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Abstract: Surveying of woody debris left over from harvesting operations on managed forests is
an important step in monitoring site quality, managing the extraction of residues and reconciling
differences in pre-harvest inventories and actual timber yields. Traditional methods for post-harvest
survey involving manual assessment of debris on the ground over small sample plots are
labor-intensive, time-consuming, and do not scale well to heterogeneous landscapes. In this paper, we
propose and evaluate new automated methods for the collection and interpretation of high-resolution,
Unmanned Aerial Vehicle (UAV)-borne imagery over post-harvested forests for estimating quantities
of fine and coarse woody debris. Using high-resolution, geo-registered color mosaics generated from
UAV-borne images, we develop manual and automated processing methods for detecting, segmenting
and counting both fine and coarse woody debris, including tree stumps, exploiting state-of-the-art
machine learning and image processing techniques. Results are presented using imagery over a
post-harvested compartment in a Pinus radiata plantation and demonstrate the capacity for both
manual image annotations and automated image processing to accurately detect and quantify coarse
woody debris and stumps left over after harvest, providing a cost-effective and scalable survey
method for forest managers.

Keywords: Unmanned Aerial Vehicles (UAVs); computer vision; forestry; Coarse Woody Debris
(CWD); Convolutional Neural Networks (CNNs)

1. Introduction

The survey and quantification of woody debris left over from harvesting operations on managed
forests is an important part of forestry operations. Post-harvest debris plays an important role
in maintaining the quality of a site, by promoting nutrient and water retention, and providing
a temperature-stabilized micro-climate for soil organisms that promote forest regrowth [1,2].
Post-harvest debris also has potential use as a source of biofuel [3]; accurate quantification of debris
left over from harvesting allows for appropriate quantities of debris to be extracted, while ensuring
sustainable forest management is achieved. The quantification of post-harvest Coarse Woody Debris
(CWD) (i.e., larger pieces of debris arising from a tree’s stem, as opposed to small branches or slash) is
also an important step in reconciling differences between pre-harvest estimates of timber yield (i.e.,
derived from either in-field or LiDAR-based census/imputation [4]) and actual timber yield achieved
at harvest. Differences between estimated and actual yields may arise due to errors in pre-harvest
inventories or sub-optimal harvesting operations (i.e., sub-optimal bucking of trees into logs [5]) that
result in variations in the amount of CWDs left over at a site after harvest. The ability to quantify
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CWDs at a post-harvest site therefore potentially allows for a “reconciliation” between these causes to
be made, which is an important step in improving future inventories (i.e., by correcting or fine-tuning
inventory models).

Measurements of post-harvest debris have traditionally been made using manual
counting/sampling methods in the field such as sample plot inventory and line-transect intercept
methods [6]. Although these methods are accurate at the scale of the sample plot, and allow for a
distinction to be made between coarse versus fine woody debris, they are extremely labor-intensive
and do not necessarily provide good estimates of debris over large areas. Methods based on
aerial photography and/or remote sensing are often less time-consuming and labor-intensive
than their ground-based counterparts, and have been used to measure piles of residue [7] or
scattered debris [8–11] using imagery, LiDAR, synthetic aperture radar, spectrometer data, or some
combination of them. The majority of existing remotely sensed-based approaches rely on either manual
interpretation of imagery or indirect inference of woody debris quantity (i.e., volume, ground cover
etc.) from properties of the image such as surface height and image texture, owing to the limited
spatial resolution available from, for example, manned aircraft. Low-flying Unmanned Aerial Vehicles
(UAVs), or “drones”, provide the ability to collect high-spatial-resolution imagery for quantifying
debris in clear cut areas, but challenges remain in the interpretation of this imagery into measurements
of debris of different size classes in an automated way.

In this paper, we propose and evaluate new automated methods for the collection and
interpretation of high-resolution, UAV-borne imagery over post-harvested forests for estimating
quantities of fine and CWD. Using high-resolution, color geo-registered mosaics generated from
UAV-borne images, we develop manual and automated processing methods for detecting, segmenting
and counting both fine and CWD, including tree stumps. Automated methods are developed based on
deep learning image processing techniques such as Convolutional Neural Networks (CNNs) [12,13] for
detecting individual stumps/logs and segmenting the surface of the woody material from background
image data. Algorithms are then developed to measure key geometric parameters from each piece of
woody debris/stump (i.e., length, diameter) to evaluate the total volume of woody material, while
providing a distinction between classes of debris (i.e., coarse vs. fine debris). Results of these methods
are compared against sample plot measurements of debris made in the field and measurements derived
from manual annotation of high-resolution aerial images.

1.1. Remote Sensing and Airborne Measurements of Woody Debris

On a post-harvest site, there are typically two conditions that logging residue is left in:
individual pieces dispersed across the site or piles created by machines. Estimation of volume from
machine-created piles has been performed using both ground-based and remotely sensed methods.
Measuring pile volume is simplified by the fact that occluding material is often separated from
piles, and the dimensions of each pile can be measured directly for example by using geometric
measurements, terrestrial laser scanning [14] and/or terrestrial/aerial photogrammetry [15] on
manually segmented piles. Trofymow et al. [7] compared the accuracy in volume estimation of
machine-piled logging residue between simple ground-based geometry calculations and remote
sensing methods using LiDAR/orthophotography from manned aircraft, and concluded that remote
sensing methods gave superior results. Eamer and Walker [8] developed an automated approach
to segment logs using a combination of LiDAR and orthophotography to quantify the sand storage
capacity of logs. In this work, the logs were scattered, rather than being in piles, and thus they required
a faster approach, using supervised classification to identify the logs. Logs were easily discernible due
to the homogeneous background color of the sands and no distinction was made between coarse and
fine woody debris.

Regarding detecting and mapping woody debris in scattered and unstructured environments,
several approaches have been developed. Smikrud and Prakash [11] developed an approach to
detecting scattered large woody debris in aerial photographs in riverine environments. An automatic
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image processing pipeline was developed consisting of high-pass filtering of the second principal
image component, low-pass filtering, and thresholding to differentiate between wood and no-wood
areas. This method of classification does not distinguish between different sizes of woody debris.
Similarly, Ortega et al. [10] used a photogrammetry approach with orthophotos captured from a digital
camera mounted on a tandem minitrike (a form of low-cost aircraft) to map the aerial coverage of large
woody debris and snags in rivers. Neither of these approaches were able to estimate the actual volume
of woody material nor distinguish between different size classes of debris. Regarding remote sensing
methods that indirectly measure woody debris, Huang et al. [9] developed an approach to mapping
CWD areal coverage in a post-fire forest using low spatial resolution airborne Synthetic Aperture
Radar (SAR) and Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensors by regressing a
relationship between CWD quantity and sensed backscatter parameters. They achieved a relatively
low correlation coefficient of 0.54 between CWD areal coverage and sensor parameters.

UAVs or ‘drones’, a low-cost alternative to manned aircraft, have also been explored as a
potential method of estimating the volume of post-harvest CWD residue. UAVs have the potential to
operate at lower altitudes than manned fixed-wing aircraft or helicopters (hence producing higher
resolution imagery), but have a lower payload carrying capacity, and hence are typically restricted
to carrying imaging sensors in practical operations (as opposed to LiDAR, which typically requires
the use of a larger, (manned) aircraft). Davis [16] used UAV-borne imagery and structure from
motion/photogrammetry to create 2 cm per-pixel imagery and digital surface models of a post-harvest
forest and automatically estimate the volume of both scattered and machine-piled log residue. The
DSM was computed before log pixels were separated from the background using a mean-shift
segmentation and thresholding of the red channel of the orthomosaic. Once a CWD mask was
obtained, the DSM of the estimated background and logs were subtracted from one another and
multiplied by the cell resolution. The results were varied, with the UAV predicted volume error for
individual 10 m × 10 m plots ranging from 1% to 842% (over-estimation) when compared with ground
measurements. Challenges remained in the algorithm adapting to varying backgrounds, with poor
performance observed when the background had high reflectance in the red channel of the imagery.
Regarding works focused on tree stumps, Puliti et al. [17] used an iterative region-growing approach
to detect tree stumps in photogrammetry collected from a UAV. Results showed that tree stumps
could be detected with an accuracy of 68–80%. Samiappan et al. [18] used traditional computer vision
techniques such as Hough transform with drone imagery to count tree stumps with an accuracy of
77% and estimate their diameter with an RMSE of 4.3 cm.

