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Abstract: Knowledge of the aboveground biomass (AGB) of large pasture fields is invaluable as it
assists graziers to set stocking rate. In this preliminary evaluation, we investigated the response
of Sentinel-1 (S1) Synthetic Aperture Radar (SAR) data to biophysical variables (leaf area index,
height and AGB) for native pasture grasses on a hilly, pastoral farm. The S1 polarimetric parameters
such as backscattering coefficients, scattering entropy, scattering anisotropy, and mean scattering
angle were regressed against the widely used morphological parameters of leaf area index (LAI) and
height, as well as AGB of pasture grasses. We found S1 data to be more responsive to the pasture
parameters when using a 1 m digital elevation model (DEM) to orthorectify the SAR image than when
we employed the often-used Shuttle Radar Topography 30 m and 90 m Missions. With the 1m DEM
analysis, a significant quadratic relationship was observed between AGB and VH cross-polarisation
(R? = 0.71), and significant exponential relationships between polarimetric entropy and LAI and
AGB (R? = 0.53 and 0.45, respectively). Similarly, the mean scattering angle showed a significant
exponential relationship with LAI and AGB (R? = 0.58 and R? = 0.83, respectively). The study
also found a significant quadratic relationship between the mean scattering angle and pasture
height (R? = 0.72). Despite a relatively small dataset and single season, the mean scattering angle
in conjunction with a generalised additive model (GAM) explained 73% of variance in the AGB
estimates. The GAM model estimated AGB with a root mean square error of 392 kg /ha over a range
in pasture AGB of 443 kg/ha to 2642 kg/ha with pasture LAI ranging from 0.27 to 1.87 and height
3.25 cm to 13.75 cm. These performance metrics, while indicative at best owing to the limited datasets
used, are nonetheless encouraging in terms of the application of S1 data to evaluating pasture
parameters under conditions which may preclude use of traditional optical remote sensing systems.

Keywords: synthetic aperture radar; pasture height; leaf area index; aboveground biomass;
eigenvector polarimetric decomposition; mean scattering angle; polarimetric scattering entropy

1. Introduction

The estimation of aboveground pasture biomass (AGB) not only provides information on the
primary plant productivity of the site, but is useful for graziers managing that landscape in making
decisions regarding stocking rate, grazing rotation interval, and fertiliser application [1-3]. At plot
or field scale, simple methods are employed to estimate AGB often through measurement of the
plant’s biophysical properties such as leaf area index (LAI) or plant height [4-6]. At a landscape scale,
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the implementation of these simple methods is not feasible and, therefore, satellite remote sensing
methods have been a popular alternative [7-10].

Satellite-based optical remote sensing has often been used to estimate AGB via vegetation indices
from the visible and near-infrared portions of the electromagnetic spectrum. In Australia, the Pastures
from Space™ programme used NDVI derived from LANDSAT, SPOT, and MODIS satellites to estimate
pasture quantity and quality [7]. Edirisinghe et al. [8] subsequently used NDVI estimated from both
LANDSAT TM and SPOT XS to estimate AGB of annual pasture grasses in Western Australia with a root
mean square error (RMSE) of prediction of 315 kg/ha. Less precision was found in a mountainous
region of Spain where the RMSE for the AGB of meadow and pasture grass derived from vegetation
indices from multi-temporal Landsat-5 TM images was 950 kg/ha for mid-summer growth and
1280 kg /ha for end of summer growth [9]. Other studies have used higher spatial resolution optical
satellite data such as WorldView to estimate AGB [10,11]. Recently, a study conducted in South Africa
combined red-edge and textural metrics of WorldView-3 image to achieve an RMSE of 2000 kg /ha
when predicting AGB of native grasses that were subjected to different management practices [10].

Despite these results for estimating AGB, the use of spaceborne optical remote sensing can be limited
by cloudy conditions. The typically used spectro-optical vegetation indices also saturate at high LAI [12,13].
Moreover, these indices rely upon pigment and/or leaf turgidity and hence are unresponsive to senescent
material over and above the effects of spectral mixing with green components [14,15].

