
3D forest mapping, even though 3D forest mapping using the low-cost ULS requires further research.

Keywords: 3D forest mapping; low-cost; unmanned aerial vehicle (UAV); laser scanning

1. Introduction

Forests, one of the main terrestrial ecosystems on Earth, play a vital role in climate change,
conservation of biological diversity, and terrestrial ecosystems itself. 3D forest mapping at individual
tree level is becoming essential for forest management and ecosystem sustainability [1]. Traditionally,
the detailed information of the individual tree is acquired through a statistical field inventory, which is
labor-intensive, time-consuming, and accessibility-constrained [2,3]. Therefore, accurate, efficient, and
cost-effective methods for accessing the individual tree structure are of great importance [4,5].

With the development of laser scanning in the last twenty years, most researches on forest structure
metrics have focused on laser scanning point clouds from different platforms. More specifically,
applications of terrestrial laser scanning (TLS) using the single-scan and multi-scan approach for forest
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inventory have been thoroughly investigated [2]. To further improve the efficiency of data collection
using TLS, mobile laser scanning (MLS) is used in forestry surveys because of its ability to measure
complex forest areas [6,7]. However, MLS is restricted by the global navigation satellite system (GNSS)
shadows in forests. Complementing TLS and MLS in different observational perspectives, airborne
laser scanning (ALS) has a high potential in forest applications, providing a good solution for accessing
various forest characteristics, such as tree height [8], crown diameter [9], wood volume [10], and
biomass [11]. Nevertheless, the spatial and temporal resolutions of the ALS system is limited because
of the inflexibility and the high costs.

In recent years, improvements in the convenience and minimization of unmanned aerial vehicles
(UAVs) have made it a powerful tool for 3D forest mapping, providing a distinctive combination of
high spatial and temporal resolution. Jaakkola et al. [12] provided the first investigation of forest
mapping using the unmanned aerial vehicle laser scanning (ULS) and demonstrated that data collected
by the ULS system was feasible for automatic measurements of forest. Liu et al. [13] estimated the forest
structure attributes using ULS in Ginkgo plantations, in which the effectiveness of plot-level metrics
and individual-tree-summarized metrics derived from ULS point clouds were assessed. Furthermore,
Jaakkola et al. [14] presented a new concept, “ULS based automatic tree field reference collection”,
and demonstrated the feasibility of this concept, even though the whole topic needs further research.
In most reported studies of ULS based forest mapping [12,13,15,16], the standard ULS systems were
equipped with high-end positioning and orientation system (POS), which has high survey costs and
limits the widespread use of the ULS in forest applications. The drawback of such platforms is that the
size and budget are significantly larger than what could be considered useful as an operational tool in
forest management [17]. Thus, 3D forest mapping using a low-cost ULS system equipped with only
low-cost sensors has a high practical meaning. However, studies focusing on 3D forest mapping using
low-cost ULS, including data quality evaluation, and individual tree characteristics estimation, are still
lacking and attract the attention of the academic community [17,18].

As far as the low-cost ULS system is concerned, system integration is limited by the cost, payload,
and the rapid consumption of battery power. A tradeoff must often be made among the accuracy,
weight, and cost of sensors [17]. It is difficult to obtain accurate point clouds using the direct
georeferencing data estimated by the GNSS and a low-cost inertial measurement unit (IMU) because
of insufficient quality control [19]. Therefore, 3D forest mapping with the low-cost ULS system is
a great challenge. To optimize the trajectory estimated by the low-cost sensors, Wallace et al. [17]
utilized a structure from motion (SfM) algorithm first, then coupled the results of SfM with GNSS/IMU
using sigma point Kalman Filter. They handled the SfM algorithm and GNSS/IMU information
separately and achieved good accuracy of the trajectory. However, independent SfM processing may
suffer from drift, which could be effectively controlled by GNSS/IMU aided bundle adjustment [20].
Furthermore, the performance of the 3D forest mapping (i.e., automatic individual tree segmentation,
tree characteristics estimation) using the low-cost ULS system is not yet thoroughly investigated or
compared with the commercial ULS system in the previous studies.

The main objectives of this paper are to (1) reconstruct point clouds accurately in mapping frame
using the low-cost sensors, and (2) investigate the performance of the low-cost ULS system in 3D forest
mapping by comparing it with a high-end commercial ULS system. The low-cost ULS system, named
Kylin Cloud, equipped with multiple low-cost sensors (i.e., GNSS, IMU, camera, and laser scanner)
is used in the experiments. To overcome the poor performance of the low-cost sensors, an automatic
multisensory integration method is proposed. It reconstructs point clouds accurately in a mapping
frame by integrating the GNSS data, IMU data, and image sequence utilizing GNSS and IMU aided
bundle adjustment. Then individual tree segmentation and tree characteristics (i.e., tree height and
crown diameter) estimation are performed using the reconstructed point clouds.

This paper is structured as follow: Section 2 illustrates the study area and the collected data.
Section 3 elaborates the proposed method, which integrates the multisensory data and investigates
the potential of the low-cost ULS system for 3D forest mapping. Section 4 reports the results of the
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experiments. Section 5 discusses the results of the experiments. Conclusions and future work are
drawn at the end of this paper.