1.2. Advances in Computer Vision and Deep Learning

In recent years there have been several breakthroughs in image recognition within the field of
computer vision. CNNs, a deep learning approach developed decades ago for automatic recognition of
zip code data [12], have had a resurgence of interest with the advent of increasingly powerful computers
and the availability of large datasets. CNNs have been used to achieve record breaking performance on
many benchmark datasets, using large parameterized models with multiple layers of feature learners.
CNNs learn generic low-level features such as edges in their early layers and higher-level features
such as shapes which are more class specific in their upper layers [12,13]. The adoption of CNNs in
computer vision have signaled a shift in the literature from analytical, model-based approaches where
features are engineered towards data-driven approaches where features are learnt.

The field of remote sensing has progressively adopted CNN approaches for tasks involving
image recognition [19]. While object detection from high altitudes remains a more difficult task than
traditional object detection from ground-based platforms, CNNs have been used to detect objects such
as aircraft, ships, oil tanks, basketball courts and tennis courts from aerial and satellite images [20–25].
Pixelwise labelling of images captured from airborne and spaceborne platforms has been approached
using CNN architectures designed for semantic segmentation in the computer vision literature.
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1.3. Contributions of Our Approach

Past approaches to measuring woody debris in post-harvest forests using remotely sensed data
have had limited success in working in environments where debris is scattered, or at distinguishing
between different size classes of debris (i.e., fine versus coarse debris), which is a necessary step
in estimating the total volume of debris when debris is scattered. In this paper, we exploit recent
developments in computer vision and deep learning to perform accurate detection and segmentation
of individual pieces of woody debris in an automatic way, using high-spatial-resolution imagery
available from a UAV, hence allowing for the quantification of woody debris volume over unstructured
sites. The use of image interpretation (as opposed to relying on additional sensors such as LiDAR)
facilitates the use of lightweight UAVs for survey and data collection, providing a cost-effective
assessment methodology.

2. Materials and Methods

2.1. Study Area and Imagery Surveys

In October 2015, fieldwork was undertaken at the Canobolas State Forest (33◦22′S 149◦02′E), New
South Wales, Australia over a harvested compartment of pine trees (Pinus radiata). Harvesting at the
site had occurred in May 2015, and the site was characterized by a combination of coarse and fine
woody debris, partially senesced and live pine needles, bare ground, weeds, and shrubs (see Figure 1a).

Figure 1. (a) Post-harvest residue at fieldwork site at Canobolas State Forest. (b) Falcon-8 UAV used to
collect airborne datasets during fieldwork.

At the study site, nine sampling quadrats were selected, each a 10-by-10 m square region of
ground. Plots were characterized visually to have either a ‘low’, ‘medium’ or ‘high’ quantity of debris
and plot locations were selected to achieve three plots for each of these classifications. Plot locations
were measured by tape measure and marked out using survey poles. Survey-grade (cm-accuracy)
Differential-GPS (DGPS) was used to measure the locations of the plot corner coordinates, and these
were marked using 15-by-15 cm purple visual targets to ensure plot boundaries were visible from
the air during UAV survey. Subsequent to the UAV flights, in situ measurements of woody debris
were made by hand in the field. Survey-grade DGPS was used to measure the location of each and
every stump located in each plot, with diameters and heights of each stump measured by hand using
a tape measure. Within each plot, all pieces of wood with diameter greater than 2.5 cm were manually



Remote Sens. 2019, 11, 733 5 of 29

measured in the field using calipers and a tape measure. The length and diameter of all pieces was
recorded, and wood marked with spray paint to avoid double-counting.

An AscTec Falcon-8 UAV, (Figure 1b) was flown over the study site to collect geo-referenced
color imagery. The UAV uses eight controlled rotors and an on-board navigation system using inertial
sensors and GPS to provide fully autonomous trajectory following control over a pre-arranged flight
path. Takeoff and landing of the UAV was performed manually by an experienced remote aircraft
pilot from a 1-by-1 m wooden board (placed on an adjacent road) with a laptop-based ground station
operated from the back of a parked four-wheel drive. The AscTec Falcon-8 can fly at altitudes from
10–100 m with an endurance of approximately 15 min. The UAV carried a consumer-grade color digital
camera with a resolution of 24 MPix, which provided a resolution on the ground of approximately
2 mm per pixel at 15 m altitude and 4 mm per pixel at 30 m altitude. A single flight at 30 m altitude was
used to cover the entire study site of approximately 4.5 hectares and four targeted flights at 10–15 m
altitudes (variations due to changes in topographic elevation) were used to cover all of the 10-by-10 m
sample plot areas at the highest possible resolution (approximately 2 mm per pixel). All UAV flights
were performed in the morning of the 7 October 2015.

Collected images were post-processed using a structure-from-motion/ photogrammetry software
package Agisoft Photoscan (http://www.agisoft.com/) (also using on-board UAV navigation data)
to produce high-resolution geo-referenced imagery mosaics and digital surface models (Figure 2).
All parameters in the software were set to “high-accuracy” and “high-resolution” and the digital
surface model was constructed using the “height field” option.

Figure 2. Post-processed high-resolution imagery maps using data collected from a UAV of post-harvest
fieldwork sites. (a) Imagery mosaic from 30 m altitude UAV flight. (b) Oblique view of photo-textured
3D topographic model generated from imagery using structure from motion. (c) Zoomed-in view of
high-resolution imagery mosaics illustrating detailed features.

http://www.agisoft.com/
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2.2. Manual Analysis of High-Resolution Imagery

For each of the imagery mosaics over the 10 × 10 m plots, stumps and all visible woody material
with a diameter greater than 2.5 cm were manually annotated using ImageJ version 1.41 (https:
//imagej.nih.gov/ij/) and visualized using QGIS version 2.8 (http://www.qgis.org). CWD was
defined in this study as larger pieces of debris, with a diameter >10 cm, arising from a tree’s stem or
large branch, as opposed to the smaller branches (Fine Woody Debris (FWD)), foliage or bark. The
coordinates of all visible CWD and the outlines of stumps were annotated by manually clicking on
the imagery coordinates corresponding to the outline of each piece of visible wood or stump, hence
creating a separate closed polygon in the two-dimensional coordinates of the image for each piece
(Figure 3). All polygon coordinates were transformed from image coordinates into horizontal Northing
and Easting coordinates in meters using the geo-registration parameters of the imagery mosaic.

Figure 3. Imagery and annotation data for plot number 4 of 9: photomosaic layer with overlaid plot
boundaries (10 × 10 m quadrat) and digitally annotated locations/boundaries of all coarse woody
debris with diameter greater than 2.5 cm.

For each polygon corresponding to a piece of woody debris (coarse and fine debris, excluding
stumps), scripts were used to compute the major and minor axes of the polygon in the horizontal X-Y
plane. Polygons were then approximated as cylinders with length provided as the major axis of the

https://imagej.nih.gov/ij/
https://imagej.nih.gov/ij/
http://www.qgis.org
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annotated polygon and diameter from the minor axis of the polygon. The volume (V) of each piece
was then calculated using Equation (1):

V = π
d2

4
l (1)

where l is the length and d is the diameter. To clarify, d here represents the average diameter. The same
calculation for volume was applied to the list of in situ, manually measured wood from the field
(diameters and lengths) to yield reference measurements of total log timber volume for each plot.

