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Abstract: Accurate estimation of forest aboveground biomass (AGB) is important for carbon
accounting. Forest AGB estimation has been conducted with a variety of data sources and prediction
methods, but many uncertainties still exist. In this study, six prediction methods, including Gaussian
processes, stepwise linear regression, nonlinear regression using a logistic model, partial least squares
regression, random forest, and support vector machines were used to estimate forest AGB in Jiangxi
Province, China, by combining Geoscience Laser Altimeter System (GLAS) data, Moderate Resolution
Imaging Spectroradiometer (MODIS) data, and field measurements. We compared the effect of three
factors (prediction methods, sample sizes of field measurements, and cross-validation settings) on
the predictive quality of the methods. The results showed that the prediction methods had the most
considerable effect on the prediction quality. In most cases, random forest produced more accurate
estimates than the other methods. The sample sizes had an obvious effect on accuracy, especially
for the random forest model. The accuracy increased with increasing sample sizes. The random
forest algorithm with a large number of field measurements, was the most precise (coefficient of
determination (R?) = 0.73, root mean square error (RMSE) = 23.58 Mg /ha). Increasing the number
of folds within the cross-validation settings improved the R? values. However, no apparent change
occurred in RMSE for different numbers of folds. Finally, the wall-to-wall forest AGB map over the
study area was generated using the random forest model.

Keywords: aboveground biomass; prediction model; number of samples; cross-validation; remotely
sensed data

1. Introduction

Forest ecosystems play a pivotal role in the global carbon cycle, and the contribution of the forest
to carbon cycle is often quantified by forest aboveground biomass (AGB) [1]. AGB has been identified
as a biodiversity variable suitable for estimating ecosystem functions [2]. There is particular interest
in mapping forest AGB so that spatial variations in carbon stock and ecosystem functions can be
monitored across a range of scales.

Forest field measurements are an essential prerequisite for biomass estimation. Most researchers
assume that field measured data, which are also called reference data, are the most accurate. The field
measured data are used to develop biomass estimation models, compare different biomass estimation
models, and conduct uncertainty analysis [3]. Accordingly, the size of the reference data set could be
a crucial factor influencing the precision of forest AGB prediction. The collection of large amounts
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of reference data is time-consuming and laborious, so understanding how field sample size impacts
the reliability of biomass estimation models would be helpful. Ecologists aiming to generate more
accurate estimations of forest AGB would benefit from knowing the suitable field sample size [4].

The sparse availability of field measurements requires the fusion of multiple sources of remote
sensing data to improve the precision of large area AGB mapping. Three types of remote sensing data
are available for biomass estimation: optical images, active sensor radar data, and Light Detection and
Ranging (LiDAR) data [5]. Several passive optical remote sensing have been applied for estimating forest
AGB such as Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat Thematic Mapper (TM),
QuickBird, and RapidEye [6-12]. Most previous studies used a single image in the peak growing season
to predict variables for biomass estimating, which might lead to the saturation issue [13]. The use of
seasonal time series data could potentially improve accuracy for biomass estimating. Landsat, with a
spatial resolution of 30 m, is close to the area of the field plots. However, cloud-free, good-quality TM
images for each scene and each period are often lacking, especially for large areas in tropical regions.
A spatial mismatch between the field measurement plots and the resolution of TM images will influence
the performance of biomass modeling. Some studies calculated the mean reflectance froma3 x 3or5 x 5
TM pixel window for biomass estimation to reduce the influence of spatial mismatch [10]. The MODIS
data products have a series of spatial resolution, such as 250 m, 500 m, and 1000 m. MODIS vegetation
indices are the primary variables for biomass estimation in large areas or in local areas where clear TM
images are not available. Fine spatial resolution images, such as RapidEye with a 5 m x 5 m resolution,
were also examined for their effectiveness at improving biomass estimation [14]. The results indicated
that RapidEye data are not suitable for AGB estimation. The field measurement plot sizes are too large for
fine spatial resolution images, resulting in large spectral variation due to the heterogeneity in the forest
stand site [4]. Therefore, direct use of fine spatial resolution images in biomass estimation is uncommon.
Many studies used the L band of Synthetic Aperture Radar (SAR) for biomass estimation [11,15,16].
However, like optical remote sensing, radar data often suffer from the saturation effect. According to
previous studies, the saturation points for optical remote sensing are less than 70 Mg/ha, and for a radar
range, from 30 to over 300 Mg/ha based on the use of different wavelengths [17-19].