Synthetic Aperture Radar (SAR) systems do not have the same limitations as optical data.
Satellite-based SAR remote sensing is able to provide relatively high spatial resolution images (~10 m)
without being affected by the presence or absence of solar illumination and presence of clouds and
other weather conditions that obscure visible line of sight [16,17]. SAR X- or C- band wavelengths are
comparable to the physical structure (e.g., height) of pasture grasses with the ability to penetrate up to
7.5 cm into the canopy of grasses [18,19]. The incident SAR microwave energy responds to the physical
structure (shape, size, height and orientation) of the plant assemblages, the dielectric attributes (related
to moisture content) of canopy [20], as well as the soil surface when groundcover is low [21,22]. SAR
systems are characterised by the direction (with respect to the electrical field vector) of transmitted and
return signals such as VV (radar pulses transmitted in vertical polarisation and received in vertical
polarisation) and VH (transmitted in vertical polarisation and received in horizontal polarisation).

Corrections need to be applied to the SAR data in hilly terrain due to geometric and radiometric
distortions (foreshortening, layover or shadowing) of the backscattering coefficient [23—-29]. Because
SAR imaging uses only satellite orbital information a digital elevation model (DEM) is used during
orthorectification [30,31]. The use of a DEM also permits the derivation of local incidence angle
which is an essential correction step in analysing the backscattering coefficient [32]. The accuracy of
orthorectification is as important as the accuracy of the DEM as the magnitude of error in the DEM
compounds with both the azimuth and range shifts [24,25,29,30].

Compared to trees and field crops, few studies have used SAR radar to estimate AGB of pastures.
McNeill et al. [33] used TerraSAR-X data to build a linear regression model (involving backscattering
coefficients from HH and HV polarisations) that was able to estimate AGB of pasture grass with
a residual standard error of 317 kg/ha. More recently, polarimetric scattering entropy and alpha
variables estimated from RADARSAT-2 proved useful in estimating non-photosynthetic AGB and total
AGB of a mixed grassland [34]. Although these authors did not report the RMSE for the scattering
entropy and alpha models, the use of these polarimetric variables was deemed successful because of
the mixed pixels of vegetation and bare soil which tend to promote different scattering mechanisms.
The SAR systems used in these past studies can offer quad-polarisation products (VV, VH, HH, HV),
although they rely on expensive commercial satellite SAR data. It may be more cost-effective if
freely available SAR data such as Sentinel-1 (51) can mimic the performance of these commercial
SAR systems in pasture AGB estimation, though this has not yet been done for a grazed landscape.
The S1 is a C-band SAR system which can provide dual polarimetric data, and due to its wavelength
(5.6 cm) [35], the S1 is more suitable for pasture grass monitoring than longer wavelength SAR systems
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such as ALOS PALSAR. Thanks to the twin-sensor functionality, the S1 is capable of revisiting a site
every six days. Additionally, users of S1 data can utilise, cost-free, customised processing software.
The specific aims of this study are to; (a) evaluate polarimetric parameters when DEM of different
spatial resolutions are used to pre-process S1 image of a hilly site, (b) evaluate the relationship between
these parameters and field measured LAI, pasture height and AGB, and (c) evaluate the potential of
polarimetric mean scattering angle for the estimation of AGB.

2. Materials and Methods

2.1. Description of Study Site and Selection of Sampling Sites

This study was conducted on one of the University of New England SMART Farms located near
Armidale, NSW Australia (30°26'26”S, 151°37'30”E). The 740 ha property used is a complex pasture
landscape which comprises open pasture grasslands, scattered trees, remnant vegetation communities
and native forests (Figure 1). The topography ranges from undulating to hilly. The soil in the study area
is predominantly Vertosols of basalt origin with Chromosols in granite areas [36]. Mean annual rainfall
is 755 mm and mean annual maximum and minimum temperatures are 20.3 °C and 6.2 °C (1997-2017),
respectively [37]. This study site is composed of many fields of numerous native and introduced naturalised
pasture species on which grazing livestock (sheep and cattle) are rotated throughout the year. In this study,
10 different sites with a range of pasture composition, influenced by soil type and topography, were sampled
(Figure 1). Each of the 10 sampling sites measured 30 m x 30 m to encapsulate the resampled (see S2.4) 10
m X 10 m spatial resolution of the S1 imagery, allowing for a 10 m radius buffer around the ‘central pixel’
location for uncertainty in spatial registration of the image pixels.
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Figure 1. True colour (RGB) Sentinel-2A image (24 February 2017 acquisition) of study site with some
photo insets, and the central location point of the ten sampling sites (indicated by green circles and are
not drawn to scale). Each sampling site was 900 m.