2. Study Area and Material

To investigate the feasibility of the low-cost ULS system in 3D forest mapping, two sets of data
were collected by different systems (the low-cost ULS system and a commercial ULS system). In
addition, both approaches, including a direct comparison of the point clouds reconstructed by two
systems, and comparison of individual tree characteristics (i.e., tree height and crown diameters), were
applied to validate the performance of the low-cost system. In this section, detailed information about
the study area, the two ULS systems, and the collected data are provided.

2.1. Study Area

The study area, located in the Dongtai forest farm (32◦52′N, 120◦50′E), Yancheng City, Jiangsu
Province, China. An 800 m * 100 m of nursery land was selected for data collection as shown in
Figure 1a. Fifteen sample plots were randomly selected from the study area as shown in Figure 1b.
Each sample plot is a circular area with a radius of 15 m. The main planted tree species include Dawn
redwood (Metasequoia glyptostroboides) and Poplar (Populus deltoids). The seedlings, including Maple
(Acer L.), Weeping willow (Salix babylonica Linn.) and Ligustrum lucidum (Ligustrum lucidum Ait.), are
planted in the nursery land.
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Figure 1. The location of study area in Dongtai forest farm, and 15 sample plots. High-resolution
orthophoto was generated using digital aerial imagery acquired from an unmanned aerial vehicle
(UAV), covering the whole study area. (a) Location and orthophoto of Dongtai forest farm;
(b) Orthophoto of the study area, and locations of the sample plots.

2.2. The Low-Cost ULS System and the Collected Data

The low-cost ULS system, named Kylin Cloud, is illustrated in Figure 2. Kylin Cloud consists of a
low-cost IMU (Xsens Mti-300), a double-frequency GNSS receiver (KQ GEO), a GNSS antenna, a global
shutter camera (Pointcrey Flea3), and a laser scanner (Velodyne Puck VLP-16). Kylin Cloud is mounted
on a DJI M600Pro UAV with a maximum payload of 6 kg and 25 min flying time. The synchronization
between the laser scanner, the camera, the GNSS receiver, and the IMU is fulfilled electronically. The
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raw data of the sensors is recorded by an onboard control unit based on advanced RISC machine
(ARM) cortex A9, which has low power and is sufficient for the data log. Table 1 lists the specifications
of the sensors. The Xsens Mti-300 is a low-cost and light IMU, which provides 200 Hz raw inertial
measurements. Its gyroscope bias stability and accelerometer bias stability are 12◦/h and 0.015 mg,
respectively. The intrinsic parameters of the IMU were provided by the manufacturer. The Pointgrey
Flea3 is a global shutter color camera with 1280 × 1024 pixels. It captures image data at 5 Hz and is not
affected by rolling-shutter distortion. The initial intrinsic parameters of the camera were pre-calibrated
using a camera calibration toolbox in MATLAB [21] with an industrial checkerboard (1.5 m * 1.2 m),
and then they were optimized in the proposed GNSS and IMU aided bundle adjustment. The Velodyne
Puck VLP16 is a light-weight and low-cost laser scanner, which operates at a wavelength of 905 nm. It
has 16 channels and supports 300,000 points per second. The measurement range of Velodyne Puck
VLP16 is 100 m. The range error of the Velodyne Puck VLP16 laser scanner is about 0.03 m (1 σ), and
it could be improved by 10 to 20% after interior calibration [22]. The range error of the Velodyne
Puck VLP16 laser scanner is about 0.03 m (1 σ), and it could be improved by 10% to 20% after interior
calibration. As reported by Jaakkola et al. [14], using the VLP-16 laser scanner with a range error of
3 cm is sufficient for the forest applications, so the manufacture values were used without calibration
in this paper.
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Table 1. Sensor specifications of the Kylin Cloud.

Sensor Manufacturer Description Approximate Price

GNSS receiver (Base) M8 made by KQ GEO
Technologies *

Double frequency, supporting
BDS/GPS/GLONASS 1500 USD

GNSS receiver (Rover) P8 made by KQ GEO
Technologies *

Double frequency, supporting
BDS/GPS/GLONASS 1500 USD

IMU Xsens MTI-300
Gyroscope in-run bias stability
is 12◦/h; accelerometer in-run

bias stability is 0.015 mg
2500 USD

Global shutter camera Pointgrey Flea3 1280 × 1024 pixels, color, with a
pixel size of 5.3 µm 1000 USD

Laser scanner Velodyne VLP16
16 channels; 300,000 points per

second; 905 nm wavelength;
100 m measurement range

6000 USD

Lens Kowa wide-angle lens 3.5 mm/F1.4 200 USD

* KQ GEO Technologies is a Chinese company (http://www.kanq.com.cn/).

http://www.kanq.com.cn/
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Data of Kylin Cloud were collected in December 2018. To ensure data quality and flight safety, the
Kylin Cloud was programmed to automatically follow the pre-designed flight lines using DJI GS PRO.
The flight height was set to 70 m above the ground, and the flying speed was nearly 3 m/s. It took
15 min to collect the raw data of the study area. There were 3760 images and approximately 2 GB raw
laser scanning data (7,993,351 points) collected in this study area. The forward overlap of the images is
over 90%, and the side overlap of the images is 70%. The density of the resulted laser point clouds
(with double-echo) is 11.85 points per m2.

