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Abstract: Remote sensing techniques provide data on the spatial–temporal distribution of
environmental parameters over regions with sparse ground observations. However, the resolution of
satellite precipitation data is too coarse to be applied to hydrological and meteorological research
at basin scales. Downscaling research using coarse remote sensing data to obtain high-resolution
precipitation data is significant for the development of basin-scale research. Here, we propose
improvements to a spatial–temporal method for downscaling satellite precipitation. The improved
method uses a nonlinear regression model and introduces longitude and latitude based on processed
normalized difference vegetation index (NDVI) and a digital elevation model (DEM) to stimulate
precipitation in the Qilian Mountains during 2006–2015. The final downscaled annual precipitation
(FDAP) results are corrected by observed data to obtain corrected final downscaled annual
precipitation (CFDAP) datasets. For temporal downscaling, monthly downscaled data are the
corrected monthly ratio multiplied by the corresponding downscaled annual datasets. The results
indicated that processed NDVI (PNDVI) reflected spatial precipitation patterns more accurately than
the original NDVI. The accuracy was significantly improved when the final downscaled annual
precipitation data were corrected by observed data. The average annual root mean square error
(RMSE) from 2006 to 2015 of CFDAP was 66.48 and 83.07 mm less than that of FDAP and original
Tropical Rainfall Measuring Mission (TRMM) data, respectively. Compared with previous methods,
which use NDVI and/or DEM to downscale TRMM, the accuracy of FDAP and CFDAP from the
improved method was higher, and the RMSE decreased on average by 13.63 and 80.11 mm. The RMSE
of monthly data from corrected monthly ratio (CMR) decreased on average by 4.93 mm over monthly
data from previous monthly ratio (PMR). In addition, the accuracy of the original satellite data affected
the initial downscaling results but had no significant effects on the corrected downscaling results.

Keywords: improved downscaling method; TRMM precipitation datasets; processed NDVI; DEM;
alpine mountains

1. Introduction

Precipitation is a key meteorological input parameter in various types of models because it affects
land surface processes. Precipitation data for hydrological models are usually obtained by interpolation
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of sparse measurements. However, precipitation gauges are usually located at low elevations or in river
valleys in mountainous areas, with high elevations sparsely or not at all represented, and measurement
efforts are limited by harsh environment and funds. Moreover, precipitation gauges are distributed
in such a way as to meet the practical requirements of national meteorological services rather than
scientific requirements [1]. Clearly, biased positioning of precipitation gauges cannot sufficiently
express the complex distribution of precipitation, particularly in alpine areas [2]. Therefore, reliable
spatial information on precipitation is difficult to find [3].

The development of satellite remote sensing and data assimilation has proven promising in
the estimations of global gridded precipitation [4,5]. However, current satellite-based precipitation
products are available only at spatial resolutions of 0.05◦ (about 5.6 km near the equator) or lower;
examples are the Climate Hazards Group Infrared Precipitation with Station (CHIRPS, 0.05◦ × 0.05◦),
Global Precipitation Measurement (GPM, 0.1◦ × 0.1◦), Tropical Rainfall Measuring Mission (TRMM,
0.25◦ × 0.25◦), Climatic Research Unit precipitation datasets (CRU, 0.5◦ × 0.5◦), and ERA-Interim
precipitation datasets (ERA, 0.125◦ × 0.125◦). Although the spatial distribution of precipitation may
be obtained from these datasets, their resolutions are too coarse to apply in hydrological research at
a local or basin scale. Recent studies indicated that the spatial resolution of precipitation datasets
greatly influences model outcomes, and that hydrological models using raster-based precipitation
datasets outperform models that use precipitation from sparse rain gauges [6,7]. Therefore, various
downscaling methods have been developed during the past decade. These studies explored the
relationships between precipitation and various elements of the environment to obtain data at higher
resolutions. Immerzeel et al. [8] obtained annual precipitation data at a high resolution (~1000 m) by
establishing exponential relationships between the normalized difference vegetation index (NDVI) and
precipitation from TRMM datasets of different resolutions. Jia et al. [9] added elevation to Immerzeel’s
methods and showed that a multiple linear regression model can downscale TRMM data for the
Qaidam Basin in northwest China. Retalis et al. [10] introduced DEM and NDVI into the artificial
neural networks and obtained downscaled CHIRPS precipitation datasets on annual and monthly scale
for Cyprus. Zhang et al. [11] introduced the elevation of maximum precipitation into the downscaling
model, and the downscaled results are better than multiple linear regression models, exponential
regression models and geographically weighted regression models in Three-Rivers Headwater Regions.
Alexakis et al. [12] compared the multiple linear regression TRMM downscaling results with artificial
neural networks, and the results show that the accuracy of the two downscaling results have different
advantages in different months. However, there is a strong spatial heterogeneity in the relationships
between precipitation and various geographical factor or land surface characteristics. Therefore, the
geographically-weighted regression method and moving window regression [13,14] were proposed
based on the assumption that non-stationary relationships between precipitation and environmental
variables (NDVI and/or DEM) vary across space. Zhan et al. [15] compared the accuracy of monthly
downscaling results of multiple regression and geographically-weighted regression based on GPM, and
the results show that geographically-weighted regression outperformed multiple regression models
in the Hengduan Mountains. Recently, researchers have tried to construct the precipitation-variables
relationships with different land surface characteristics as explanatory variables, examples are land
surface temperature, longitude, and latitude [16–18]. Generally, the precipitation is affected by land
surface characteristics, geographical factors, and sources of water vapor. Research showed that in
a large study area, the impact of water vapor sources on precipitation needed to be considered [19].
The latitude and longitude were introduced into the statistical model to indicate the distance from the
study area to a source of vapor, which is more accurate than the model that only considers geographical
factors [18,20].