LiDAR provides an accurate estimate of forest vertical structure information, which is a critical
variable for AGB estimation. LiDAR does not suffer from signal saturation even with large biomass
levels. The Geoscience Laser Altimeter System (GLAS) staged in the Ice, Cloud, and land Elevation
Satellite (ICESat) is the only available spaceborne LiDAR system, and the GLAS-based waveform
can be used to estimate forest AGB on a large scale [14,20-25]. Its synergistic use with other types
of remote sensing technology for wall-to-wall biomass mapping is necessary due to the spatially
discrete characteristics of GLAS. For example, Xi et al. [22] estimated continuous forest heights by
assimilating the MODIS image with GLAS sample plots, and a regression relation was used to estimate
the forest AGB based on the continuous forest canopy height and leaf area index (LAI) derived from
Landsat TM imagery. Huang et al. [23] first estimated forest canopy height from GLAS data, and then
allometric models were applied to GLAS data to predict forest AGB at the footprint level. Finally, the
spatially continuous AGB was estimated by relating the GLAS footprint AGB to variables derived
from Landsat images and Phased Array L band Synthetic Aperture Radar (PALSAR) data. The study
showed that the allometric models and height predicted used GLAS contributed a large proportion of
the total error. Instead of linking biomass data with canopy height measured via GLAS, Su et al. [8]
directly estimated forest AGB using the GLAS full-waveform variables based on statistical models.
The above-mentioned studies used various methods to invert biomass based on in situ AGB samples,
GLAS data, and other remotely sensed data, which are useful for regional forest AGB estimation. Note,
the impact of reference data size and the setting of the validation method on the model performance
should be considered when selecting a suitable method.

In addition to the selection of remote sensing variables when estimating forest AGB, another
critical step is to identify an appropriate algorithm for building a biomass estimation model [11,26].
Since remote sensing cannot measure AGB directly, algorithms for estimating AGB have been
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developed through linking reference data to the potential variables derived from remotely sensed
images [27]. Empirical algorithms are widely used for forest AGB estimation, which include parametric
and nonparametric algorithms. Parametric algorithms assume that the relationship between biomass
and prediction variables derived from remote sensing data have explicit model structures that can be
specified. Examples of these are simple or multiple linear regression models, and nonlinear models.
After the regression model relating the forest AGB and the dependent variables has been developed, the
regional biomass can be easily predicted based on the model and the remotely sensed variables [28-30].
However, forest AGB is affected by many factors, and predicting the relationship between AGB and
remote sensing variables is difficult using parametric algorithms. An alternative approach is to use
nonparametric algorithms (e.g., K-nearest neighbors, random forest, and support vector machine)
to estimate AGB with remote sensing data [31-37]. Nonparametric algorithms predict the model
structure in a data-driven manner instead of explicitly predefining the model structure.

Uncertainty analysis for forest AGB estimates is important [38]. The root mean square error (RMSE)
and the coefficient of determination (R?) are often used to assess the accuracy of biomass estimates.
Traditionally, the data are split into two parts: one to develop the model, and one for the evaluation.
Cross-validation is widely used to assess the forest AGB estimates using reference data. One of the
common types of cross-validation is k-fold cross-validation. In this method, the reference data are
randomly partitioned into k equal sized subsamples. Of the k subsamples, k — 1 subsamples are used as
the training data, and the remaining single subsample is retained as the validation data to test the model.
The cross-validation process is then repeated k times, with each of the k subsamples used exactly once as
validation data. The k results can then be averaged to produce a single estimation [39]. In practice, not all
earlier studies included cross-validation or similar analyses of model performance. Instead, some studies
reported the predictive accuracy for the data that were applied to fit the biomass model, for which a larger
error is to be expected [40]. The value of k in cross-validation settings varied across different studies,
which may affect the model diagnostics. Therefore, the model accuracy reports should be treated carefully
when comparing different studies. The effect of cross-validation settings were tested in this study.