2.3. The High-End Commercial ULS System and the Collected Point Clouds

The commercial ULS was integrated by Green Valley International. The hardware system is
composed of 6 units, including a Hexa-rotor UAV, a high-end POS (Novatel IMU-IGM-S1), a GNSS
antenna, a high-end laser scanner (Riegl VUX-1), a micro-computer, a long-range Wi-Fi, as shown
in Figure 3. The survey grade laser scanner, Riegl VUX-1, has high accuracy (0.01 m) and long
measurement range (300 m). Its scan speed and measurement rate are up to 200 scans per second
and 550 kHz, respectively. To obtain the georeferenced point clouds according to trajectory, the
Novatel IMU-IGM-S1 is mounted. The raw IMU and GNSS data are post-processed using a loosely
coupled Kalman Filtering via Novatel Inertial Explorer software to generate accurate trajectory. A
micro-computer is integrated to log raw data. In addition, the raw data is transmitted to the ground
station through the long-range Wi-Fi system. The total price of this system is over 120,000 USD, which
is much higher than the low-cost system.
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Figure 3. System description of the commercial unmanned aerial vehicle laser scanning (ULS).

The laser scanning data for the study area was collected in August 2018. The UAV system was
programmed to automatically follow the pre-designed flight lines using an autopilot system of the
Hexa-rotor UAV. The flying height was 140 m, the flying speed was nearly 4 m/s, and it took 8.7 min
to collect the raw data of the study area. The average point density of the reconstructed point clouds is
224.33 points per m2.

3. Methodology

The proposed method is to integrate multisensory data collected by the low-cost ULS system
and investigate its feasibility for 3D forest mapping. Workflow of the proposed method is shown in
Figure 4. Due to the poor performance of the low-cost sensors, direct georeferencing data estimated
by low-cost IMU and GNSS leads to inaccurate point clouds. Thus, a novel data integration strategy
using GNSS and IMU aided SfM is proposed. It estimates accurate trajectory and reconstructs the
point clouds accurately in a mapping frame as shown in Figure 4b. To investigate the feasibility of the
low-cost UAV system for 3D forest mapping, individual trees are extracted for tree characteristics (e.g.,
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tree height and crown diameter) estimation as shown in Figure 4c. Details of the proposed method are
described below.
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3.1. Coordinate Definitions

To integrate multisensory data collected by the low-cost ULS system, coordinate definitions
involved in the proposed method are introduced first. Following the notation of coordinate and

transformation used in [23],
⇀
FA denotes a reference frame A, and a point P in frame

⇀
FA is written as a

vector rA
P . The rotation matrix between

⇀
FA and

⇀
FB is represented by CA

B . The corresponding quaternion
is represented by qA

B .
As illustrated in Figure 5, four coordinate systems are involved in the proposed integration (i.e.,

mapping frame
⇀

FM, body frame
⇀
Fb, camera frame

⇀
Fc, and laser scanner frame

⇀
Fl). We let the system

states to be estimated at time t be xs(t), which can be written as:

xs(t) =
[
rM

b (t)T, vM
b (t)T, qM

b (t)T, ba(t)
T, bg(t)

T
]T

(1)

where rM
b (t) is the position of body frame in the mapping frame; qM

b (t) is the quaternion that rotates a
vector from the mapping frame to the body frame; vM

b (t) is the velocity in the mapping frame; and
bk

a(t) and bk
g(t) are the biases of the accelerometer and gyroscope, respectively. The trajectory used

for reconstructing the laser point clouds in the mapping frame is composed of rM
b (t) and qM

b (t). If a

point rM
P in the world frame

⇀
FM is observed by the camera and the laser scanner simultaneously, the

corresponding points in the camera and laser scanner coordinate system are rc
P and rl

P. Then the rM
P

can be reconstructed in the mapping frame using the following equations:{
rM

P = CM
b (t1)Cb

crc
P + CM

b (t1)rb
c + rM

b (t1)

rc
P = λ(x, y,−c)T (2)

rM
P = CM

b (t2)Cb
l rl

P + CM
b (t2)rb

l + rM
b (t2) (3)
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where x, y, and −c are the coordinates of the point rc
P in the camera frame with scale factor λ; t1 and

t2 are the observing times from camera and laser scanner, respectively. rb
c and rb

l are the level-arm
parameters of the camera/IMU and the laser/IMU, respectively; and Cb

c and Cb
l are the boresight matrix

of the camera/IMU and the laser/IMU, respectively. The values of these boresight and level-arm
parameters are calibrated before data collection.Remote Sens. 2019, 11, x FOR PEER REVIEW 7 of 20 
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3.2. Data Integration

As the inaccurate direct georeferencing data resulted from the poor performance of the low-cost
IMU, a modified SfM algorithm with the aid of GNSS and IMU is adopted to estimate the trajectory for
accurate point clouds. First, the low-cost IMU measurements are integrated using the pre-integration
technique. Second, sequent images matching is performed, and a scale-free graph is built using
incremental SfM. Finally, the trajectory is estimated using a carefully designed GNSS and IMU aided
bundle adjustment.