2.2. Field Data Collection and Processing

Each 30 x 30 m site was set up with the site location attributed to the centre from which the four
compass direction radials (north, N; south, S; east, E; and west, W) providing transects for sampling
(Figure 2). At each midway point along the four radials, AGB was sampled from a 0.5 m x 0.5 m
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quadrat frame resulting in forty samples from the ten sites. The sampling date (13 February 2017) was
selected on account of no rainfall occurring on this date or three days beforehand, in order to limit the
influence on incident radar pulse of surface moisture. While the pasture grasses were senescent and
dry during sampling, many of the sites were recently grazed prior to the field measurement. The LAI
was first measured using AccuPAR PAR/LAI Ceptometer followed by the pasture height using falling
plate [38,39]. To assess the influence of soil moisture on the S1 polarimetry, volumetric water content of
the soil, at 25 cm depth, was collected using Decagon 5TE soil sensors (Decagon Devices, Inc., 2365 NE
Hopkins Court, Pullman WA, www.decagon.com) installed near the study sites. Finally, the sampled
AGB was clipped to ground and the fresh AGB weighed on location. Off-field sorting to remove any
foreign material was conducted, and the samples were then oven-dried at a temperature of 70 °C for at
least 48 h.
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Figure 2. Field sampling set up. The red triangles are demarcations for site central position and transect
radii (North, East, South, and West). The grey dots are mid-positions of transect radii from the site’s
central location and provide sampling locations (s1, s2, s3 and s4).

2.3. Theory of Eigenvector Scattering Mechanism

The backscattering coefficient of a SAR sensor is a result of different interactions and contributions
due to the sensor’s incidence angle, polarisation and frequency of operation, and the structural and
dielectric properties of the sensed target [40]. The radar backscattering coefficient can, however,
be de-convolved into individual scattering components, of which the dominant scattering type can
be identified [41]. The eigenvector polarimetric decomposition is an eigenvalue analysis of the
coherency matrix originally developed by Cloude and Pottier [42] to handle quad-polarisation data.
This polarimetric decomposition technique has since evolved to utilise dual-polarisation data [43—45]
such as the S1. In applying eigenvector decomposition to dual-polarisation data, the original
formulation has been modified [46] and, as a result, a 2 x 2 coherency matrix ([C.,;]) is expressed as

/\ 0 * * *
([Ceon)) = U] 01 s U’ = Aupug” + Apupuy” (1)
U Urpp cosa  —sinae /0
[l Uy Uy { b ] sin ae/ cos @

where A; > A, are eigenvalues and [U] is orthogonal unitary matrix while *and T represent complex
conjugate and transpose matrices, respectively.
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The eigenvector dual polarisation decomposition results in three roll-invariant parameters;
polarimetric scattering entropy (H), scattering anisotropy (A) and the mean scattering angle (x).
The H is defined as:

H= —P1 logz P1 — Pz lngPz (3)

H ranges between 0-1 and when H = 0 the coherency matrix has only one eigenvalue A1 (A, = 0)
to imply only one scattering mechanism exists. On the contrary, H = 1 is a complete random scattering
mechanism. The entropy is indicative of the number of dominant scattering mechanisms and is thus
proportional to the degree of depolarisation. Anisotropy, A, provides additional information on the
entropy by illustrating the contributions of secondary scattering mechanism, calculated as:

A=Ay
p— 4
A+ Az @)

The « is defined as:
X = Plcos_l(\u11|) + chos_1(|ll11|) (5)
where A

p=_"1 6
Mt (©)

The alpha angles of 0°, 45° and 90° represent surface scattering, dipole scattering, and double-
bounce scattering mechanisms, respectively. This study explored the potential of these parameters to
create a simple and interpretable regression model capable of estimating AGB.