For visible stumps, the outlines recorded in the annotated polygons were used to calculate the
average diameter and cross-sectional area at the height for which the tree had been felled. In order
to estimate the volume of each tree stump from the annotated polygon, information about the
stump height was extracted from the digital surface height model imagery layer provided through
structure-from-motion image processing. For each annotated stump (circular polygon drawn around
stump boundary), another polygon was automatically created, a doughnut shape, extending out 10 cm
from the stump boundary. The height of the stump was calculated by taking the mean elevation
of all pixels from the digital surface model imagery layer inside the original stump polygon and
subtracting the minimum elevation measurement from within the second doughnut shaped polygon
(approximating a region of ground around the stump). This height was then multiplied by the
cross-sectional area of each stump to approximate the stump volume.

2.3. Automated Stump Detection

The Faster-RCNN [26] object detector was used to detect tree stumps in the plot images.
The detector uses a CNN to extract feature maps from the image. Bounding boxes are proposed
from the feature maps using a Region Proposal Network (RPN). These bounding boxes are then
fed back into a CNN for classification of their content and refinement of the box coordinates. The
parameters of Faster-RCNN are learnt by training the network with images of objects that have been
annotated with a bounding box and classification label. The network parameters are incrementally
optimized to reduce a cost that is a function of the error of the predicted bounding box coordinates
and class label.

The Faster-RCNN stump detector was pre-trained on the MS COCO dataset [27], before being
fine-tuned on the annotated stump data. The MS COCO dataset was curated for computer vision
research and contains a variety of generic object classes. It is common practice to use a dataset such as
MS COCO to pre-train networks, as many of the low-level image features, such as edges and lines,
generalize to any object class. The parameters used for training the stump detector, selected based on
those used in [26], are summarized in Table 1. The annotated stump data consisted of positive and
negative examples of stumps. Negative examples were split into three separate classes, including logs,
the pink markers used to identify boundaries in the field and a background class which contained
images of things that looked similar to stumps (for example, patches of dirt that had a circular shape
or small sections of gravel). This was to reduce the number of false positive detections.

Table 1. Parameters for training the Faster-RCNN stump and log detectors and log segmentation CNN.

Parameter Value

Faster-RCNN detectors Segmentation CNN

Backend CNN Resnet-101 [28] -
Learning rate 0.003 0.0001
Decay rate 0 0
Batch size 1 20
Momentum 0.9 -
Num steps 10,000 5000
Optimizer Stochastic Gradient Descent (momentum) Stochastic Gradient Descent (Adam) [29]
Input dimensions 600× 600× 3 250× 250× 3
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The plot mosaics were large (each side was roughly between 5800–8800 pixels). Due to the
computational constraints of the Faster-RCNN network on the image size, once trained, the detector
was made to perform inference on a 600× 600 pixel sliding window. The coordinates of bounding
boxes corresponding to detections of stumps made in these windows were then converted to the global
plot coordinates. The sliding window was made to convolve over the image with a stride of 400 pixels
in both the horizontal and vertical directions, thus having an overlap of 200 pixels. This is because of
the high likelihood that all stumps are smaller than 200 pixels (i.e., 67.80 cm). The overlap was used to
guarantee a full view of every stump in at least one of the detection windows. This is important as the
detector was trained on full stumps rather than partial stumps. If there is no a priori knowledge of the
stump size, then a larger overlap can be used at the expense of computation time.

The overlapping sliding window introduced duplicate bounding boxes pertaining to partial and
full views of the same stumps from several different windows. Redundant boxes were eliminated by
leveraging the known shape of the stumps (a circle). Stumps detected from a full view are most likely
to be square, while those detected from a partial view are more likely to be rectangular. To suppress all
but the boxes associated with full views, boxes with close proximity i.e., their centers within 150 pixels
of each other, were grouped together and all boxes other than the squarest one (all sides closest to
being equal) were removed.

2.4. Automated CWD Volume Estimation

The pipeline for automatically estimating the volume of CWD from aerial imagery is divided
into three main steps: log detection, segmentation, and rectangle fitting. Scattered CWD in a plot are
detected and segmented at the pixel level, with rectangles then fitted to each log. By approximating the
logs as cylinders (which have a diameter that is constant in the image and depth axes), the rectangle
dimensions can be used to estimate the volume of each without the need for any DSM or other 3D
information. Section 2.4.1 gives an overview of the whole method and Sections 2.4.2–2.4.4 describe the
log detection, segmentation, and rectangle fitting and refinement components in more detail.

2.4.1. Summary of Algorithm

The overall process is comprised of a training and inference phase. In the training phase, a
Faster-RCNN CWD detector and segmentation network are individually trained on images extracted
from a given plot mosaic allocated for training. Once the models are trained, new plot mosaics are
passed through the pipeline for detection, segmentation, and rectangle fitting to estimate the volume
of CWD in the scene (the inference phase). The log detection module provides axis aligned bounding
boxes containing CWD and the segmentation module provides per-pixel identification of CWD. The
pixel identification has a finer spatial scale, but there are significant false positives as there is less object
knowledge used. The log detection uses object knowledge and hence has less false positives, but the
result is coarse. The rectangle fitting module fuses these two pieces of information together. Using
techniques from computational geometry, rectangular bounding boxes are fitted that are aligned with
the major and minor axes of the logs. By approximating the logs as cylinders, the dimensions of these
bounding boxes can be used to estimate the length and diameter (and hence volume) of each log.
Figure 4 shows a flowchart of summarizing the entire process.
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Figure 4. The overall process for CWD volumetric estimation, for an example plot. The Faster-RCNN
log detector is used to find bounding boxes in mosaic (a) for a given plot, to produce (b). The
segmentation model (Figure 5) is also applied to (a) to produce the segmented mosaic (c). The bounding
boxes are then used in conjunction with the segmented image to fit rectangles to logs (Figure 6), giving
(d). These rectangles are refined (Figure 7) to produce the final rectangles that are used to estimate the
volume of the CWD (e).

2.4.2. Log Detection

The Faster-RCNN object detector was used to localize the positions of CWD logs in the plot
images. The Faster-RCNN log detector was also pre-trained on the MS COCO dataset [27] prior to
being fine-tuned on the annotated log data. The parameters used for training the log detector are the
same as for the stump detector, summarized in Table 1.

The annotated data for training Faster-RCNN must contain both positive examples (i.e., images
of CWD) and negative examples (e.g., images of stumps, grass patches, etc.) to make it both robust
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and precise. In many cases, a single log might span multiple 600× 600 images, so the training data
must include partial views of logs as well as logs with occlusions. The specific details of the training
data are discussed in Section 2.6.

As explained in Section 2.3, the detector performs inference by sliding a 600× 600 pixel window
over the mosaic. Unlike in the case of stump detection, the size of many of the logs in the plots exceeds
600 pixels, so there is likely to be several bounding boxes allocated to a single log. For accuracy in the
rectangle fitting step, these bounding boxes need to overlap as much as possible. Thus, a small stride
(less than 600 pixels) is necessary. However, if the stride is too small, the process becomes much slower
and there is a greater chance of false positives. A stride of 100–200 pixels was found to work well in
the experiments in this study.

Another consideration is the size of the bounding box labels that Faster-RCNN is trained on.
For instance, a diagonal log could be labelled with either one large bounding box or several smaller
boxes that fit the log more tightly. If the boxes are too big, the chance of multiple CWD logs present
in a single box increases. This has a negative impact on the rectangle fitting stage, which will be
explained in more detail in Section 2.4.4. If, however, the boxes are too small, it will be more difficult
for Faster-RCNN to detect the logs as less contextual information is available. This trade-off was
explored in the experiments.