3.2.1. IMU Integration

The low-cost IMU kinematics model proposed by Shin and El-Sheimy [24] is used in the proposed
registration model. In addition, an IMU pre-integration technique [25,26] is adopted to overcome the
re-propagation of the IMU measurements when states change in optimization steps. If we assume that
two images are captured at times ti and ti+1, then the update equations of the position rM

b (t), velocity
vM

b (t), and orientation qM
b (t) are derived as follows:

rM
b (ti+1) = rM

b (ti) + vM
b (ti)∆t + 0.5gM∆t2 + CM

b (ti)∆pi
i+1 (4)

vM
b (ti+1) = vM

b (ti) + gM∆t + CM
b (ti)∆vi

i+1 (5)
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qM
b (ti+1) = qM

b (ti)⊗ ∆qi
i+1 (6)

where gM is the gravity vector in the mapping frame. ⊗ is the multiplier for quaternion [23]. ∆pi
i+1,

∆vi
i+1, and ∆qi

i+1 are the pre-integration components of the time duration [ti, ti+1]. The covariance
matrix Pi,i+1

IMU for the pre-integration parts can be propagated according to [25,26].

3.2.2. Image Sequence Matching and SfM

To integrate the image information for accurate trajectory estimation, a SfM algorithm is utilized
to build a scale-free graph of the image sequence, which determines relative orientations of the images
captured at certain times. First, features are extracted from all the images for the matching. In this
research, the scale-invariant feature transform (SIFT) [27] feature detector is used. The feature matching
operations between the two feature point sets are achieved by searching nearest Euclidian distance
among a 128-dimensional descriptor space. To speed up feature extraction and matching options,
a GPU-based SIFT implementation [28] is applied. Second, image matching and the key-frames
selection are performed simultaneously as follow: the first image was selected as the key-frame, then
the following images are matched with the last key-frame sequentially. If a current frame had less
than Ncorres correspondences (e.g., 800) with the last key-frame, it is selected as a new key-frame.
Then the key-frames are matched with each other. Using this strategy, we can avoid matching all
the images with each other and reduce the computation cost. Then all the key frames are matched
with each other according to their GNSS positions. Third, the scale free graph of image sequence
is initialized and reconstructed using an incremental SfM strategy proposed in [29]. This graph
contains information of relative orientations of images, correspondences of tie points, and projection
relationships between 2D tie points and 3D triangulated points, which are used for following GNSS
and IMU aided bundle adjustment.

3.2.3. GNSS and IMU Aided Bundle Adjustment

The GNSS and IMU aided bundle adjustment is performed to reduce the drift of SfM and estimate
all the states involved in trajectory estimation [30]. The cost function J(xs)BA for bundle adjustment
consists of three parts: the re-projection error term ej,i

r , the inertial error term ei,i+1
IMU , and the GNSS error

term ei
g, as follows:

J(xs)BA

N−1

∑
i=1

ei,i+1
IMU

TPi,i+1
IMU

−1ei,i+1
IMU︸ ︷︷ ︸

inertial

+
N

∑
i=1

∑
j∈J (i)

ej,i
r

TPj,i
r
−1ej,i

r︸ ︷︷ ︸
re-projection

+
N

∑
i=1

ei
g

TPi
g
−1ei

g︸ ︷︷ ︸
GNSS

(7)

If the ith image is captured at time ti, and the jth feature point is observed in this image, j belongs
to set J (i). J (i) represents a set of all the feature points observed in the image. Pj,i

r , Pi,i+1
IMU , and Pi

g are
covariance matrices of the re-projection error term, the inertial error term, and the GNSS error term,
respectively. The covariance matrix Pi

g for GNSS part is obtained by the software Inertial Explorer

after applying carrier-phase differential post-processing. The covariance matrix Pj,i
r for re-projection

error is set to an identity matrix, for the accuracy of SIFT feature points is within one pixel. The general
framework for graph optimization (g2o) [31] is used to optimize above cost function.

3.2.4. Reconstruction of the Point Clouds

After the optimization using the proposed GNSS and IMU aided bundle adjustment, accurate
trajectory composed of rM

b (t) and qM
b (t) is obtained. As time synchronization of all the sensors are

fulfilled electronically, the point clouds are reconstructed using the estimated trajectory by projecting

laser scanning measurement from laser scanner coordinate system
⇀
Fl to mapping coordinate system

⇀
FM via Equation (3). The point clouds are used as input for the following forest applications.
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3.3. Individual Tree Segmentation and Evaluation

3.3.1. Non-Ground Points Classification and Point Clouds Normalization

The reconstructed point clouds are classified into ground points and non-ground points using
multi-scale morphological filtering [32] with default parameter setting. We recommend readers
to see [32] for more details of the classification. Digital elevation model (DEM) is generated by
interpolated the ground points using Kriging interpolation. By subtracting the corresponding value in
the generated DEM, the non-ground points are normalized [33]. The z value of a point in normalized
points indicates the relative height from ground to this point. If a point is located on the top of a tree,
its height represents the height of the tree.