Despite many studies conducted on forest AGB estimation, various uncertainties remain in the
current model estimates. Comparing the existing studies is difficult due to the diversity of data
sources, modeling methods, and calculating standards. In this study, we compared the performance
of prediction methods for estimating forest AGB while varying the sample size of the reference data
and the cross-validation settings. Six commonly used modeling algorithms were applied to estimate
AGB through the integration of ground inventory data, ICESat/GLAS measurements, and optical
imagery. Our main objectives were: (1) to evaluate the influence of the modeling algorithms, sample
data sizes, and cross-validation settings on biomass estimation performance; (2) compare the modeling
algorithms for forest AGB density estimation for the study area; and (3) map spatially continuous
regional forest AGB using the selected biomass model through a combination of forest inventory data
and remote sensing data.

2. Materials

2.1. Study Area

This study was conducted in Jiangxi Province, Southeast China (Figure 1). The MODIS land
cover product (MOD12Q1) was applied as the vegetation classification data, as shown in Figure 1 [41].
This province is located at 24°29’ to 30°04'N and from 113°34’ to 118°28'E. Jiangxi Province has an
area of 1.67 x 10° km? and a population of 45 million. It is located in a subtropical moisture monsoon
climate zone and has an annual average temperature of ~16.3-17.5 °C and annual total precipitation
of ~1341-1943 mm. The topography of Jiangxi is characterized by mountainous regions in the east,
south, and west; plain and drainage in the north; and hilly and basin areas in the central part. Jiangxi
Province currently has the second largest total forested area in China. According to the latest forest
survey data, Jiangxi Province has a forest area of 1.021 x 10° km?, with rich vegetation and typical
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subtropical evergreen broadleaf forests. Needle leaf forests, mixed needle and broadleaf forests,
evergreen broadleaf forests, broadleaf mixed evergreen and deciduous forests, bamboo forests, and
shrublands dominate the forested land.
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Figure 1. The location (upper left) of Jiangxi Province and its vegetation distribution.
2.2. Field Measurements

Forest reference data are critical for biomass estimation. In this study, the reference data were
obtained from the Jiangxi Province section of National Forest Resource Inventory database for
China [42]. The dataset was collected around 2006 (Figure 1). The plots were uniformly distributed
over the forested land. Portable global positioning system (GPS) instruments and static differential
GPS are widely used in field investigation [42]. The positioning error of the GPS was less than 7 m.
Tree species were identified and the diameter at breast height (dbh) was measured for every tree with
a dbh > 5 cm. Tree height was measured for 3-5 average trees in each plot. Heights were estimated by
height-diameter models for trees that had not been measured in height. The biomass of each tree in
the plots was estimated via allometry models for each tree species [43]. The biomass of each plot was
the sum of the biomass predictions of all trees in the plot.

2.3. LiDAR Data

The GLAS staged in the ICESat emits a 1064 nm laser pulse at an elliptical ground footprint of
~64 m in diameter, and the echo waveform of the laser pulse is recorded by the sensor system [44].
The ellipsoidal footprints of ~65 m in diameter were spaced every 170 m along the track and at tens of
kilometers across tracks [45]. In this study, we selected GLAS data from the operating periods L2B
and L3A (from February 2006 to November 2006) for our forest AGB mapping procedure. Two GLAS
products, GLAO1 and GLA14, were downloaded from the ICESat/GLAS data pool and we recorded
the full-waveform, surface elevation, location, and data quality for each laser shot. Four criteria were
applied to the GLAS footprints to ensure their quality: (1) cloud free, (2) no saturation effects, (3) greater
signal to noise ratios (SNRs), and (4) not significantly higher than the land surface elevation [46].
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Pre-processing included error elimination, data decompression, voltage conversion, and filtering.
The waveform was filtered using wavelet transform, which removes high-frequency noise and smooths
the data. The leading edge extent, trailing edge extent, and waveform extent were computed from the
full-waveform information of each laser shot. These three variables have been shown to be correlated
with canopy height variability, terrain slope, and canopy height, respectively [47]. The methods used
here to extract the GLAS waveform characteristics and correct the terrain followed those used by
Xi et al. [22]. The wavelet analysis method was used to position the peak of the waveform and to
extract waveform length information of the vegetation height peak.