2.4.3. Segmentation

A segmenting CNN was trained to segment images into three classes: CWD, FWD (including
small branches still attached to CWD), and background (i.e., ground, grass, etc.). To achieve this, a
simple three-layer Fully Convolutional Network (FCN) was designed. The network architecture was
inspired by the FCN of [30] which maps input images to dense per-pixel labelled images. The FCN
of [30] was designed for segmentation tasks with scenes comprising of classes such as people, vehicles,
and animals. These objects typically require more context to classify, and hence the FCN downscales
the image resolution at each layer to increase the receptive field of the filters.

The CNN used for CWD segmentation in this work draws from the FCN, but has some
modifications (Figure 5). Firstly, it only has three layers. This was found to be adequate for the
given segmentation task and far more computationally efficient. Secondly, it has no downsampling
of the image and no loss in spatial resolution, and hence, finer predictions can be made. Fine-scale
predictions are necessary for accurate volumetric estimation. The trade-off for this is a smaller receptive
field, but this was found to be sufficient as images were acquired from a high altitude and the logs did
not require a large context to distinguish them from the FWD and background classes.

The architecture of the CNN used for segmentation consists of three convolutional layers. The first
layer has 32, 5× 5× 3 filters, the second layer has 64, 5× 5× 32 filters and the third layer has three,
5× 5× 64 filters. Each convolutional layer is followed by a ReLU layer [31] and a 2× 2 max pooling
layer. There are no fully connected layers, so the output is an image with the same dimensions as the
input, where each channel is a map of scores for one class (CWD, FWD, and background).

As in FCN, a per-pixel SoftMax function is applied at the output of the final convolutional layer.
This function normalizes the output of the network to appear similar to one-hot class labels, which are
binary vectors with a one at the class of the datum and zeroes at all other classes. During training, the
output of each SoftMax function is compared with one-hot class labels using the standard cross-entropy
loss function to optimize the network. The training parameters used for the segmentation CNN are
given in Table 1. For predictions during inference, the index of the maximum across the class axis of
the SoftMax layer output is computed for each pixel to get its segmentation label.

An issue with training the CNN is the vast class imbalance. The background class contains many
more samples than the CWD and FWD classes. To counteract this, each batch of images used to train
the CNN was balanced by weighting the pixels in the loss function so that each class contributed
evenly. To make the CNN more generalizable, the images in each batch were also augmented using
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rotations and flips. This increases the training set size and makes the CNN more robust to this type of
variation in the data.

The segmentation CNN does not have fixed input dimensions, so unlike Faster-RCNN the
image size during inference can be different to the image size during training. However, there is a
computational limitation on the size of images which can be passed through the network. Hence, for
computational efficiency, the CNN is trained on 250× 250× 3 images (where the third dimension is the
RGB channels), and a 1000× 1000 sliding window is input into the CNN during inference. Because the
segmentation is per pixel, no overlap is required for the sliding window. Hence, its stride for inference
is 1000 pixels.

Figure 5. Flowchart illustrating the segmentation network architecture. U and V represent the number
of rows and columns respectively of the input image patch, and f s is the filter size of the convolving
kernel. Some example input image patches and their corresponding segmentation masks predicted by
the network are shown (classes: green-CWD, blue-FWD, maroon-background).

2.4.4. Rectangle Fitting and Refinement

Once the Faster-RCNN log detector and segmentation CNN models are trained, they are applied
to the plot mosaic to output a set of bounding boxes containing CWD and a segmented mosaic,
respectively. The resulting bounding boxes are axis aligned in the north-east directions; additional
processing steps were required to estimate the length and diameter of each log (via rectangle fitting)
to calculate volume. The coordinates of a given bounding box are used to extract an image from
the segmented mosaic (Figure 6a). This segmented sub-image is binarized so that CWD pixels have
one value and the background and FWD pixels (including branches from logs) have another value
(Figure 6b). Connected components within the binarized sub-image are found, and any components
with fewer than 1000 connected pixels are removed as they are likely to be false positives (Figure 6c). A
convex hull is fitted around all remaining components in the sub-image (Figure 6d), and the rectangle
with the smallest area is fitted around the convex hull (Figure 6e). The result of this process is a
rectangle of known dimensions fitted roughly around each detected log.

This is followed by a refinement process of the rectangles, where non-realistic rectangles are
discarded. As logs should be rectangular rather than square, any rectangles that are too square or
unreasonably large are removed (Figure 7b). The former is achieved by removing any rectangle with
an aspect ratio close to 1 (greater than 0.8 and less than 1.2). The latter is done by removing any
rectangle whose smallest side is larger than 140 pixels (47.5 cm), since logs are expected to have at least
one short side (corresponding to their diameter if they are assumed to be cylindrical).

The size of many of the logs exceeds that of an image which can be passed into the log detector.
Hence, it is common to have several overlapping bounding boxes spanning a single log. Due to the
overlapping bounding boxes, there should be many overlapping rectangles. To unify them, similar
rectangles are grouped together (Figure 7c), where similarity is characterized by how close their centers
and angular orientations are within some tolerance. Two rectangles that belong to the same log should
be close together (within 150 pixels) and should be oriented in a similar direction (rotational disparity
within 10 degrees). The grouping is done by first seeding a group with a similar pair of rectangles and
then subsequently adding a new rectangle if it is similar to any rectangle in the group. New groups are
seeded if a similar pair is dissimilar to any other group. Two entire groups can also be merged together
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if they contain similar rectangles. The more the bounding boxes overlap, the easier the grouping
process is. Once this process of grouping is complete, each group of similar rectangles is merged into
one meta rectangle by fitting a convex hull around the corner points of all rectangles in the group, and
then finding the rectangle of minimum area that fits this convex hull.

Figure 6. The rectangle fitting process. An image (a) is extracted from the segmented mosaic using a
bounding box from the Faster-RCNN detector. The image is binarized (b) so that CWD is black and
FWD and background are white. Connected components with fewer than 1000 pixels, likely to be false
positives, are removed (c). A convex hull is fitted around the remaining CWD connected components
(d), and the rectangle with the smallest area that fits around the convex hull is fitted (e).

After merging, if there is a sufficient amount of overlap between resulting rectangles (greater than
0.75% of the smaller rectangle), this is likely due to two distinctly similar groups of rectangles that
correspond to the same rectangle, often resulting in a smaller rectangle within a larger one. In this
case, the rectangle with the smaller area is removed (Figure 7d). Finally, abnormally large rectangles
resulting from the merging process (those with no side shorter than 300 pixels i.e., 101.7 cm) are
removed. The diameter threshold for removing large rectangles in this step should be higher than for
the previous large rectangle removal step. This is because of the possibility of merged rectangles being
fitted to logs that are slightly curved or bent such that their apparent diameter is larger. The remaining
rectangles should each correspond to distinct logs, and their width and height should align with the
length and diameter of the logs. Once a rectangle has been fitted to each CWD log, its volume can be
estimated using Equation (1).
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Figure 7. The rectangle refinement process. The bounding boxes found are used in conjunction with
the segmented image to fit rectangles to logs (Figure 6), giving (a). Rectangles that are too square or
that have a short side that is unrealistically large are removed (b). The rectangles are then refined by
merging those with both similar orientations and close centers (c). Of the remaining rectangles, those
that overlap significantly with other rectangles or are unrealistically large are removed (d).

2.5. Implementation Details

Image processing routines were carried out on a 64-bit computer with an Intel Core i7-7700K
Quad Core CPU @ 4.20GHz processor and Nvidia GeForce GTX 1080Ti 11GB graphics card. The deep
learning framework used was Tensor Flow version 1.4.1 (in python).