3.3.2. Hierarchical Segmentation of the Normalized Point Clouds

In most conditions, there is horizontal spacing between individual trees and the spacing of the
tree top is larger than the spacing of the tree bottom. According to this assumption, the individual
trees in the normalized point clouds are segmented hierarchically from top to bottom using a growing
strategy proposed in [34]. After the individual tree is segmented, the individual tree height is obtained
by finding the highest point of one point segment. The crown diameter is estimated by fitting the
individual tree segment on the horizontal plane using a circular region.

4. Results

4.1. Reconstruction of the Point Clouds in Mapping Frame

The trajectory was estimated by integrating image sequence, IMU and GNSS data. As shown in
Figure 6a, the green line was the estimated trajectory, and colorful points were triangulated 3D tie
points. There were 909,442 triangulated tie points evenly distributed in the study area. We only used
tie points observed in three or more images in the proposed bundle adjustment. To detect the outliers
of tie points observed in three or more images, “three-ray points” error was used. The coordinates of
3D tie points observed in more than three images were adjusted according to redundancy, resulting
in a more reliable solution [35]. Figure 6b showed the observability of all remained 3D tie points. As
images were captured at 5 Hz and had a wide field of view, more than 80% tie points could be observed
in more than 10 images, resulting in reliable adjustment results. However, check-points in the forest
can hardly be observed by the UAV images due to the occlusion of tall and dense vegetation, especially
for the plantation. Thus, the accuracy of the GNSS and IMU aided bundle adjustment in the study area
was not directly evaluated with check-points. However, in the proposed method, reconstructing good
point cloud is relying on an accurate result of GNSS and IMU aided bundle adjustment. Therefore,
the accuracy of the bundle adjustment could be validated indirectly by evaluating the accuracy of the
reconstructed point cloud.

Using the estimated trajectory, the low-cost point clouds were reconstructed accurately by
projecting the laser measurements from laser scanner frame to the mapping frame as shown in Figure 7.
The point density of reconstructed point clouds was 11.85 points per m2. A visual inspection indicated
that the point clouds were of good quality, with fairly low noise. We also reconstructed the point clouds
using the trajectory merely relying on GNSS and IMU data via a loosely coupled Kalman filter. The
comparison of these two point clouds was shown in Figure 8. Due to the poor performance of low-cost
IMU, point clouds reconstructed using trajectory estimated by loosely coupled filtering of GNSS
and IMU measurements were with high noise, and suffered from significant distortion as shown in
Figure 8b. With the aid of the image information, distortion was removed using the proposed method,
demonstrating the improvement of data quality and the effectiveness of the proposed data integration.
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Figure 8. Comparison of the point clouds reconstructed using different methods. (a) Location of the
randomly selected comparison area. (b)The point clouds reconstructed using trajectory estimated by
loosely coupled Kalman filter and the proposed method.

4.2. Individual Tree Measurement

Individual trees were segmented using the point clouds collected by the low-cost ULS. The
individual tree segmentation results of these 15 sample plots are illustrated in Figure 9. The green
triangles indicate detected trees. The circles with black line indicate the tree crowns. Starting from the
top of a tree, a target tree can be segmented by including nearby points and exclude points of other trees
according to their relative spacing. Using this segmentation strategy, points with a spacing larger than
a specified threshold are excluded from the target tree; points with spacing smaller than the threshold
are classified based on a minimum spacing rule. The threshold should be approximately equal to
the crown radius (e.g., 2 m used in the experiments). According to the individual tree segments, tree
height and crown diameter were estimated and plotted using boxplot as shown in Figure 10.
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5. Discussion

5.1. Comparison of the Point Clouds Quality from Different Platforms

To validate the feasibility of the low-cost ULS system for forest applications, we compared the
low-cost point clouds with ground truth data collected by the commercial system. We first visually
compared the two point clouds by overlaying the low-cost point clouds and the ground truth data.
Part of the overlapping results is shown in Figure 11. Visually, the two data overlapped well, showing
a comparable data quality of the low-cost system with the commercial system. For further comparison,
the 15 sample plots were selected to further evaluate the feasibility of the low-cost point clouds. Plots
from different point clouds were compared by calculating the canopy height distribution (CHD) and
fitting Weibull distribution curves. Comparison of three typical plots with different height levels
(low, median, high) is shown in Figure 12. Due to the fact that the low-cost data were collected in
winter and the ground truth data were collected in summer, the leaf points of the low-cost point
clouds were relatively sparse, and the ground points of the low-cost point clouds were relative dense,
resulting in the difference between the Weibull distribution curves. Visual inspection indicates that the
low-cost point clouds provided a reliable CHD, which can be further used to calculate the individual
tree characteristics.
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5.2. Comparison of the Individual Tree Segmentation from Different Platforms