These earlier studies achieved satisfactory results in different study areas based on relationships
between precipitation and NDVI and /or other environment variables. A significant positive
or exponential correlation was assumed between precipitation and NDVI in many studies, since
precipitation provided water for plant growth [8,9,21,22]. In fact, this hypothesis has some limitations,
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as plant growth is the result of both water and heat effects, and it is not appropriate for regions
with high precipitation and low temperatures [23]. Generally, precipitation increases with increased
elevation in a certain range in mountainous areas; but NDVI first increases to a maximum value with the
increased elevation, and then decreases because of the influence of temperature and precipitation [24].
For example, on mountain tops, precipitation is usually greater than at the foothills. Yet, mountain
tops are usually regions with sparse plant growth affected by temperatures. Therefore, the effects of
temperature on NDVI need to be removed when using NDVI as a variable in a statistical analysis of
precipitation in mountains areas. Two steps were necessary before the models were built. First, the
impact of temperature on the original NDVI has to be removed to obtain processed NDVI (PNDVI).
Second, the distribution of precipitation in Qilian Mountains has distinct longitude/latitude-belt
distribution characteristics according TRMM precipitation datasets and Liu et al. [19]. Therefore, the
longitude and latitude were used in the models to indicate the distance from the study area to a source
of vapor based on PNDVI and DEM. Next, statistical models were built for each individual year from
2006 to 2015 based on the relationships between annual TRMM precipitation and geographical and
environmental variables, with subsequent downscaling of the annual TRMM data.

Here, we introduce an improved downscaling method for TRMM precipitation datasets for alpine
areas based on previous studies [8,9,14]. The two objectives of the study are as follows: (1) To obtain
high resolution (~1000 m) annual precipitation data from relationships between coarse annual TRMM
measurement datasets and multiple land surface characteristics for the Qilian Mountains; (2) get the
high resolution (~1000 m) monthly precipitation data by the improved methods based on previous
study proposed by Duan et al. [25].

2. Study Areas

The Qilian Mountains (Figure 1) are located at the northeastern margin of the Tibetan Plateau,
mainly in Qinghai and Gansu Provinces; they span approximately 850 km from west to east and
300 km from north to south. The mountain range has a wide elevational gradient [26] from 1450 m
to 5800 m with approximately 35% of the area at >3500 m. The average annual temperature in the
Qilian Mountains was –2.38 ◦C from 2006 to 2015 (data from measurement datasets in the study).
Three main atmospheric circulation patterns affected the Qilian Mountains—the Westerly, the Plateau
monsoon, and the East Asian monsoon [27–29]. The average annual precipitation from 1960 to 2004
was 403.6 mm/year (data from measurement datasets, [30]). Eighty-four percent of the precipitation
was concentrated in the wet season (May to September; from 2006 to 2015), affected mainly by the
Asian monsoon.

The main vegetation types of the Qilian Mountains are grass, Qilian spruce (Picea crassifolia),
mainly on shady slopes, and sparse Qilian juniper (Sabina przewalskii Kom), mainly on sunny slopes [31].
The growing season lasts from May to August, and its length is affected by precipitation and
temperature [32]. The land cover types in the Qilian Mountains are desert steppe, steppe, forest,
alpine meadow, and Moraine-talus, respectively, from low to high elevations. Plant cover becomes
denser, first from low to middle elevation, and then becomes sparser with increasing elevation,
decreasing temperature, and the changing characteristics of precipitation. These trends introduce a
temperature-related error when NDVI is used to indicate the amount of precipitation in mountainous
areas, necessitating a correction.
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Figure 1. Distribution of observation stations for correction (blue dots, 34 stations) and validation (red 
pins, 6 stations) stations (A) and spatial pattern of normalized difference vegetation index (NDVI) (B) 
in study area. 
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Information Center (http://data.cma.cn/ ) and Cold and Arid Regions Science Data Center 
(http://westdc.westgis.ac.cn ). Precipitation-gauge and temperature datasets were checked for data 
quality and homogeneity of variances. The grid temperature datasets used in the study were obtained 
by interpolating between temperature values from the study area and those from the nearest 
meteorological stations. The interpolated results in each year passed the p<0.001 significance test. We 
used the Min-Max Normalization method [33] for the normalization of temperature data. 