2.4. MODIS Normalized Difference Vegetation Index Product (MOD13Q1)

Both the MODIS and Landsat TM data were downloaded and analyzed. Cloud-free, good-quality
TM images that covered the study area in 2006 were lacking. The correlation coefficients between
biomass and TM-Normalized Difference Vegetation Index (NDVI) were much less than MODIS-NDVI
during March and September 2006. Therefore, we selected MODIS-Terra MOD13Q1 data as the source
of the NDVI data. MOD13Q1 data are provided every 16 days at a 250-m spatial resolution. Jiangxi
Province is covered by 3 MODIS path/row tiles (h28v05, h28v06, and h27v06). The data were corrected
for the geometric and radiometric distortions of the images to the standard Level 1G before delivery.
In this study, to explore the effectiveness of seasonal time series data for estimating forest AGB, the
data from 15 MODIS images were acquired in different seasons (spanning from 81st to the 305th day
of the year) for each path/row tile.

2.5. MODIS Percent Tree Cover Product (MOD44B)

The vegetation continuous fields collection (MOD44B) was used as the source of tree cover
percentage data, which contains proportional estimates for woody vegetation cover types. Tree cover is
predicted based on multi-temporal metrics for a full year using a regression tree model [48]. The RMSE
is reported to be 9.06% for this collection. These data were included as an explanatory variable for the
correlation between forest AGB and coverage.

3. Methods

The methodology used to estimate forest AGB in this study is shown in Figure 2. The major
steps include (1) extrapolating GLAS metrics and selecting MODIS variables (Section 3.1), (2) the
creation of subsamples using bootstrapping technique (Section 3.2), (3) estimating forest AGB using
different algorithms (Section 3.3), (4) comparing and evaluating the forest AGB estimating results, and
(5) mapping the forest AGB over Jiangxi Province using the selected AGB algorithm.

3.1. Variables from GLAS and MODIS Data for Biomass Estimation

Since the spatial distance between two GLAS footprints was large, the probability of the collected
reference data overlapping GLAS footprints was very small. To relate the GLAS variables to the
reference data, three variables (leading edge extent, trailing edge extent, and waveform extent) were
estimated into spatial continuous data using the random forest (RF) algorithm. Auxiliary predictors
such as cumulative NDVI, elevation, slope, climate factors, and vegetation map were used in the RF
modeling process. Detailed procedures used to estimate the three GLAS-derived variables can be
found in Su et al. [8] and Lefsky [47], so they will not be discussed here.
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Figure 2. Schematic representation of the main methods followed in this study. Moderate Resolution
Imaging Spectroradiometer (MODIS); Normalized Difference Vegetation Index (NDVI); diameter at
breast height (dbh); Ice, Cloud, and land Elevation Satellite (ICESat), Geoscience Laser Altimeter
System (GLAS), aboveground biomass (AGB).

For the NDVI data, most existing studies chose the NDVI in peak season to estimate forest AGB;
however, NDVI data collected at different times may provide different information regarding forest
structure. Therefore, the capabilities of NDVI before or after peak season for forest AGB estimation
should also be investigated. In this paper, correlation analysis was used to examine the relationships
between ground-measured forest AGB and NDVI at different times. Figure 3 shows the correlation
coefficients (r) between the forest field inventory biomass data and NDVI values at different times.
The NDVI values in spring and autumn were more closely related to AGB than in the peak season in
May, June, July, and August. In the peak season, the saturation issue for canopies with large density
reduced the correlation between NDVI and AGB. Although vegetation indices in the months of the
peak growth season have often been used in previous studies, they may not be the reasonable choice for
biomass mapping. Data in March before the green up date and in November after the leaf senescence
date are more closely related to AGB, because they contain information on tree stems and branches,
and their density is related to AGB. In this study, the r value between NDVI in spring and autumn
and AGB were larger (Figure 3). Therefore, NDVI in spring and autumn were selected as potential
variables in the forest AGB prediction model.