Individual trees of the selected 15 plots were segmented using the low-cost point clouds and
compared with the ground truth data derived from the commercial system. To evaluate the accuracy
of segmentation results, three indices (“recall”, “precision”, and “F-measure”) were adopted in this study.
“recall” (r), “precision” (P) and “F-measure” (F) are defined as follow:

r =
TP

TP + FN
(8)

P =
TP

TP + FP
(9)

F =
2 ∗ r ∗ P

r + P
(10)

where TP (True Positive) was the number of individual trees that were detected correctly, FN (False
Negative) was the number of trees were not detected, and FP (False Positive) represented the number
of point cluster was detected as a tree that did not exist. The segmentation results derived from the
low-cost system were overlapped with the ground truth first as shown in Figure 13. Then the results
were validated manually according to the following rules:

(1) If a detected tree center is located in a crown area of ground truth, it is treated as TP.
(2) If more than one detected tree centers (over-segmentation) are located in one crown of ground

truth, only one detected tree is treated as TP, and the other ones are treated as FP.
(3) If a detected tree center (under-segmentation) is located in more than one crown area of ground

truth, it belongs to the closer crown of ground truth.
(4) If a detected tree center is not located in any crown area of ground truth, it is treated as FP.
(5) If no detected tree center is located in a crown area of ground truth, it is treated as FN.

Table 2 indicated that out of 673 reference trees, 566 trees were successfully detected using the
low-cost point clouds. However, the recall of Plot 13, and 14 (0.48 and 0.47) was significantly lower
than the average value (0.84). The trees in Plot 13 and 14 were mainly Maple and Weeping willow,
which were relatively low and had more deciduous leaves in winter. The laser scanner (VLP-16)
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produced a 9 to 15 cm footprint (from 30 to 50 m distance), which was approximately ten times bigger
than the typical ALS laser scanner. Thus, individual tree segmentation may fail (low recall) due to
less laser reflection on the vegetation in these two plots because of the limitation of the low-cost
laser scanner and the sparse leaves. Overall, the average detection precision and recall were 0.87
and 0.84, respectively, showing the feasibility of the low-cost ULS system in individual tree detection
and segmentation.
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Table 2. Results of Individual Trees Segmentation in 15 Sample Plots.

Plot ID Reference Trees Detected Trees TP1 FN2 FP3 recall Precision F-Measure

1 50 46 43 7 3 0.86 0.93 0.89
2 53 50 46 7 4 0.87 0.92 0.89
3 51 46 44 7 2 0.86 0.96 0.91
4 37 44 34 3 10 0.92 0.77 0.84
5 50 53 48 2 5 0.96 0.91 0.93
6 48 52 46 2 6 0.96 0.88 0.92
7 40 50 38 2 12 0.95 0.76 0.84
8 40 46 36 4 10 0.90 0.78 0.84
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Table 2. Cont.

Plot ID Reference Trees Detected Trees TP1 FN2 FP3 recall Precision F-Measure

9 27 29 26 1 3 0.96 0.90 0.93
10 26 35 24 2 11 0.92 0.69 0.79
11 34 40 33 1 7 0.97 0.83 0.89
12 34 35 33 1 2 0.97 0.94 0.95
13 52 26 25 27 1 0.48 0.96 0.64
14 53 26 25 28 1 0.47 0.96 0.63
15 78 75 65 13 10 0.83 0.87 0.85

Overall 673 653 566 107 87 0.84 0.87 0.85
1 TP: True Positive; 2 FN: False Negative; 3 FP: False Positive.

5.3. Comparison of the Individual Tree Characteristics Estimation Using Different Platforms

To evaluate the accuracy of the individual tree height estimation results using the low-cost ULS
system, we compared the results with the ground truth data derived from the commercial system.
Figure 14 shows the scatterplot for the validation of the low-cost system and different distributions
presented by a boxplot. Tree height estimated by different platforms showed a strong linear relationship
(Pearson’s correlation (Pearson’s r) = 0.999). The coefficient of determination (R2) and root-mean-square
error (RMSE) of low-cost system for tree height estimation were 0.998 and 0.323 m, respectively,
illustrating that tree height estimation using the low-cost system worked well compared with the
commercial system. It satisfied the accuracy level of the tree height measurement [36].

Remote Sens. 2019, 11, x FOR PEER REVIEW 16 of 20 

 

11 34  40  33  1  7  0.97  0.83  0.89  
12 34  35  33  1  2  0.97  0.94  0.95  
13 52  26  25  27  1  0.48  0.96  0.64  
14 53  26  25  28  1  0.47  0.96  0.63  
15 78  75  65  13  10  0.83  0.87  0.85  

Overall 673  653  566  107  87  0.84  0.87  0.85  
1 TP: True Positive; 2 FN: False Negative; 3 FP: False Positive. 

5.3. Comparison of the Individual Tree Characteristics Estimation Using Different Platforms 

To evaluate the accuracy of the individual tree height estimation results using the low-cost ULS 
system, we compared the results with the ground truth data derived from the commercial system. 
Figure 14 shows the scatterplot for the validation of the low-cost system and different distributions 
presented by a boxplot. Tree height estimated by different platforms showed a strong linear 
relationship (Pearson’s correlation (Pearson’s r) = 0.999). The coefficient of determination (R2) and 
root-mean-square error (RMSE) of low-cost system for tree height estimation were 0.998 and 0.323 m, 
respectively, illustrating that tree height estimation using the low-cost system worked well compared 
with the commercial system. It satisfied the accuracy level of the tree height measurement [36]. 