3.1.2. TRMM  

The TRMM satellite was launched in November 1997. It was designed to improve the 
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The datasets utilized in this study were TRMM 3B43 V7 products from January 2006 to December 
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Figure 1. Distribution of observation stations for correction (blue dots, 34 stations) and validation (red
pins, 6 stations) stations (A) and spatial pattern of normalized difference vegetation index (NDVI) (B)
in study area.

3. Datasets and Methodology

3.1. Datasets

3.1.1. Point Observation Data

Datasets used in this study included precipitation measured in 40 gauges and temperature taken
at 2 m-height; they were provided by the National Climatic Centre of the China Meteorological
Information Center (http://data.cma.cn/) and Cold and Arid Regions Science Data Center (http:
//westdc.westgis.ac.cn). Precipitation-gauge and temperature datasets were checked for data quality
and homogeneity of variances. The grid temperature datasets used in the study were obtained
by interpolating between temperature values from the study area and those from the nearest
meteorological stations. The interpolated results in each year passed the p < 0.001 significance test.
We used the Min-Max Normalization method [33] for the normalization of temperature data.

3.1.2. TRMM

The TRMM satellite was launched in November 1997. It was designed to improve the
understanding of the variability and distribution of precipitation in tropical and sub-tropical regions.
The datasets utilized in this study were TRMM 3B43 V7 products from January 2006 to December 2015,
which provided monthly precipitation data at a spatial resolution of 0.25◦ × 0.25◦, and covering 50◦

N~50◦ S. The datasets were downloaded from National Aeronautic and Space Administration (NASA)
Precipitation Measurement Mission website: https://pmm.nasa.gov/data-access.

http://data.cma.cn/
http://westdc.westgis.ac.cn
http://westdc.westgis.ac.cn
https://pmm.nasa.gov/data-access
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3.1.3. NDVI Datasets

NDVI is an indicator used to measure vegetative production. Compared with precipitation
datasets, a series of NDVI products has been published with high spatial resolutions (~1000 m).
We used the MOD13A3 monthly NDVI product at 1000 m spatial resolution in this study, obtained
from http://modis-land.gsfc.nasa.gov/vi.html. First, the maximum NDVI value for each month was
acquired using the maximum-value-composites method [9,25,34] to eliminate atmospheric and cloud
cover effects. Next, monthly average NDVI values during May–September of each year were computed
as a proxy index for vegetation growth during the growing season and used in annual datasets.

3.1.4. Digital Elevation Models

Digital elevation models (DEMs) data were obtained from the Shuttle Radar Topography Mission
(RTM), an international project launched by the National Geospatial-Intelligence Agency (NGA) and
National Aeronautics and Space Administration (NASA). The project provided high resolution DEMs
datasets for latitudes between 60◦ N~50◦ S at high spatial resolutions. Only the 90-m DEM datasets
were needed in this study and were downloaded from http://www2.jpl.nasa.gov/srtm/; the 1000 m
data were obtained by resampling. Other variables (elevation, longitude, latitude) used in the study
were calculated from the 1000 m DEM datasets.

3.2. Methodology

3.2.1. Downscaling

The methodology used in the research was developed, applied by Agam et al [35], Immerzeel
et al [8], and Jia et al. [9]. Agam et al. [35] proposed a downscaling technique for spatial focusing of
imagery based on the vegetation index. Immerzeel et al. [8] applied the methodology by selecting
the statistical downscaling model at an optimum resolution (at 0.75◦ × 0.75◦ scale), applied it to
downscaling of TRMM precipitation data, and by interpolating the residuals for Iberian Peninsula
in Spain. Jia et al. [9] introduced elevation to the methodology for downscaling of TRMM. However,
precipitation is usually affected by elevation and location (latitude and longitude) in mountainous
areas [28,36–40]. Therefore, we introduced longitude and latitude based on PNDVI and DEM as
variables for downscaling. To remove the impact of temperature on NDVI, we introduced the following
index to characterize hydro-thermal conditions.

PT = Pre × Tem (1)

where PT was a hydro-thermal index, Pre was normalized precipitation and Tem was normalized
temperature obtained by Min-Max Normalization method. We assumed that plant growth was
proportional to PT, as follows:

NDVI ∝ PT (2)

Further derived from formula (2):

PNDVI =
NDVI

Tem
∝ Pre =

PT
Tem

, (3)

where PNDVI was NDVI with the effect of temperature removed. Further research used PNDVI
instead of the original NDVI data in the downscaling process. The models were multiple nonlinear
models, as follows:

PTRMM = a1 ∗ PNDVI + b1 ∗ ele + c1 ∗ lon + d1 ∗ lat + e1 ∗ lon2 + f1 ∗ lat2 + g1 (4)

http://modis-land.gsfc.nasa.gov/vi.html
http://www2.jpl.nasa.gov/srtm/
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where PTRMM was the annual precipitation obtained from TRMM, and a1, b1, c1, d1, e1, f1 were
coefficients of the corresponding variables ele, lon, lat, which were elevation, longitude, and latitude,
respectively; g1 was a constant. The specific downscaling processes in Figure 2 were as follows:

(1) Preparation of the original data such as DEM (1000 m), TRMM monthly (0.25◦ × 0.25◦), NDVI
(1000 m), and observed monthly temperature and precipitation from 2006 to 2015;

(2) Calculation of grid temperature (1000 m) from the statistical relationships between temperature
and elevation, longitude, latitude (Specific steps are omitted). Normalization of temperature data with
the Min-Max Normalization method and dividing the original NDVI by the normalized temperature
at the resolution1000 m, then, obtaining the PNDVI from simple spline tension interpolator.