Finally, six predictors were selected based on earlier experience and the literature review, including
three GLAS variables, two NDVI, and the tree cover percent data. The value of these six predictors at
the site of the reference data was estimated, and a 801 x 7 matrix of responses and predictor variables
was prepared. The first column is reference data, and columns from the second to the seventh are the
six predictors. There were 801 reference data points, corresponding to 801 rows.
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Figure 3. Correlation coefficients (r) between biomass and NDVI on different dates.

3.2. Creation of Subsamples

Step 1: The matrix of the response and predictor variables was first ordered according to the
biomass values in the first column. Then, the matrix was subdivided into five equal size subgroups.
The size of the five subgroups was 1/5, where n = 801.

Step 2: Bootstrapping was used to create subsamples from the stratified dataset in step 1 [49].
Four sample size classes were generated to test the influence of sample size on the performance of
the prediction models. For each of the four desired sample size classes (nclass1 = n/4, nclass2 = n/3,
nclass3 = n/2, nclass4 = n), 500 datasets were generated using replacement. The stratification
procedure in step 1 ensured that samples from the full range of biomass values were included in each
bootstrapped dataset.

3.3. Biomass Modeling Methods

For each sample size class, the 500 input datasets were fitted by six prediction algorithms: Gaussian
processes (GPs), stepwise linear models (LMSTEP), partial least squares regression (PLS), nonlinear
regression using a logistic model (NRL), random forest (RF), and support vector machine (SVM).

GPs provide a probabilistic approach for learning generic regression problems with kernels [50]
and use a weighting strategy for the optimization, which is relevant to the predictor variables.
The inverse of the specific variable controlling the spread of the relations for each particular predictor
represents the relevance of that predictor variable. That is, the larger the variable, the more extended
the relationships along that predictor (i.e., containing less informative content).

LMSTEP regression removes the least correlated variables using an iterative strategy, and finally
obtains a regression model with the variables that most accurately explain the forest AGB [51]. In each
step, a variable is considered for addition to or subtraction from the set of explanatory variables based
on some pre-specified criterion, such as adjusted R? and the Akaike information criterion.

PLS is based on linear transitions from several original variables to relatively few orthogonal
factors or latent variables. It is useful for establishing predictive models when the predictor variables
are collinear [52]. As metrics extracted from GLAS may be collinear, a PLS model was developed.

NRL should not be confused with the binomial logistic regression that is often used with
categorical dataset. The mathematical form of the NRL model is given by [53].

SVM is a typical nonparametric algorithm [54] that transforms a nonlinear regression into a
linear regression using a kernel function. In this paper, the radial basis function kernel was selected
for forest AGB prediction, since it requires fewer parameters and can reduce the complexity of
numerical calculation.

RF regression has been successfully used in ecological remote sensing areas such as biomass
estimation. RF constructs numerous independent regression trees, and a bootstrapping sample is
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chosen for each regression tree. The regression tree continues to grow until it reaches the largest size.
The results are estimated by averaging the predictions of all regression trees [55].

For each of the prediction algorithms, as well as each sample size class, k-fold cross-validation
was performed, which produced the diagnostics RMSE and coefficient of determination (R?). In this
study, cross-validation was applied with three settings (3-fold, 5-fold, and 10-fold) to test the influence
of different settings on the results. The relative error index was calculated using the following equation
to measure the accuracy of prediction:

1 & k.
Relative error = — Z u )
ni'zh Vi

where y;* is the predicted AGB, y; is the observed value, and 7 is the number of validation samples.