2.4. Pre-Processing of Sentinel-1 Data

Sentinel-1A interferometric wide swath data (single look complex (SLC) and ground range
detected (GRD) products) with an observation date (13 February 2017) coincidental with field
measurement were downloaded from the Copernicus Open Access Hub (https://scihub.copernicus.
eu/dhus/#/home). Further detail of this data is reported in Table 1. This S1 data was in the
dual-polarisation of VV and VH. The SLC product was processed to derive the polarimetric
decomposition parameters. Firstly, the precise orbit ephemeris data from ESA archive was downloaded
and applied to correct for the position of the satellite during SAR data collection [47]. Secondly, the SLC
image was TOPSAR split into sub-swath 2 since this sub-swath contains our study site. Moreover,
the TOPSAR split lowered image processing time, as the data file size was reduced. Additionally,
the bursts of this sub-swath (due to the TOPSAR imaging technique used in S1 mission) were removed
after a radiometric calibration of the image. Eigenvector polarimetric decomposition was performed
using a moving window size of 3 x 3 pixels. Finally, the decomposed polarimetric product was terrain
corrected using Shuttle Radar Topography Mission (SRTM) 90 m and 30 m DEMs [48] and a 1 m DEM
derived from airborne LiDAR system flown over the study site in 2013 [49]. The three DEMs were
used in order to evaluate the accuracy of terrain-corrected SAR images. Aside from the geometric
terrain correction procedure, a nearest neighbourhood method was used to resample the image to
a new spatial resolution of 10 m to match the GRD product. The radiometric calibration of the S1 GRD
product was performed after the image had been corrected for satellite positional offset using the orbit
state vector file. Speckle noise, due to constructive and deconstructive wave interference in the image
(including the SLC image) was minimised using the Refined Lee filter method [50,51]. Finally, the GRD
product was terrain corrected using the three different DEMs in a similar fashion as the SLC processing
(Figure 3). The backscattering coefficients (y°) in linear scale were converted to decibels (dB) to have
these estimates in both linear and logarithmic units for further analysis. Using the backscattering
coefficients in the linear scale, a volume scattering index (VSI) [52,53] was calculated as:

v 7)
Yva T Yvv
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As the depolarisation ratio has been reported in earlier studies to be sensitive to soil roughness,
a suitable proxy for soil roughness [54,55] was used to assess the influence of roughness on the mean
scattering angle. The depolarisation ratio is defined as the difference between cross-polarisation
and co-polarisation. The SLC and GRD images were geo-registered to each other and then using
a 3 x 3 pixels window size, values for all the polarimetric measures were extracted for each sampling
site. All image processing was conducted in S1 Toolbox [56].

Table 1. Characteristics of the single look complex of the Sentinel-1 image used.

Feature Description
pass descending
antenna direction right facing
near incidence angle 36°
far incidence angle 42°
azimuth bandwidth 327 Hz
range bandwidth 56.5 MHz
pulse repetition frequency 1717 Hz
pixel spacing (azimuth) 14.07 m
pixel spacing (range) 3.71m
speckle terrain N !
filtering --»  correction . g:m: zgﬂg:: x\l-li i
(SF) (TC) i~ _9amma nought Vi1 _ :
7y
radiometric
calibration
(RC)
A
______ — . i+ entropy |
’ ! apply orbit TOPSAR TOPSAR eigenvector ', N !
- SEE. "_.| file split deburst SE decomposition 1+ anisotropy |
x (_alpha_____ !
' GRD |

Figure 3. The work flow for Sentinel-1 image processing. The broken rectangles represent input or
output data. The input data are single look complex (SLC) and ground range detected (GRD). The solid
rectangles depict the processes conducted, the solid connected arrows indicate the processing steps
for SLC while broken arrows connect processes performed over GRD. The output data for SLC were
polarimetric scattering entropy, scattering anisotropy and mean scattering alpha angle while that of the
GRD are backscattering coefficients in gamma nought for both polarisations.

2.5. Statistical Analysis

Mean values (average of four samples per site) of the dry matter estimates of AGB were computed
to achieve dry biomass estimate for each site. The mean values of LAI and pasture height were also
calculated. Correlation analyses of the polarimetric parameters and field measured LAI, pasture
height and AGB were conducted for the different DEMs used in processing the SAR images. In other
words, the biophysical variables (LAI, height and AGB) were regressed against the VH and VV
polarisations with the backscatter values in linear scale for the purposes of exploring linear, exponential,
logarithmic and quadratic functions. The regression with the highest coefficient of determination
(R?) was selected and reported on. Furthermore, a linear regression was conducted to investigate
the significance level of the influence of soil moisture (volumetric water content) and roughness
(depolarisation ratio) on the SAR signal. A generalised additive model (GAM) was built using the
mean scattering angle as the only predictor. Given the univariate character of the model, a cubic
regression spline was selected as the basis function for GAM [57]. The model was inspected to
confirm normality of residuals and homoscedasticity using the Breusch and Pagan test [58]. Since the
data for model calibration was limited in size, the GAM model was validated using a leave-one-out
cross-validation (LOOCV) method as it has been assessed by earlier work to be appropriate under such
constraints [59,60]. The performance of the GAM model was evaluated using adjusted R?, deviance
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and RMSE. All statistical analyses were conducted in R [61] with a particular use of the ‘mixed GAM
computation vehicle’ (mgcv) package [62].