(3) Resampling to acquire various variables at 0.25◦ resolution, including DEM (elevation, latitude
and longitude) and PNDVI.

(4) Establishing of multiple nonlinear regression models for each year from 2006 to 2015 at 0.25o

scale using PNDVI, elevation, longitude, and latitude.
(5) Prediction of annual precipitation at 0.25◦ scale with multiple nonlinear regression models.

Then, subtracting of the predicted annual data from the original annual TRMM data to obtain the
residuals of the models.

(6) Model application at the 1000 m scale for each year and prediction of annual precipitation
at 1000 m. Then, interpolation of the residuals to 1000 m scale using the spline tension method.
The residuals at 1000 m are added to the predicted annual precipitation at 1000 m scale each year to
obtain the final downscaled annual precipitation (FDAP, without correction by observed precipitation
data).

(7) Correction of the FDAP by establishing relationships between the observed annual
precipitation and FDAP, PNDVI, elevation, longitude, and latitude at 1000 m scale to obtain the
corrected final downscaled annual precipitation (CFDAP, corrected by 34 observation stations datasets).
The following formula was used:

Po = a2 ∗ Pd + b2 ∗ PNDVI + c2 ∗ ele + d2 ∗ lon + e2 ∗ lat + f2 ∗ lon2 + g2 ∗ alt2 + h2 (5)

where Po and Pd were observed precipitation and FDAP, and a2, b2, c2, d2, e2, f2 and g2 were coefficients
of the corresponding variables, and ele, lon, lat were elevation, longitude and latitude, respectively;
h2 was a constant.

For temporal downscaling, the previous monthly ratio (PMR, without correcting) was obtained
from dividing the monthly TRMM precipitation by the original annual TRMM precipitation [25].
The corrected monthly ratio (CMR) can be obtained from the statistical relationships between the
observed monthly ratio and the ratio from TRMM datasets, annual TRMM precipitation, elevation,
longitude, and latitude. Next, the interpolation of the corrected ratios to 1000 m scale using the
spline tension method. The corrected ratio is multiplied by the corrected final downscaled annual
precipitation to obtain monthly precipitation data for each year. The following formula was used:

Ro = a3 ∗ RT + b3 ∗ TRMMannual + c3 ∗ ele + d3 ∗ lon + e3 ∗ lat + f3 ∗ lon2 + g3 ∗ alt2 + h3 (6)

where Ro and RT were monthly ratios obtained from dividing the observed monthly data by annual data
or dividing the monthly TRMM precipitation by the original annual TRMM precipitation, respectively.
TRMMannual was annual TRMM precipitation. Other variables were the same as in formula (5).

Important issues in the building of multiple nonlinear models involved areas devoid of vegetation
and others, where plants were not influenced by precipitation. Such areas included Qinghai Lake,
most hilltops, and farmland. To address this, these areas were eliminated according to land-use type,
and the annual precipitation in these regions was interpolated from downscaled datasets around them.
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3.2.2. Validation

The results of downscaling, including annual and monthly precipitation, were validated using
observed values (6 observation stations, Figure 1; Table 1). The accuracy of various downscaling results
was tested with the following:

Bias (B), expressed as:

B =
∑n

i=1 Pi

∑n
i=1 Oi

− 1 (7)
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The root mean square error (RMSE), expressed as:

BRMSE =

√
(

∑n
i (Oi − Pi)

2

n
) (8)

Nash–Sutcliffe efficiency coefficient (NSE), expressed as:

NSE = 1 − ∑n
i (Oi − Pi)

2

∑n
i
(
Oi − O

)2 (9)

In the three formulas (7) ~ (9), where Pi and Oi were predicted data and observed data, the O is
the average of the observed data.

Table 1. Characteristics of the validation measurement points.