Analysis of variance (ANOVA) was used to estimate the contribution of each of the three factors
(prediction method, sample size, and number of folds) and their interactions to the model diagnostics
(R? and RMSE) [56].

4. Results

4.1. ANOVA Results

The maximum sum of squares values are the reported for the prediction method (76.34) and
sample size (12.65) as well as for their interaction (18.52) (Table 1). The sum of squares value indicates
the contribution of the factor in describing the variance of R> and RMSE; a larger value indicates a
more important contribution. The number of folds in the k-fold cross-validation settings was less
important than the prediction method and sample size, as indicated by the smaller sum of squares
(3.58). ANOVA results for RMSE showed the same pattern, with the prediction model and sample
size as well as their interaction having the larger sum of squares values (5013184, 22048, and 53584,
respectively). The number of folds did not notably contribute to the model diagnostics (the sum of
squares value was 148 for RMSE).

Table 1. Results of analysis of variance (ANOVA) conducted to explain the variance of R? and root
mean square error (RMSE) obtained from different experiments.

Response Variable Df RMSE (SumSq) R? (SumSq)
Pred_meth 5 5,013,184 76.34
Num_samp 3 22,048 12.65

Folds 1 148 3.58
Pred_model: Num_samp 15 53,584 18.52
Pred_model: Folds 5 396 0.61
Num_samp: Folds 3 30 0.08
Pred_model: Num_samp: Folds 15 183 0.11
Residuals 35,952 781,472 55.99

Pred_meth = prediction method, Num_samp = the sample size, Folds = number of folds in the k-fold cross-validation,
Df = degree of freedom.

4.2. Model Performance

Figures 4 and 5 summarize the model performance obtained from all model runs. The violin plots
in Figure 4 illustrate the distribution of the R? values obtained by five-fold cross-validation for the
six methods. Each of the methods had four sample size classes. The R? values for each of the four
sample size classes were obtained from 500 bootstrapped models. The median R? values for each of
the four sample size classes are presented with colored horizontal stripes. Class 1 to 4 from left to
right are shown in red, green, orange, and blue respectively. The violin plots in Figure 5 illustrate
the distribution of the RMSE values, and explanations follow those for Figure 4. A comparison of the
six prediction methods indicated that RF provided more accurate AGB estimates than the other five
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methods, especially when a larger sample size was available. Concerning the sample size, a stable
increase in accuracy and decrease in RMSE were observed along with an increasing number of sample
units (colored horizontal stripes from left to right). Exceptions were the RMSE values of the GP and
PLS methods, where a slight increase in RMSE was observed when switching from class 3 to class 4
with the largest number of sample units. The absolute differences in R?> and RMSE between RF and the
second model ranged from 0.04 and 23.78 Mg/ha (class 1, second model GP) to 0.18 and 32.16 Mg/ha
(class 4, second model GP). The absolute differences in R> and RMSE between RF and the least accurate
prediction model (PLS) were 0.24 and 40.02 Mg/ ha, respectively. GP and SVM produced larger R? and
smaller RMSE when compared to NRL, PLS, and LMSTEP in most cases.

1.00 9

0.754

B 0504 = - - Se

0.254

0.004

GP LMSTEP NRL PLS RF SVM
methods

Figure 4. The distribution of R? values using different prediction approaches.

1004

754

504

RMSE(Mg/ha)

GP LMSTEP NRL PLS RF SVM
methods

Figure 5. The distribution of RMSE values using different prediction approaches.

A downside was that RF showed the largest variances in the obtained R? values when four classes
of sample size were all used (Figure 4). However, the ranges of the variation in R?> and RMSE reduced
when the sample sizes increased (Figure 6).