2.6. Training Data for Automated Detection/Segmentation Algorithms

To train the Faster R-CNN detectors, 600× 600× 3 image crops were sampled from each plot
and given bounding box annotations. When labelling logs, two annotation styles were used. One set
of the annotations covered the entire log visible in each image. Thus, the number of images with
log annotations ranged from 10–20 per plot, and bounding box labels were more likely to contain
background noise, particularly of the logs were not aligned with the axes of the image crop. This
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method of training the detector is referred to as ‘large boxes’ in the rest of the paper. The other style
used much smaller (the length was capped at 6× the diameter of the log), tighter fitting bounding boxes
that were automatically generated from the per-pixel labels. In the case of a large log, several small
bounding boxes were used to annotate its different sections. Multiple translated views of the same
logs with bounding boxes were also used. Using this method, several hundred images of annotations
were generated for each plot. This method of training the detector is referred to as ‘small boxes’ in
the rest of the paper. For each plot, 30 additional images, containing solely background classes, were
annotated. The background classes comprised stump, grass (weed), patches of bare ground that
resembled stumps, marker, and FWD. These were used as negative cases to reduce the number of false
positive detections. The detector trained on the ‘large bounding boxes’ was also used as the stump
detector in the experiments (as stump was one of the background classes).

For the CWD detection, three types of detector were trained for the experiments: ‘small boxes,
stride 100’, ‘large boxes, stride 100’ and ‘large boxes, stride 200’. The ‘small boxes, stride 100’ detector
was trained using the small boxes described above and a stride of 100 pixels in the x and y directions
was used for the sliding window in the inference phase. The ‘large boxes, stride 100’ and ‘large boxes,
stride 200’ detectors were trained with the large bounding boxes described above. The stride for the
detector during inference was 100 and 200 pixels respectively. For the small bounding box case, there
were significantly more training examples than for the large bounding box scenario.

For the segmentation CNN, 1000 image crops were randomly sampled from the per-pixel labelled
mosaic for each plot. The stump labels were removed, leaving CWD, FWD, and background. Each
sampled image crop was 250× 250× 3.

2.7. Cross-Validation of Automated Stump Detection and CWD Volume Estimation Algorithms

Cross-validation, where the dataset is divided into varying testing and training partitions, was
used to validate how well the proposed approach generalized to datasets that it was not trained on. For
each fold of the cross-validation, two plots were used for training and seven plots were used for testing.
Since there were two distinct background colors in the plots captured by the UAV (Table 2), the plots
were grouped based on this color so that the models trained would be exposed to both backgrounds.
Plots 0, 1, 2 and 3 formed the group one and plots 4, 5, 6, 7, and 8 formed group 2. Each fold consists
of a combination of one plot from each group. This allows for a maximum of 20 folds (20 possible
combinations of plots). From this list of 20 folds, ten folds were selected at random. The combinations
of plots for these folds are listed in Table 3. The Faster-RCNN detector and Segmentation CNN models
were trained on data from the plot combinations associated with each fold. Inference using the entire
pipeline was then conducted on all other plots. The performance of the pipeline for each plot when
trained on each fold was reported in the results.

Table 2. Characteristics of plots used in experiments.

Plot Number Height ×Width
(Pixels)

Predominant
Background Color Density of FWD

0 6788 × 6726 brown low
1 6025 × 5970 brown medium
2 6705 × 6711 brown low
3 6779 × 6856 brown medium
4 8998 × 8966 green medium
5 8812 × 8712 green medium
6 5818 × 5816 green medium
7 6752 × 6679 green high
8 6669 × 6593 green high
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Table 3. Plot combination of each fold in cross-validation. Each detection and segmentation model
was trained on one fold. The first number of each pair of plots corresponds to a plot with a brown
background. The second number corresponds to a plot with a green background. Refer to Table 2 for
plot background colors. For each fold, all plots not used for training were used for validation.

Fold Number Plot Combination for Training

0 1.7
1 2.4
2 2.6
3 3.6
4 3.4
5 0.4
6 0.5
7 2.8
8 1.5
9 2.7

The motivation behind the autonomous algorithms was to reduce the large manual effort currently
required in the field to estimate the volume of CWD and locate stumps. While labelling images for
training an autonomous approach is already significantly easier than the usual field work, the number
of labelled plots used for training was kept low (two) to further reduce manual effort.

2.8. Evaluation Metrics for Automated Stump/Log Detection

A stump was considered detected if the pixel intersection over union, given by:

IoU =
area(Bpred ∩ Bgt)

area(Bpred ∪ Bgt)
(2)

between a ground truth bounding box Bgt and predicted bounding box Bpred was greater than 50% [32].
Using this measure for correct bounding box detection, the precision and recall for each class was
calculated. The precision and recall are given by:

precision =
TP

TP + FP
(3)

recall =
TP

TP + FN
(4)

where TP are the true positives, FP are the false positives and FN are the false negative matches with
a detection confidence threshold of 0.97.

For the logs, the detection accuracy was determined, as well as the accuracy of the dimensions
of the rectangles, as this was critical to estimating the volume. Because it was difficult for a single
rectangle to fit an entire log, the detection accuracy was relaxed such that partial log detections were
counted as long as the total intersecting area of rectangles and logs for rectangles covering a given log
summed to at least 50% of the log area. Thus, recall was the proportion of all logs that had at least half
of their area covered by predicted rectangles (such that the result was not skewed by having multiple
rectangles on a single log). The precision was the proportion of all predicted rectangles that belonged
to a detected log.

From the predicted rectangles that contributed to a log detection, the error in the length and width
dimensions of these rectangles was also determined. These were aggregated into histograms over all
folds and plots. Error associated with rectangles only fitting to partial logs were captured in these
statistics, as rectangles that only fit a partial log have a large error in their length dimension.

Regression analysis is used to analyze the relationship between the predicted and ground truth
plot volume for the different plots, with r2 used to determine the correlation. While the volume
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predicted from manual annotations of UAV imagery is compared with the volume calculated from the
field measurements, the volume predicted from the automated method is compared with the volume
predicted from the manual UAV image annotations. There are pieces of CWD that were missed in
the UAV manual annotation because they were completely covered by slash, but the objective of the
study was to evaluate the automated method in terms of what was visible from the air. A secondary
motivation for using the UAV manual annotation as a reference for the automated method is that
additional pieces of CWD outside of the marker region could be annotated, increasing the number of
samples for the study. This was done for plots 0, 1, and 2, which had few samples in the marked region.

3. Results

3.1. Comparison of Manually Annotated Debris to Field Measurements

The total estimated volume of CWD and stumps for each plot from the manual annotation of aerial
imagery was compared to the volumes calculated from manual field measurements, and regression
analyses performed. Figure 8a illustrates total plot log volume measured in the field (in situ) vs.
estimates of log volume derived from annotated imagery for each of the nine 10-by-10 m quadrats
(fallen logs/debris timber only, excluding stumps). The measurements derived from annotated imagery
had a very good correspondence (r2 = 0.958) to those measured in the field, suggesting that wood
counting from manually annotated imagery provides estimates of debris equivalent to the in situ,
manual measurements. Accounting for both the height and cross-sectional area of stumps, the total
volume of stump timber was calculated for each plot using both the in situ measurements and those
derived from aerial imagery (Figure 8b). The results indicated a relatively weak correspondence
(r2 = 0.707); this was found to be owing to the relatively inaccurate estimates of stump heights
(r2 = 0.374) even though there was a good correlation between stump cross-sectional areas (r2 = 0.971).
Taking the total timber volume for both stumps and logs/debris on the ground and adding them
together, Figure 8c illustrates the relationship between in situ vs. manual image annotation-derived
total timber volume for each plot. The correspondence between in situ measurements and aerial
imagery-derived measurements is high (r2 = 0.958), owing to the fact that logs/debris contributed
more significantly to the total timber in each plot than stumps.
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(a) Log Volume (b) Stump Volume

(c) Total Volume

Figure 8. Comparison of volume calculated from digital image annotations vs. in situ (field) measured
total plot log volume for (a) logs/CWD (excluding stumps), (b) stumps and (c) total stump/log volume
across nine plots. Blue line indicates a linear regression between the data points and red dotted line
shows a unit-slope line representing a perfect one-to-one relationship for comparison.