 
Figure 14. Comparison of the tree height estimated using different platforms. (a) Scatterplots of tree 
height derived from Kylin Cloud and the commercial ULS. (b) Boxplots of tree height derived from 
Kylin Cloud and the commercial ULS. 

To evaluate the accuracy of the tree crown diameter estimation using the low-cost ULS system, 
we compared the results with the ground truth data derived from the commercial system. Figure 
15a,b shows the scatterplot and crown diameter distributions for the validation of the low-cost system. 
Crown diameter estimated by different platforms showed a low linear relationship (Pearson’s r = 
0.345). The R2 and RMSE of low-cost system for crown diameter estimation were 0.119 and 0.612 m, 
respectively. In the scatter plots, there were obviously two outliers, namely, Plot 13 and Plot 14, 
respectively. As discussed before, trees in Plot 13 and 14 were mainly Maple and Weeping willow, 
which were relatively low and have more deciduous leaves in winter. Thus, there were relatively 
fewer points collected from the trees because of the limitation of the low-cost laser scanner and the 
sparse leaves. This may result in failures of individual tree segmentation and inaccurate crown 
diameter calculation. Figure 15c,d showed the scatterplot and crown diameter distributions of the 
plots except Plot 13 and Plot 14. By eliminating the two outliers, crown diameter estimated by 
different platforms showed a high linear relationship (Pearson’s r = 0.898). The R2 and RMSE for crown 
diameter estimation were 0.806 and 0.195 m, respectively, which indicated that tree diameter 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

Commercial ULS Tree Height (m)

K
yl

in
 C

lo
ud

 T
re

e 
H

ei
gh

t (
m

)

Tr
ee

 H
ei

gh
t (

m
)

Commercial ULSKylin Cloud 

 Pearson’s r=0.999
R2=0.998
RMSE=0.323

 y=0.964x+0.985

(a) (b)

Figure 14. Comparison of the tree height estimated using different platforms. (a) Scatterplots of tree
height derived from Kylin Cloud and the commercial ULS. (b) Boxplots of tree height derived from
Kylin Cloud and the commercial ULS.

To evaluate the accuracy of the tree crown diameter estimation using the low-cost ULS system,
we compared the results with the ground truth data derived from the commercial system. Figure 15a,b
shows the scatterplot and crown diameter distributions for the validation of the low-cost system.
Crown diameter estimated by different platforms showed a low linear relationship (Pearson’s r = 0.345).
The R2 and RMSE of low-cost system for crown diameter estimation were 0.119 and 0.612 m,
respectively. In the scatter plots, there were obviously two outliers, namely, Plot 13 and Plot 14,
respectively. As discussed before, trees in Plot 13 and 14 were mainly Maple and Weeping willow,
which were relatively low and have more deciduous leaves in winter. Thus, there were relatively fewer
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points collected from the trees because of the limitation of the low-cost laser scanner and the sparse
leaves. This may result in failures of individual tree segmentation and inaccurate crown diameter
calculation. Figure 15c,d showed the scatterplot and crown diameter distributions of the plots except
Plot 13 and Plot 14. By eliminating the two outliers, crown diameter estimated by different platforms
showed a high linear relationship (Pearson’s r = 0.898). The R2 and RMSE for crown diameter estimation
were 0.806 and 0.195 m, respectively, which indicated that tree diameter estimation of the low-cost
system worked well for the most plots, showing the high potential of the low-cost system for 3D
forest mapping.
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Figure 15. Comparison of crown diameter estimated using different platforms. (a) Scatterplots of
crown diameter derived from Kylin Cloud and the commercial ULS. (b) Boxplots of crown diameter
derived from Kylin Cloud and the commercial ULS. (c) Scatterplots of crown diameter derived from
Kylin Cloud and the commercial ULS without the outliers. (d) Boxplots of crown diameter derived
from Kylin Cloud and the commercial ULS without the outliers.

5.4. Deficiencies and Future Work

In this paper, a GNSS and IMU aided SfM was performed to obtain the accurate trajectory. Then
the laser scanning points were reconstructed in mapping frame according to the estimated trajectory.
However, laser scanning data was not used in the trajectory estimation step. As reported by some works
of simultaneous localization and mapping (SLAM), with the depth information from the laser scanner,
visual-laser SLAM could achieve better trajectory accuracy [37,38]. Establishing correspondences of
the image tie points and laser scanning points, and adding them in the adjustment may achieve better
results. As reported by [39], they use laser control information for camera calibration. But only the
laser scanning points distributed on the planar area were selected as the “good points”. Thus, the main
difficulty lies in the correspondence establishment and selection. If we attach an image tie point with a
laser depth, the raw laser depths should be interpolated as shown in Figure 16. The interpolated depth
is reliable in the planar area (e.g., roof, ground). However, it is not reliable in the non-planar area
(e.g., tree). Hence, using correspondences of image tie points and laser points may result in unreliable
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optimization in a forest environment. Therefore, how to combine the image tie points and laser points
for trajectory estimation in forest environment is worth being explored.Remote Sens. 2019, 11, x FOR PEER REVIEW 18 of 20 

 

 

Figure 16. Illustration of attaching tie points with laser depth. (a) Depth interpolation for a tie point 
on the image plane. (b) Reliable interpolation in the planar area. (c) Unreliable interpolation in the 
non-planar area. 