The modeling accuracy results of the six prediction methods created with different cross-validation
settings are presented in Figures 7 and 8. The violin plots in Figures 7 and 8 illustrate the distribution of
R? and RMSE values, respectively, from the 500 bootstrapped models as obtained by 3-fold, 5-fold, and
10-fold cross-validation for each method using the class 4 dataset. The median values of R? or RMSE
for 3-fold, 5-fold, and 10-fold cross-validation are presented from left to right in red, green and orange
horizontal stripes. In most cases, a larger number of folds led to an obvious increase in R2. However, the
difference in RMSE resulting from the different number of folds was very small (Figure 8).
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Figure 6. Modeling accuracy results from random forest (RF) AGB models with different sample size
(class1 = n1/4, class2 = 1/3, class3 = n/2, class4 = n, n = 801) for (a) R? and (b) RMSE.
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To validate the prediction accuracy of the different methods, the mean relative error indices were
calculated (Table 2). The sample sizes in class 1 to class 4 were n/4, n/3, n/2, and n respectively.
A prediction technique with a smaller relative error is more accurate. The results showed that RF was
more accurate than the other methods, followed by GPs, NRL, SVM, LMSTEP, and PLS in sequence.
The relative error decreased when the sample sizes increased in the RF method, but this trend was not
obvious for the other methods.

Table 2. The means of relative error for Gaussian processes (GPs), stepwise linear models (LMSTEP),
nonlinear regression using a logistic model (NRL), partial least squares regression (PLS), random forest
(RF), and support vector machine (SVM).

GP LMSTEP NRL PLS RF SVM
Class 1 0.23 0.41 0.25 0.47 0.15 0.33
Class 2 0.23 0.41 0.27 0.49 0.14 0.32
Class 3 0.25 0.44 0.28 0.53 0.12 0.33
Class 4 0.25 0.45 0.24 0.26 0.10 0.29

4.3. Mapping Forest Aboveground Biomass

The spatial distribution of forest AGB over the study area is shown in Figure 9, which was obtained
using the RF model with the largest number of sample units. The forest AGB density was distributed
mainly within the 60-180 Mg/ha. Figure 9 shows clear spatial patterns in the study area of the AGB
values. Greater AGB values were distributed in South and Northeast Jiangxi, which are mountainous
areas. The total AGB of all forest types estimated with RF was 9.19 x 10® Mg in Jiangxi Province.
A comparison between the different forest types showed that the evergreen broadleaf forest had the
largest mean AGB value (112.57 Mg/ha). Evergreen needle-leaf and deciduous needle-leaf forests had
smaller mean AGB values (32.40 and 25.63 Mg/ha, respectively), and the least AGB estimates were
found in shrubland (15.25 Mg/ha).
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Figure 9. Forest AGB map from the random forest model and largest sample size (class 4).
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5. Discussion

Although many studies of forest AGB estimation have been conducted, substantial uncertainties
remain in the current estimations. In this study, we analyzed the effects of the prediction method
(six cases), sample size (four cases), and cross-validation (three cases) on the prediction quality of
forest AGB estimation from LiDAR and optical remote sensing data. We generated subsamples using
stratified bootstrapping. The ANOVA method was used to rank the importance of the three factors on
the accuracy of the biomass predictions reflected in the computed diagnostics (RMSE and R?).

The ANOVA results showed that the prediction method was the most important factor affecting
the quality of the biomass estimation. This is in line with earlier studies [33,57,58] that reported notable
differences in the performance of the prediction methods.

The performance of the six prediction methods was compared in this study, including three
parameter methods (LMSTEP, PLS, and NRL) and three nonparametric methods (GPs, RF, and SVM).
Among the parameter methods, LMSTEP and PLS are classified as linear regression and NRL is
classified as nonlinear regression. RF provided the greatest estimation accuracy in terms of the largest
R?, the smallest RMSE, and the smallest relative error, especially when a larger sample size was used.
This result complements those of other studies [10,40,57,58]. One of the main advantages of RF is
its flexibility due to its conceptual design, which differs from all the other five models. A downside
of RF may be that when a small size sample is applied in the algorithm, the variance of estimates is
considerable. An increase in sample size can lead to a reduction in the range of variation. Among the
three nonparametric algorithms in this study, GPs generated suboptimal predicted results in terms of
R?, RMSE, and relative error. The SVM showed the least favorable accuracy, which is consistent with
the conclusions from recent studies [59,60].