3.2. Automated Detection/Segmentation Results

Figure 9 shows a visualization of the detected stumps and predicted rectangles around logs, for
one fold of the cross-validation, for the large box, stride 200 training. The results are shown for a
handful of plots to showcase the performance of the approach with varying densities of FWD (from
low in plot 1 to high in plot 7).

Table 4 shows the precision and recall results for the stump detection, with the result for each plot
averaged over all folds of the cross-validation where that plot was used for testing. The precision and
recall scores are mostly high, with the lowest scores occurring for plots 4, 5, 7, and 8. Plots 0, 1, 3 and
6 had the highest precision scores across all folds, and likewise plots 0, 1, 2, 3, and 4 had the highest
recall scores across all folds.

Table 5 shows the precision and recall results for the rectangle fitting of CWD logs and Figure 10
shows the distribution of errors of the sizes of the fitted rectangles that were correctly detected, along
with the RMSE and distribution of the actual sizes of the CWD in Figure 11. The three different results
correspond to three different ways of training the Faster-RCNN object detector (see Section 2.6). The
small boxes, stride 100 results have relatively good recall and low errors for the diameter (Figure 10a)
and length (Figure 10d) of the predicted rectangles (over a quarter have a diameter error of less than
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10 cm, and 35% have a length error of less than 60 cm). However, the precision is low in comparison
to the other approaches. The large boxes, stride 100 results have comparatively good precision and
recall. The errors on the length of the rectangles are low (Figure 10e), with over half of the predicted
rectangles having an error of less than one meter. However, the diameter errors (Figure 10b) are higher
with the distribution skewed slightly to the larger errors. Finally, the large boxes, stride 200 results
have high precision and low errors for both the diameter (Figure 10c) and length (Figure 10f) of the
predicted rectangles, but its recall is slightly lower. In all results, the precision and recall of fitting
rectangles around the logs is lower than when detecting bounding boxes around the stumps.

Figure 12 shows the CWD volume estimation results. The figures show a comparison of plot log
volume estimated using manual annotations from the UAV imagery vs. plot log volume estimated
with the automated method outlined in Section 2.4 across nine plots. The blue line indicates a linear
regression between the data points with the r2 value for correlation given in each plot title. The red
dashed line shows a unit-slope line representing a perfect one-to-one relationship for comparison.
When trained with small bounding boxes and using a detection stride of 100 pixels, there was a very
low correspondence (r2 = 0.352) between the predicted volumes and those calculated from manual
annotations. There is a slightly stronger, but still relatively weak correlation (r2 = 0.572 for stride 100
and r2 = 0.514 for stride 200) when the detector was trained on large boxes.

The data points in the Figure 13 results have been calculated by scaling down the predicted
diameter of all logs (multiplying by 0.5 to generate Figure 13a, 0.45 to generate Figure 13b and 0.55
to generate Figure 13c). After this reduction in the diameter, the predicted log volumes are closer to
the ground truth values (the blue line is more similar to the red line). The reasoning for this choice of
scaling parameter is given in the discussion.

A summary comparing the correlations between different methods of plot CWD volume
measurement is given in Table 6. The results show that when the field measurements are used
as a reference, the method of manual annotation from UAV imagery (r2 = 0.958) is more accurate than
the method of automated annotation from UAV imagery (r2 = 0.587 when using big boxes and a stride
of 100). Also, the r2 values for the automated method and the field method are similar with the slight
difference expected to be the additional area in plots 0, 1, and 2 used for evaluating the automated
method against the manual UAV imagery method.

The runtimes for training and inference averaged over all folds are shown in Figure 14.
Training the stump and log object detectors were the most time-consuming parts of the process.
Once trained, inference was faster, particularly for finding the stumps. Inferring the log volumes took
longer than inference of stump position, but using a stride of 200 reduced the time by approximately
two thirds in comparison to using a stride of 100.

Table 4. Autonomous stump detection results for each plot, averaged over cross-validation folds.

Plot No. Precision Recall

0 0.977 ± 0.039 0.977 ± 0.039
1 0.928 ± 0.094 0.837 ± 0.070
2 0.866 ± 0.099 0.875 ± 0.051
3 0.905 ± 0.059 0.850 ± 0.050
4 0.713 ± 0.113 0.875 ± 0.047
5 0.707 ± 0.224 0.719 ± 0.093
6 0.971 ± 0.059 0.770 ± 0.037
7 0.666 ± 0.133 0.688 ± 0.060
8 0.815 ± 0.126 0.769 ± 0.094

mean 0.839 ± 0.112 0.818 ± 0.085
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(a) Plot 1 (medium FWD density) (b) Plot 7 (high FWD density)

Figure 9. Stump detection and CWD rectangle fitting results from fold number five on selected plots
((a) plot 1 and (b) plot 7) with varying densities of FWD. The results are using large bounding box
annotations to train the R-CNN object detector and a stride Sdetect of 200 pixels. The logs are fitted with
red rectangles and the stump detections are shown with blue boxes. The rectangles have not had their
diameters scaled.

Table 5. Autonomous CWD detection results for each plot, averaged over cross-validation folds. Three
different methods for detection are compared. The top precision and recall scores for each plot are
highlighted in bold.

Small Boxes, Stride 100 Large Boxes, Stride 100 Large Boxes, Stride 200

Plot No. Precision Recall Precision Recall Precision Recall

0 0.178 ± 0.096 0.375 ± 0.254 0.289 ± 0.121 0.375± 0.207 0.325± 0.234 0.333 ± 0.200
1 0.387 ± 0.174 0.426 ± 0.228 0.632 ± 0.206 0.491 ± 0.227 0.683± 0.242 0.509± 0.230
2 0.252 ± 0.049 0.578 ± 0.092 0.496± 0.072 0.678± 0.071 0.442 ± 0.091 0.467 ± 0.109
3 0.419 ± 0.207 0.490 ± 0.248 0.687± 0.265 0.594± 0.222 0.679 ± 0.244 0.552 ± 0.212
4 0.218 ± 0.062 0.635± 0.220 0.348 ± 0.118 0.619 ± 0.177 0.403± 0.204 0.492 ± 0.186
5 0.337 ± 0.062 0.435 ± 0.127 0.556± 0.111 0.560± 0.087 0.505 ± 0.123 0.394 ± 0.118
6 0.618 ± 0.168 0.646± 0.116 0.915 ± 0.091 0.635 ± 0.083 0.958± 0.083 0.573 ± 0.077
7 0.482 ± 0.088 0.680± 0.134 0.736± 0.116 0.664 ± 0.165 0.661 ± 0.102 0.516 ± 0.139
8 0.323 ± 0.117 0.392± 0.107 0.479 ± 0.108 0.340 ± 0.054 0.683± 0.166 0.359 ± 0.076

mean 0.357 ± 0.130 0.517 ± 0.112 0.571 ± 0.185 0.546± 0.117 0.593± 0.183 0.466 ± 0.080
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(a)Diameter error: small boxes, stride
100, RMSE = 0.275 meters.

(b)Diameter error: large boxes, stride
100, RMSE = 0.329 meters.

(c)Diameter error: large boxes, stride
200, RMSE = 0.250 meters.

(d)Length error: small boxes, stride 100,
RMSE = 1.715 meters.

(e)Length error: large boxes, stride 100,
RMSE = 1.573 meters.

(f)Length error: large boxes, stride 200,
RMSE = 1.553 meters.

Figure 10. Results for autonomous CWD rectangle fitting. The histograms are aggregated over all plots
and folds. Each column corresponds to a different training strategy. (a), (b) and (c) plot the rectangle
diameter error and (d), (e) and (f) plot the rectangle length error for the different strategies.