Station Name Longitude Latitude Elevation (m) Land Cover Mean Annual
Precipitation (mm)

Mean Annual
Temperature (◦C)

Qilian 100.25 38.18 2787.4 Steppe and forests 411.5 1.18
Wushaoling 102.87 37.20 3045.1 Steppe and Forests 402.7 0.37
Dachaidan 95.37 37.85 3173.2 Bare soil 89.4 2.07
Gangcha 100.13 37.33 3301.5 Steppe 388.4 0.04
Yeniugou 99.58 38.42 3320.0 Steppe 420.6 −0.39

Hulu-6 99.88 38.22 4484.0 Moraine-talus 762.6 −7.2

4. Results

4.1. Downscaling Procures

Before the establishment of multiple nonlinear regression models, the NDVI was corrected for
the temperature effect (Figure 3, 2010 taken as an example to indicate the downscaling procures).
The spatial distribution of plants after correction changed significantly. Namely, plant density became
greater on mountain tops and in alpine areas where plants were sparsely distributed before the
correction (Figure 3B,C). Simultaneously, the precipitation-PNDVI relationship improved over that of
precipitation-NDVI (Figure 4).

The multiple nonlinear regression models depended on parameterization in different years.
Therefore, the choice of optimal parameters for each individual year was important. Therefore,
necessary parameters and residuals were obtained according to steps (3), (4), and (5) of the procedures
(Figure 5A) based on the statistical relationships between precipitation and PNDVI, DEM, longitude,
latitude in each individual year. The low resolution residuals were interpolated to 1000 m with simple
spline-tension interpolation (Figure 5B).
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Then, by applying the regression models to PNDVI and other variables with the 1000 m resolution,
we obtained the predicted annual precipitation at 1000 m scale according to step (6) (Figure 6B).
The predicted precipitation was significantly lower than the original annual precipitation obtained
from TRMM data (Figure 6A). Despite adding the 1000-m scale residuals to the predicted annual
precipitation (FDAP; Figure 7A), there was still an inaccuracy in FDAP compared with the observed
precipitation data. Therefore, the FDAP needs further correction by observed data. After correction
according to step (7), CFDAP was obtained (Figure 7B). At a monthly scale, previous studies [13,25]
use the PMR multiplied by the corresponding downscaled annual precipitation to obtain downscaled
monthly precipitation (Figure 8A, take August 2010 as an example). The monthly precipitation data
obtained by the above method is not accurate enough to apply in other research (Figure 9A). It still
needs to be corrected by observed data, corrected step shown as step (8). After step (8), the final CMR
(Figure 8B) and monthly precipitation was obtained (Figure 9B).
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4.2. Downscaled Annual Precipitation and Validation

To quantitatively evaluate the accuracy of original annual TRMM data, FDAP and CFDAP
are compared with observed datasets from 2006 to 2015. The statistic results are shown in Table 2.
The FDAP are more accurate than the original TRMM data when compared to the overall error statistics
from 2006 to 2015. The average RMSE of FDAP decreased about 16.58 mm than that of the original
TRMM data from 2006 to 2015. The distribution characteristics of TRMM and FDAP were consistent,
that is, precipitation decreased gradually from northeast to southwest (Figures 6 and 7). The spatial
pattern of precipitation was the same as that in previous studies [19], but the errors were still large
when compared with observed datasets, with the average RMSE of FDAP and original TRMM data are
163.98 and 147.40 mm, respectively (Table 2). The CFDAP had a lower error than FDAP and original
annual TRMM precipitation, both for 2010 and for the average of ten years (Figure 10). The average
RMSE of CFDAP decreased about 66.48 and 83.07 mm than that of FDAP and original TRMM data
from 2006 to 2015. Additionally, the distribution of precipitation also changed, with the main trend
still showing a gradual increase from southwest to northeast, but exhibiting a notable increase in
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precipitation in the high-elevation area, where the total amount of precipitation is roughly the same as
some observed points in Laohugou No.12 Glacier [41], August-one Glacier [42].

Table 2. Validation results for downscaling of 2006–2015 annual precipitation at six measurement points.

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Original
TRMM

RMSE 176.61 191.68 164.59 144.59 128.57 147.63 153.11 115.87 241.16 176.01
B 0.06 −0.07 0.10 0.14 −0.08 0.11 0.08 −0.06 0.41 0.23

NSE 0.01 −0.29 0.41 0.42 0.30 0.42 0.37 0.69 0.05 0.27
R2 0.30 0.26 0.48 0.51 0.30 0.44 0.40 0.76 0.46 0.46

FDAP

RMSE 140.75 141.11 146.52 133.99 122.73 132.00 146.82 123.58 213.76 172.76
B 0.05 −0.08 0.13 0.17 −0.03 0.15 0.10 0.16 0.38 0.21

NSE 0.37 0.30 0.54 0.50 0.36 0.54 0.42 0.65 0.25 0.29
R2 0.44 0.45 0.61 0.66 0.43 0.43 0.47 0.78 0.68 0.46

CFDAP

RMSE 40.71 57.72 92.43 71.64 90.32 59.16 68.24 64.59 164.75 99.60
B 0.01 −0.01 0.13 0.09 −0.03 0.04 0.05 −0.02 0.30 0.14

NSE 0.95 0.88 0.82 0.86 0.65 0.91 0.87 0.90 0.55 0.77
R2 0.97 0.89 0.96 0.94 0.97 0.97 0.94 0.97 0.95 0.91
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To verify the effectiveness of the improved method, we used the original NDVI instead of PNDVI
in the statistical model (4), and the parameters were obtained with statistical relationships. Compared
with the previous downscaling method, which were based on the NDVI, DEM, longitude and latitude,
the overall accuracy improved, though not for individual years. The accuracy of FDAP and CFDAP
obtained with the improved downscaling method had better results, and the RMSE of downscaled
results decreased from the previous method on average by 13.63 mm for FDAP and 80.11 mm for
CFDAP, with higher NSE and R2 (Table 3).
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Table 3. Comparison of data accuracy between the improved method (this study) and the
previous method.