The linear regression methods LMSTEP and PLS, provided less accurate estimates than the
nonparametric algorithms RF, GPs, and SVM, in most cases, which was in line with the findings of
other studies [34]. In addition, no improvement occurred when larger size samples were used for these
two methods. This can be explained by the fact that the relationship between remote sensing predictors
and observed forest biomass is likely to be nonlinear and therefore not well modeled. Linear regression
based on remote sensing data may be more suitable for predicting vegetation AGB in other biomes
such as grasslands. The NRL was more accurate than LMSTEP and PLS in terms of relative error.

The sample size was less important than the prediction method for explaining the variance of
model diagnostics RMSE and R?. The R? values increased along with the increasing number of sample
units for the nonparametric algorithms, especially for RE. The RMSE decreased with increasing number
of sample units, except for GPs from class 3 to class 4. Therefore, model estimates can be improved
by increasing the sample size rather than improving the prediction algorithms. Since field data are
costly to obtain and limited, other choices such as realistic synthetic datasets present an interesting
alternative to field data [61]. Huang et al. [23] constructed allometric models using limited field plots
and transmitted the ecological information to GLAS data. They enriched the AGB samples into the
number of GLAS spots. They also stated that more training samples may be helpful in developing a
robust RF model for mapping forest AGB, despite the uncertainties introduced by AGB in GLAS spots.

The number of folds was found to have an effect on the explained variance in R?. Increasing
the number of folds within the cross-validation settings improved the R? values, especially for the
three nonparametric algorithms (RF, GPs, and SVM). For model runs with a large number of folds
(for example, 10 folds) may produce larger R? values, which overestimate the predictive power of the
models. We concluded that the small sample size of the hold out sample during the cross-validation
using a large number of folds caused this result. Most previous studies ignored the influence of the
number of folds. When the results from different studies are compared, the number of folds in the
cross-validation settings should be considered. RMSE values were more robust than R? values to the
validation settings, and no apparent change occurred in RMSE under different numbers of folds.

The results should be interpreted cautiously as the study was limited to one site. This conclusion
may change if other sites with different forest structure, tree species, and topography are tested.
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In addition, ANOVA assumes that the dependent variable is subjected to non-negligible error.
The response variables in this study were sample-based estimates subjected to sampling variability.
ANOVA was used as a diagnostic tool in this study, but the significance level was small. Furthermore,
the allometric models led to uncertainties in biomass estimates. We tried to improve the accuracy
via using allometric models for each tree species of the study area. However, there were still some
uncertainties because tree densities, soil texture, and climate conditions may influence the growth of
tree height and dbh, thus influencing the accumulation of biomass.

Further studies could investigate whether other datasets, such as radar, could alter our finding.
An additional research issue to be tackled is the comparison of methods relative to the width of
the confidence intervals rather than to the quality of fit of the models to the data. Considering the
limitations of the available reference samples, improving the statistical algorithms or developing a
new prediction method would be helpful for minimizing the predictive error of forest AGB. We are
now developing a new prediction algorithm, called high accuracy surface modeling, which has the
potential to improve the prediction accuracy.

6. Conclusions

We illustrated the forest AGB estimation through a comparative analysis of different prediction
methods (GPs, NRL, LMSTEP, PLS, RE, and SVM) based on field measurements, LIDAR and optical
data. The effects of the prediction method, sample size, and cross-validation setting were compared
and analyzed using two remote sensing datasets combined with stratified bootstrapping. We found
that the prediction method had a considerable effect on the accuracy of the biomass estimates, being
more important than sample size. The number of folds in the cross-validation setting was a less
important factor than prediction method and sample size. The model diagnostic R? was influenced
notably by the number of folds. The estimate produced with the RF algorithm was more accurate
than the other five AGB models in this study. In most cases, the increase in the sample size led to an
increase in the accuracy of the estimation. The RF algorithm notably benefits from a larger sample
size. Finally, the forest AGB was mapped using the RF model with all the reference data. Choosing an
appropriate prediction method is recommended to improve the predictive accuracy. The influence of
the number of folds should be considered when comparing model performance.
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