Individual tree segmentation is performed merely based on the reconstructed laser scanning 
points in this paper. Image sequences collected by the low-cost ULS is not used for the forest 
application. As reported by [40], individual tree segmentation will benefit from the spectral 
information. Thus, individual tree segmentation by fusing images and point clouds will also be 
explored in the future. 

6. Conclusions 

The low-cost ULS system is a newly developed tool for collecting 3D information in a cost-
effective way. However, 3D forest mapping with the low-cost ULS is still a great challenge because 
of the poor performance of the low-cost sensors. In this paper, we investigated the feasibility of the 
low-cost ULS for 3D forest mapping and compared the low-cost ULS system with a high-end 
commercial system. First, to overcome the poor performance of low-cost sensors, we proposed a 
multisensory integration manner for reconstructing point clouds accurately. Second, individual trees 
were segmented using the point clouds reconstructed by the proposed multisensory integration. 
Then the individual tree characteristics (e.g., tree height and crown diameter) were estimated 
according to the segmented trees. Results indicated that the low-cost ULS system achieved 
comparable accuracy of tree height and crown diameter with that of the high-end commercial system. 
However, for the mapping results of low and complex trees, there was still a gap between the data 
quality of low-cost UAV system and high-end commercial system because of insufficient point 
density. In general, the low-cost ULS system has shown a high potential for 3D forest mapping, even 
though 3D forest mapping using low-cost ULS system requires further research. 

Some issues are still worthy of attention. With the development of laser technology, many low-
cost laser scanners with longer measurement range (e.g., 200 m) and smaller footprint have been 
produced. They promote the performance of low-cost ULS systems and are more efficient for 
mapping in forest. What is more, the proposed trajectory estimation and individual tree segmentation 
have not taken advantage of the multisensory data. Thus, (1) trajectory estimation combining laser 
and image information; (2) individual tree segmentation by fusing images and point clouds will be 
explored in the future. 

Author Contributions: J.L., B.Y. developed the methodology and the low-cost ULS system; J.L., Y.C., X.F., L.C., 
Z.D. conceived and performed the experiments. All of the authors contributed to the writing and reviewing of 
the manuscript. 

Funding: This study was jointly supported by the National Science Fund for Distinguished Young Scholars (No. 
41725005), National Natural Science Foundation Project (No. 41531177), and National Key Research and 
Development Program of China (No. 2016YFF0103501). 

Acknowledgments: The authors wish to thank Senlei Li, Yuanwen Yue for their excellent technical support of 
UAV. 

Figure 16. Illustration of attaching tie points with laser depth. (a) Depth interpolation for a tie point
on the image plane. (b) Reliable interpolation in the planar area. (c) Unreliable interpolation in the
non-planar area.

Individual tree segmentation is performed merely based on the reconstructed laser scanning
points in this paper. Image sequences collected by the low-cost ULS is not used for the forest application.
As reported by [40], individual tree segmentation will benefit from the spectral information. Thus,
individual tree segmentation by fusing images and point clouds will also be explored in the future.

6. Conclusions

The low-cost ULS system is a newly developed tool for collecting 3D information in a cost-effective
way. However, 3D forest mapping with the low-cost ULS is still a great challenge because of the poor
performance of the low-cost sensors. In this paper, we investigated the feasibility of the low-cost ULS
for 3D forest mapping and compared the low-cost ULS system with a high-end commercial system.
First, to overcome the poor performance of low-cost sensors, we proposed a multisensory integration
manner for reconstructing point clouds accurately. Second, individual trees were segmented using
the point clouds reconstructed by the proposed multisensory integration. Then the individual tree
characteristics (e.g., tree height and crown diameter) were estimated according to the segmented trees.
Results indicated that the low-cost ULS system achieved comparable accuracy of tree height and crown
diameter with that of the high-end commercial system. However, for the mapping results of low and
complex trees, there was still a gap between the data quality of low-cost UAV system and high-end
commercial system because of insufficient point density. In general, the low-cost ULS system has
shown a high potential for 3D forest mapping, even though 3D forest mapping using low-cost ULS
system requires further research.

Some issues are still worthy of attention. With the development of laser technology, many
low-cost laser scanners with longer measurement range (e.g., 200 m) and smaller footprint have been
produced. They promote the performance of low-cost ULS systems and are more efficient for mapping
in forest. What is more, the proposed trajectory estimation and individual tree segmentation have not
taken advantage of the multisensory data. Thus, (1) trajectory estimation combining laser and image
information; (2) individual tree segmentation by fusing images and point clouds will be explored in
the future.
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