(a) CWD diameter distribution. (b) CWD length distribution.

Figure 11. Size distribution of CWD in terms of (a) diameter and (b) length.
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(a) Small bounding boxes, detector stride of 100 pixels. (b) Large bounding boxes, detector stride of 100 pixels.

(c) Large bounding boxes, detector stride of 200 pixels.

Figure 12. Comparison of plot log volume (excluding stumps) from UAV calculated from automated
vs manual, digital-annotations of logs/coarse woody debris. Three different methods for detection are
compared: (a) Small bounding boxes, detector stride of 100 pixels; (b) Large bounding boxes, detector
stride of 100 pixels; (c) Large bounding boxes, detector stride of 200 pixels. Blue line indicates a linear
regression between the data points and red dotted line shows a unit-slope line representing a perfect
one-to-one relationship for comparison. The correlation score is shown in the title for each plot.

Table 6. A summary for comparing the correlation between different methods of plot CWD volume
measurement.

Methods of CWD Volume Measurement r2

manual (UAV imagery) vs. field 0.958
small boxes, stride 100 big boxes, stride 100 big boxes, stride 200

automated (UAV imagery) vs. manual (UAV
imagery) 0.352 0.572 0.514

automated (UAV imagery) vs. field 0.362 0.587 0.545
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(a) Small bounding boxes, detector stride of 100 pixels. (b) Large bounding boxes, detector stride of 100 pixels.

(c) Large bounding boxes, detector stride of 200 pixels.

Figure 13. Comparison of plot log volume (excluding stumps) from UAV calculated from automated
vs manual, digital-annotations of logs/coarse woody debris, with the predicted diameter of each log
scaled down. Three different methods for detection are compared: (a) Small bounding boxes, detector
stride of 100 pixels; (b) Large bounding boxes, detector stride of 100 pixels; (c) Large bounding boxes,
detector stride of 200 pixels. Blue line indicates a linear regression between the data points and red
dotted line shows a unit-slope line representing a perfect one-to-one relationship for comparison. The
correlation score is shown in the title for each plot.
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(a) Training time (b) Inference time

Figure 14. The runtime results for (a) training and (b) inference, averaged over all folds. Please note
that the log detector refers to training with the small boxes, while the stump detector contains the log
detector trained on the large boxes.

4. Discussion

The recall for the stump detection decreased slightly for the plots with a higher FWD density
(Table 4). In the lower density plots, most of the stumps are clearly visible, where as in the high-density
plots some of the stumps are occluded by debris and only partially visible from above. Faster-RCNN
is successful in detecting many of these partially visible stumps. However, for the cross-validation
folds where it has not been trained on many partially occluded stumps, the recall is lower.

The issue of occlusion is also a challenge for the log rectangle fitting. From the results of Table 5,
the recall is low for plot 8 where the density of the debris is highest. Many of the logs in Figure 9b
are only partially fitted with rectangles as part of their length is occluded. If rectangles are fitted to
two parts of the same log, separated by some occluding debris, then they will not be merged together
if the centers of the rectangles exceed the 150-pixel merging threshold. If, however, this threshold is
increased to allow logs with large occlusions to be merged, then more logs with similar rotations within
the greater radius will be incorrectly merged, most likely resulting in the rectangle being discarded.
This was determined to be more problematic than missing the volume of the occluded section of
the log.

For both the stump detection and the log rectangle fitting, the trainable CNN components for
detection and segmentation generalize well to unseen data. In the cross-validation results for the
precision and recall, for a given fold, the performance on a training plot was typically only slightly
higher than the performance on a validation plot.

There was some variation in the results across different folds. For example, the stump detector
from folds 2 and 3 has poor performance overall in comparison to the other folds. This could be
related to the data used for training. Training examples from plot 6 were used for both folds 2 and
3, suggesting that these examples could either have been inaccurately annotated or were not a good
representation of a typical plot, such that the models they were used to train did not generalize well to
the other scenes. Given that the performance on plot 6 was high for both folds 2 and 3, it is most likely
to be the latter. For the log rectangle fitting, performance was particularly bad for fold 2. This is also
likely attributed to plot 6 having non-representative training examples, as the performance is high on
plot 6 but low for many of the other plots. It could also be related to the examples in plot 2 (which
was the other plot used to train fold 2). The precision and recall of the rectangles are both low for
plot 2 fold 2, suggesting that the label related labels themselves for this plot were poorly annotated.
However, given the small number of plots it is difficult to draw definitive conclusions.
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In comparison to other works, the use of a CNN-based approach demonstrated a strong
improvement over more traditional methods. Using the region-growing approach, Puliti et al. [17] had
difficulty in differentiating stumps and log residuals. With adequate training examples, a CNN-based
approach learns the features it requires to distinguish these classes despite their similar appearance. In
trying to fit circles to detect stumps, Samiappan et al. [18] discusses how the stumps in their dataset
are actually imperfect ovals rather than circles, reducing detection accuracy. A CNN-based approach
is trained to be robust to small variations in the data such as this. The high-resolution imagery was
also advantageous for stump detection. Samiappan et al. [18] suffered from degraded performance
due to the resolution of the imagery as shape boundaries were difficult to delineate. The resolution of
Puliti et al. [17] resulted in stumps with relatively small diameters frequently being missed.

The variance in the results of Table 5 and of Figure 10 across methods are linked to how the
Faster-RCNN object detector component is trained. When smaller boxes are trained on, the precision
score is lower. Low precision indicates too many detections are being made, resulting in a high number
of false positives. Objects such as FWD that look similar to CWD are being incorrectly predicted as
logs. This can be explained by the bounding boxes seeing less of the log, and hence having a more
limited overall view of what a log is. When larger bounding boxes are used for training, the precision
is higher. However, with larger bounding boxes being predicted, there is an increased likelihood of
additional CWD logs also being inside the box. As a result, the convex hull is fit around the additional
logs (see Figure 6e), and the rectangle that is fit has inaccurate dimensions. This is reflected in the
higher diameter error of the predicted rectangles, which causes the histograms of Figure 10a,b to be
more skewed towards the higher error, (this effect is the cause of some of the wider rectangles in
Figure 9b, where there are many logs overlapping with one another). When the larger stride is used for
the sliding window, fewer bounding boxes are predicted and this skews the distribution of diameter
errors slightly towards lower error (i.e., lower RMSE). There is a noticeable reduction in the number of
predicted rectangles with a diameter error of greater than 50 cm. This training strategy does however
result in a slightly poorer recall. This is evident in Figure 6, where some logs that appear obvious have
been missed. This is likely to be related to the fewer detections found due to the larger stride. Some
logs might not be detected properly if they do not have a favorable translation in the sliding window,
and with fewer sliding windows this becomes more prevalent. This method has the highest overall
precision of the three approaches.

The segmentation is critical for the accuracy of the rectangle fitting step. The CNN must classify
the pixels corresponding to the fine branches attached to a log as FWD, not CWD. Otherwise the convex
hull will fit around the branches and the shorter length of the fitted rectangle will be an overestimate
of the diameter of the CWD log. An example of this is seen in Figure 15. The segmentation model that
results in Figure 15a labels much of the pixels corresponding to FWD in the background as CWD, and
the resulting rectangle in Figure 15b is poorly fitted to the CWD. However, the segmentation model
that produces Figure 15c appropriately labels FWD and background pixels, so that the fit around the
CWD is much tighter (Figure 15d), although still not perfect as it has labelled some of the CWD pixels
as FWD.
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(a) Segmentation. (b) Rectangle fit from (a). (c) Segmentation. (d) Rectangle fit from (c).