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Previous
method

RMSE 130.81 153.58 147.69 121.88 100.37 138.82 152.82 144.56 253.06 266.73
B 0 0.2 0.03 0.01 0.14 −0.09 −0.14 −0.13 −0.24 −0.29

NSE 0.52 0.19 0.5 0.58 0.49 0.5 0.31 0.45 0.02 −0.16
R2 0.52 0.48 0.5 0.59 0.65 0.56 0.5 0.61 0.4 0.36

Improved
methods

FDAP

RMSE 140.75 141.11 146.52 133.99 122.73 132 146.82 123.58 213.76 172.76
B 0.05 −0.08 0.13 0.17 −0.03 0.15 0.1 0.16 0.38 0.21

NSE 0.37 0.3 0.54 0.5 0.36 0.54 0.42 0.65 0.25 0.29
R2 0.44 0.45 0.61 0.66 0.43 0.43 0.47 0.78 0.68 0.46

Improved
methods
CFDAP

B 0.01 −0.01 0.13 0.09 −0.03 0.04 0.05 −0.02 0.3 0.14
RMSE 40.71 57.72 92.43 71.64 90.32 59.16 68.24 64.59 164.75 99.6
NSE 0.95 0.88 0.82 0.86 0.65 0.91 0.87 0.9 0.55 0.77
R2 0.97 0.89 0.96 0.94 0.97 0.97 0.94 0.97 0.95 0.91

4.3. Downscaled Monthly Precipitation and Validation

The overall spatial pattern of the PMR and CMR was same, but the CMR was noticeably lower
than the PMR in August, 2010 (Figure 8). The original August TRMM data significantly overestimated
observed precipitation (Figure 11). Monthly data from CMR were more closely aligned with the
observed data. The improved method based on the previous research [25] was applied to obtain
the monthly downscaled precipitation at 1000 m scale. The corrected monthly precipitation from
CMR, with a maximum of 177.25 mm and an average of 58.94 mm in August, 2010, were lower
than corresponding values for August precipitation from PMR, at 211.50 and 74.88 mm, respectively
(Figure 9). Although the results obtained with the two methods exhibited a large error compared
with observation data, corrected results were more accurate than those calculated directly with the
PMR, especially for the wet season (May–October) (Table 4). In the wet season, the average RMSE
and B were less than 8.20 mm and 0.11, and the average RMSE and B were less than 4.93 mm and 0.5,
respectively, each month than those before the correction (Table 4). The corrected values, with higher
accuracy, were closer to the observed data, especially in the Qilian, and Dachaidan stations (Figure 11).
Correction of the extreme value produced by TRMM resulted in more accurate results.

Table 4. Validation monthly results for downscaling of precipitation at six measurement points.

Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sept. Oct. Nov. Dec.

Monthly
data by PMR

B 2.00 0.54 0.64 0.31 0.24 0.07 0.09 0.11 0.22 0.12 1.50 1.74
RMSE 4.34 4.94 8.01 13.26 23.26 28.98 31.07 32.48 26.06 11.36 7.53 4.98
NSE −0.17 −0.09 −0.14 0.09 0.17 0.16 0.41 0.50 0.32 0.75 −0.12 −0.07

Monthly
data by CMR

B 0.28 0.19 0.20 0.00 0.15 0.00 −0.10 0.02 0.02 0.08 0.24 0.12
RMSE 4.54 4.12 5.16 8.70 12.85 13.56 25.84 30.44 14.55 6.80 6.28 4.21
NSE −0.24 0.23 0.44 0.17 0.66 0.75 0.39 0.55 0.77 0.90 0.14 0.21
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4.4. Error Analysis of Downscaled Precipitation

The statistical downscaling models are based on three hypotheses: 1) There is a significant
correlation between precipitation at large scale and variables at regional scale, 2) precipitation at
large scale can be well simulated with statistical models, and 3) statistical relationships are valid in a
changing environment [43]. First, there is no theoretical basis for the methodology of applying other
variables to calculate precipitation, and it is based only on the correlation between independent and
dependent variables. Second, the response error may be generated in the process of applying high
resolution variables to low resolution variables. Third, variables change with the environment, and
statistical relationships do not remain stable across regions. Therefore, systematic errors are inevitably
generated when a statistical model is extended beyond the original study area, or used to calculate
precipitation with high precision variables.