Figure 15. An example of the dependence of the rectangle fit on the segmentation performance,
with results from two different cross-validation folds from plot 6 (i.e., the segmentation models were
different). The segmentation in (a) produces the rectangle in (b), and the segmentation in (c) produces
the rectangle in (d).

The results in Figure 9 show that some of the fitted rectangles are overlapping slightly even after
the refinement step. This indicates that when merging, there were at least two distinct groups of
rectangles and the overlap of the resulting merged rectangles is less than the threshold. The threshold
cannot be lowered, or else intersecting logs will not be fitted with rectangles. Also, if the merging
thresholds are relaxed, then the rectangles fitting to nearby logs will be merged.

The reason for the rectangle fitting having a lower overall recall than the stump detection
is because of the additional steps on top of detection that are required for rectangle fitting.
Rectangles around logs can be discarded if they become excessively large due to poor merging in the
refinement step or nearby logs corrupting the convex hull before rectangle fitting occurs. The precision
is also lower because the log detection is harder than the stump detection as it must differentiate
between the sometimes very similar CWD and FWD. This results in many false positives, which is
especially the case when training on smaller bounding boxes.

The r2 values for the volume estimation results (Figure 12) suggest that there is a correlation
(although weak) between the automatically predicted volumes and the volume calculated from the
manual annotations. However, the predicted volumes are consistently larger than those found from
manual annotations. This is likely to be because most rectangles overestimate the diameter of the CWD
logs due to errors accumulating in the convex hull and merging phases of the pipeline (e.g., Figure 10b
there is a large proportion of diameters with an error of 10–40 cm). The over-estimation of the diameter
can be observed in the Figure 9 results. Since the volume of a cylinder is proportional to the square of
the diameter, any errors in the diameter estimation have large repercussions for the volume estimation.
The weakly correlated prediction and manually annotated volumes indicates that the over-estimation
of log diameters is fairly consistent. By observing the errors in Figure 10a–c, and considering the
typical diameter of CWD logs, it was empirically deduced that the logs estimated in the results of
Figure 12 were about 45–55% too large. When the diameter of all rectangles was reduced to account for
this over-estimation and the volumes were re-calculated (Figure 13), the regressed blue line was closer
to the red line which indicates that the predicted volumes were more accurate. Scaling the diameter
does not change the correlation value, as all logs for a given method are scaled uniformly. The scaling
attempts to correct the consistent over-estimation of the diameters.

The remaining lack of correlation of the predictions and ground truth could be attributed to the
detections not having a perfect precision and recall, as well additional error variation in the diameter
and length estimates of the logs. Plot 7 has a high error in Figure 13a–c. Its density could be a factor
contributing to this, as greater density results in more errors when fitting the convex hull (explained
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previously). Because of the small number of plots, the correlation result is very sensitive to any
relatively large deviations from the regression line (such as plots 3 and 7).

The results of Figure 14 are typical from a machine learning pipeline in that training time is higher
than inference. The inference phase is usually significantly faster than the training time (in the order
of seconds). In this case, it took several minutes for inference to occur on a single plot. This is due to
the object detection which must be run once for each sliding window. Since the sliding window has
a small stride (100 pixels for the stumps, and 100–200 pixels for the logs), the object detector is run
hundreds to thousands of times. This explains why having the stride of 200 pixels is significantly faster
than the stride of 100 pixels for the rectangle fitting of logs. The rectangle fitting inference was also
slightly longer than the stump detection inference despite the stride being the same. This is because of
the additional segmentation and computational geometry steps. However, the extra time required for
these steps is marginal due to the segmentation algorithm having a much larger stride (1000 pixels)
and hence a faster inference in comparison to the object detector. Training time for the segmentation
network was also faster than the object detector because the network has fewer parameters.

In comparison to the UAV-borne work of [16], the CWD log volume estimation of this work
was able to adapt to variations in the background better. Davis [16] relies on the red channel of the
image to differentiate the debris from the ground. However, this method is not robust to different
backgrounds as was noted when there was flooding, causing the volumetric estimation performance
to decrease. The CNN-based log segmentation and detection models in this work are trained on
different background to instill invariance. Davis [16] uses a traditional computer vision approach,
the mean-shift algorithm, to estimate a debris mask. It cannot differentiate between the coarse and
fine pieces of debris, which is necessary for volumetric estimation, resulting in over-estimates of the
volume that are larger than those of this study. The CNN-based segmentation model in this paper is
trained to segment coarse and fine debris separately.

5. Conclusions

Using a sample size of nine plots, the results indicated that the use of UAV-derived, high-resolution
imagery and digital annotation of the imagery provided an alternative to in situ, field-based manual
measurements (calipers and tape measure), with equivalent measurement results, and hence accuracy.
Differences were due to several factors: not all timber was visible from the air, as in some quadrats large
pieces of debris lay underneath other branches and pine needle foliage, making it difficult to discern
from the air. Although stump areas corresponded well (r2 = 0.971), the correspondence between stump
heights measured in the field vs. those extracted from digital surface models was poor (r2 = 0.374).
This was owing to several factors including the fact that the digital surface model sometimes only
provided measurements of material elevation (rather than ground elevation) because of clutter such as
debris and slash.

Automated algorithms were able to effectively detect stumps and results showed that stems
could be detected on average with a precision of 83.9% and a recall of 81.8%. They were also able
to distinguish between different size classes of debris (CWD versus FWD) to estimate the volume of
CWD, but with worse accuracy than the manually annotated imagery. However, once the detection
and segmentation models were trained, the automated approach required significantly less effort than
the manual, digital annotation.

The traditional in situ measuring method had the advantages of requiring minimal equipment
(calipers and tape measure) but took more time in the field and more personnel. The UAV
imagery-based methods for manual and autonomous annotation took less time in the field for both
setup and data collection, but required specialized equipment (a UAV) and specialized/trained
personnel to operate the UAV (remote aircraft pilot for takeoff/landing). Both the in situ and manual
imagery-based annotation method took approximately the same amount of time in post-fieldwork
activities/analysis. Both of these methods provided essentially equivalent results in terms of
quantifying woody debris volume on the ground; however, it should be noted that the ability to
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quantify debris from the air was dependent on the amount of occlusion owing to slash and pine needle
foliage present at the site. The biases introduced by these types of occlusions are a limitation for remote
sensing approaches. The autonomous imagery-based method required less time in post-fieldwork
activities/analysis at the expense of accuracy. The capacity to collect more data while taking less time
in the field using the UAV imagery-derived estimates, provides the advantage that a larger sample
size of post-harvest debris could be collected, giving a potentially better representation of the actual
debris quantity over a full harvested compartment. This would obviously require more time for
post-fieldwork analysis.

In addition to the quantification of woody debris, our method provides a map of detected stumps.
One potential use of this stem map is in validating stocking estimates (number of trees per hectare)
made during pre-harvest inventories, for example by LiDAR-based imputation, that use individual
tree detection methods. If post-harvest stem maps can be correlated with pre-harvest stem maps
generated from LiDAR, this has the potential to assist in the refinement of imputation models for
future inventory activities.

An improved method of estimating post-harvest residues may greatly assist in the assessment of
the feasibility of extraction of that resource for applications such as bioenergy - as currently significant
volumes of pine plantation harvest residues are under-used [33]. Their estimation is also useful for
maintaining the quality of a site, and can be used to reconcile differences between pre-harvest estimates
of timber yield and actual timber yield. For future work, the autonomous algorithm could potentially
be made more accurate by incorporating information from the digital surface model derived using
structure from motion and photogrammetry. The surface model captures variations in the height
owing to larger logs and could also provide queues to segmenting different ground cover types owing
to the structural texture present. The surface model can be converted into a rasterized grayscale image
layer that could be added to the existing color image layers and provided as part of the input data to
the image-based machine learning algorithms presented here. Future work will also consider the use of
UAV-borne imagery for characterizing post-harvest site variables such as access roads and skid trails.
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