The accuracy of the various variables used in statistical models could affect the downscaled
results, such as the NDVI. The NDVI is calculated from remotely-sensed imagery, the capture of which
may be affected by terrain, cloud cover, and other factors, producing errors. Similarly, errors may also
occur in the processes of generating and resampling DEM.

The accuracy of original TRMM may be a key factor which affected the downscaled results.
The errors in the downscaled results were investigated. The R2 between the observed data and data
used for validation was used to represent accuracy. The accuracy of the original coarse TRMM, CRU,
ERA, and the FDAP (including TRMM, CRU and ERA), and CFDAP (including TRMM, CRU and
ERA) was compared, respectively. The accuracy of the original data was well correlated with that of
FDAP datasets, but the accuracy of CFDAP datasets had little correlation with that of the original data
(Figure 12). That is, original data accuracy did not affect CFDAP, but it had an effect on FDAP, regardless
of whether TRMM, CRU, or ERA. In addition, Ren [44] used the geographically-weighted regression
method to compare the downscaling results of TRMM and GPM in the Shaanxi Qinba Mountains.
Although the spatial resolution GPM is higher, the TRMM downscaled results are more accurate, which
same as in Yellow River Basin [45]. Ceccherini et al. [46] used multiple linear regression to downscale
different precipitation products, and the results show that TRMM and CHIRPS get reasonably good
results; conversely RFE (RainFall Estimate, 0.1◦ × 0.1◦) and CMORPH (Climate prediction center
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MORPHing technique, 0.25◦ × 0.25◦) have among the highest errors in western Africa. Therefore, the
spatial resolution may be not the key factor affecting the accuracy of downscaled results.
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Moreover, errors also occur in the correction process. Due to uneven distribution of rain gauges
in mountainous areas, the accuracy of CFDAP data was higher where rain gauges were concentrated
than where rain gauges were sparse. More importantly, the few rain gauges at high elevations resulted
in an error in estimating precipitation at high elevation (Figure 1).

In summary, the accuracy of downscaled results may be due to three important factors: first, the
ability of the regression models to explain satellite-derived precipitation data, second, the accuracy of
original satellite precipitation datasets [8,9], third, the distribution of rainfall observations points for
correction, including the distribution at different elevations.

5. Discussion

5.1. The Advantages and Disadvantages of the Model

Various studies indicated that the distribution of NDVI is influenced by a combination of
hydrologic and thermal conditions [23,24]. In mountainous areas, temperature becomes the main
factor affecting the distribution of NDVI above certain elevations [23,24]. It is not feasible to consider
the relationship between precipitation and NDVI in a downscaling process in alpine environments.
Therefore, the thermal effect must be eliminated from the modeling of the relationships between
precipitation and NDVI.

The spatial distribution of precipitation cannot be simulated accurately with NDVI and elevation
alone. In the Qilian Mountains of northwest China, precipitation is influenced by different sources of
water vapor, and the distribution of precipitation and water vapor from east to west, and north to south
are quite different [27,28]. Simulation models use longitude and latitude to represent the distance
between the study area and the source of water vapor; this can represent the spatial distribution
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of precipitation in mountainous areas. Our results showed that it was more accurate to simulate
precipitation with NDVI, DEM, longitude, and latitude than with the downscaled results obtained
with NDVI and DEM only.

In addition, statistical models have some limitations. First, the NDVI-based satellite downscaled
method cannot be applied in regions where NDVI is not affected by precipitation, such as in urban and
desert areas. Consequently, understanding the distribution of precipitation in these areas still depends
on different interpolation methods and on-the-ground meteorological observations. Second, study
areas where water does not restrict plant growth, such as in the rainforest, NDVI is not suitable for
application in the models. Third, previous downscaling research was based on the assumption that
precipitation was significantly correlated with NDVI or/and DEM in various regions [9,10,15,47–51].
It is widely acknowledged that the response of vegetation to precipitation and temperature usually
lags by about two or three months in different regions and at high elevations in mountainous
areas [52,53]. Therefore, the response lags result in unreliable precipitation-PNDVI relationships
at monthly scales, and the precipitation-NDVI relationships may be better than precipitation-PNDVI
relationships [14,15,18,54]. Consequently, PNDVI is not suitable for downscaling studies at monthly
scales because of the differences in plant-growth lag in different regions and different elevations.

5.2. Necessity for and Feasibility of Corrected Downscaled Data

The downscaling methodology described in this paper is based on the coarse annual TRMM
data to obtain high resolution (~1000 m) annual precipitation data. However, coarse TRMM datasets
are not accurate compared with observed data (Table 2). Although the final downscaling results
are corrected with residuals, this method corrected the systematic error of statistical downscaling
model. The residuals in the downscaling process are that portion of precipitation amount that the
downscaling models cannot simulate [8,9]. These are not the residuals between the original TRMM
data (or predicted results) and observed precipitation. Therefore, the final downscaled results reduce
the spatial resolution of the original annual TRMM data, but do not effectively improve TRMM data
accuracy. Consequently, the spatial pattern of final downscaled results obtained with this method is
very similar to that of the original TRMM data (Figures 6A and 7A). In Figure 5, the distribution of
residuals is the same as the distribution of precipitation, and the spatial pattern of residuals is the
manifestation of spatial heterogeneity. Therefore, the residuals between the observed and the final
downscaled data also need a spatial correction, and that is why elevation, longitude, and latitude were
introduced into the formula for both the corrected final downscaled results and the corrected monthly
precipitation ratio.

5.3. The Future of Downscaling Research

Further research on downscaling based on satellite products should include the following:
(1) Other land surface characteristics (soil moisture, evapotranspiration), and meteorological conditions
prior to precipitation (humidity, atmospheric circulation, and cloud amount), (2) adding high
elevation observation data to provide the basis for calibration and validation of downscaling results,
(3) developing of new sensors to address solid precipitation in next-generation satellite products,
particularly for light rainfall and cold-season solid precipitation [55], (4) exploring disaggregation
analysis [25] to derive monthly precipitation estimates based on the annual results generated in
this study, and developing additional spatial downscaling algorithms, especially for downscaling
of coarse-resolution satellite-based precipitation estimates at higher temporal resolutions (e.g., daily,
weekly, or monthly) [14].

6. Conclusions

In this study, we aimed to improve a model to obtain the downscaled annual and monthly
precipitation datasets. We concluded from the analysis that:
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(1) The correlation between precipitation and PNDVI was higher than the correlation between
precipitation and NDVI.

(2) The accuracy of FDAP and CFDAP in the improved method was higher than that of the
downscaled data obtained from the previous method which was based on relationships between
precipitation and NDVI, DEM, longitude, and latitude. The RMSE of precipitation decreased on
average by 13.63 and 80.11 mm, respectively, for FDAP and CFDAP.

(3) The accuracy of CFDAP was significantly higher than that of FDAP based solely on land surface
characteristics. Average RMSE from 2006 to 2015 of the corrected downscaled dataset was 66.48
and 83.07 mm less than that of the downscaled results without correction (80.91 vs. 147.39 mm)
and original TRMM data (80.91 vs. 163.98 mm).

(4) The accuracy of the original satellite data affected FDAP results but had no significant effects on
CFDAP results.

(5) Monthly precipitation obtained with the CMR was higher than that obtained with the PMR.
The average RMSE of the former was 4.93 mm lower each month than that of the latter (11.42 vs.
16.35 mm).

Author Contributions: Conceptualization, L.W. and R.C.; data curation, G.L. and S.G.; funding acquisition, R.C.;
investigation, L.W. and R.C.; methodology, L.W. and R.C.; validation, L.W.; visualization, L.W.; writing—original
draft, L.W.; writing—review & editing, L.W., R.C., C.H., Y.Y., J.L., Z.L. and X.W.

Funding: This research was funded by the National Natural Sciences Foundation of China (Grant number:
41690141, 41671029, 41501040), and the STS program of Chinese Academy of Sciences (Grant number:
HHS-TSS-STS-1503). The APC was funded by 41690141, 41671029, 41501040 and HHS-TSS-STS-1503.

Acknowledgments: Thanks to Kathryn B. Piatek for her editorial suggestions on the spelling and grammar
of manuscripts.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sevruk, B. Regional dependency of precipitation-altitude relationship in the Swiss Alps. In Climatic Change
at High Elevation Sites; Springer: Dordrecht, The Netherlands, 1997; pp. 123–137.

2. Bhatt, B.C.; Nakamura, K. Characteristics of monsoon rainfall around the Himalayas revealed by TRMM
precipitation radar. Mon. Weather Rev. 2005, 133, 149–165. [CrossRef]

3. Daly, C.; Smith, J.W.; Smith, J.I.; McKane, R.B. High-resolution spatial modeling of daily weather elements for
a catchment in the Oregon Cascade Mountains, United States. J. Appl. Meteorol. Climatol. 2007, 46, 1565–1586.
[CrossRef]

4. Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P.P. CMORPH: A method that produces global precipitation
estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol.
2004, 5, 487–503. [CrossRef]

5. Michaelides, S.; Levizzani, V.; Anagnostou, E.; Bauer, P.; Kasparis, T.; Lane, J.E. Precipitation: Measurement,
remote sensing, climatology and modeling. Atmos. Res. 2009, 94, 512–533. [CrossRef]

6. Guo, J.; Liang, X.; Leung, L.R. Impacts of different precipitation data sources on water budgets. J. Hydrol.
2004, 298, 311–334. [CrossRef]

7. Smith, M.B.; Koren, V.I.; Zhang, Z.; Reed, S.M.; Pan, J.J.; Moreda, F. Runoff response to spatial variability in
precipitation: An analysis of observed data. J. Hydrol. 2004, 298, 267–286. [CrossRef]

8. Immerzeel, W.W.; Rutten, M.M.; Droogers, P. Spatial downscaling of TRMM precipitation using vegetative
response on the Iberian Peninsula. Remote Sens. Environ. 2009, 113, 362–370. [CrossRef]
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