3. Results

3.1. Exploratory Analysis of Field Data

The minimum pasture height and LAI values were observed in site 1 while the maximum pasture
height and LAI values were observed in site 4 (Figure 4a). Moreover, the sampling site 4 recorded the
highest AGB (2642 kg /ha) while the minimum AGB value (443 kg/ha) was recorded at site 6 (Figure 4a).
The pasture height values range between 0.27 cm and 1.87 cm, the LAI values range between 3.25 and
13.75, while on the other hand, the AGB values varied between 614 kg/ha and 2642 kg/ha. It is worth
noting that although minimum LAI and pasture height values were recorded at site 1, this site had
more AGB than site 6 due to the prostrate morphology of the plant species in site 1. The inter-site
soil moisture condition was characterised with the volumetric water content which ranged between
3.7% and 12.4% (Figure 4b). The minimum and maximum values of the volumetric water content
were observed in site 9 and site 8, respectively. It should be noted that these values are extracted at
an average depth of 25 cm. The surface moisture was rated as very low.
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Figure 4. The field measured; (a) leaf area index (LAI), pasture height and aboveground biomass (AGB)
and (b) volumetric water content for each site.

3.2. Spatial Characterisation of SAR Polarimetric Measures

Figure 5 shows the colour-coded images of the response of the pasture grasses to VH cross-polarisation
(red), VV co-polarisation (green) and VSI (blue) for 90 m DEM, 30 m DEM and 1 m DEM analyses,
respectively. The SAR polarisations differed according to the conditions of the pasture grass. It can be
seen that the VSI, VV and the additive combination of VH and VV were pronounced in the entire study
site, especially for the 1 m DEM analysis. Compared to the images for the 90 m and 30 m DEM analyses,
the image for the 1 m DEM appears to show a rougher texture which suggests this analysis captures more
variability of the polarimetric parameters.
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Figure 5. True colour composite images for backscattering coefficients processed with digital elevation
model of varied spatial resolutions; (a) 90 m, (b) 30 m and (c) 1 m. The red colour in the image denotes
the VH cross-polarisation, the green colour denotes the VV co-polarisation while the blue colour
represents the volume scattering index (VSI). The image is the study site without non-herbaceous land
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Figure 6 presents colour-coded images which show the eigenvector polarimetric decomposition
parameters for 90 m DEM, 30 m DEM and 1 m DEM analyses, respectively. The red, green and blue
colours denote scattering entropy, scattering anisotropy and mean scattering angle, respectively. It can
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be seen that the entire study area is characterised with scattering entropy and the combination of
scattering anisotropy and mean scattering angle.
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Figure 6. True colour composite images for polarimetric decomposition parameters. The images represent
scattering entropy (H), scattering anisotropy (A) and mean scattering angle (x) processed with digital
elevation model (DEM) of varied spatial resolutions; (a) 90 m, (b) 30 m and (c¢) 1 m. The red colour in
the image denotes the scattering entropy, green colour denotes the scattering anisotropy while blue colour
represents the mean scattering angle. Areas with non-herbaceous land cover types have been masked from
the image (pixels in white colour represent masked land cover types or image background).



Remote Sens. 2019, 11, 872 10 of 19

3.3. Regression Analyses

3.3.1. Field Measured Biophysical Variables and Influence of Soil Moisture and Roughness on SAR

Field measured pasture height and LAI showed strong correlations with AGB (Figure 7a,b). LAI
showed a strong positive linear relationship with AGB (R? = 0.84) as was the relationship between
pasture height and AGB (R? = 0.85). Similar results have been reported elsewhere [4].

There was no significant correlation between volumetric water content and the radar backscatter
(p > 0.05), and no significant correlation existed between depolarisation ratio and the mean scattering
angle (R? = 0.35; p > 0.05) (Figure 7c,d).
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Figure 7. Correlation between: (a,b) leaf area index (LAI), pasture height and aboveground biomass
(AGB), (c) volumetric water content and backscattering coefficients, and (d) mean scattering angle and
depolarisation ratio.

3.3.2. SAR Polarisation against Biophysical Variables

Figure 8 shows the relationship between backscattering coefficients from VH and VV polarisations
and LAI, pasture height and AGB for 1 m DEM, 30 m DEM and 90 m DEM-based analyses.
The relationships between LAI, pasture height and AGB and both polarisations were consistently
curvilinear (quadratic relation). The correlation between cross-polarisation (VH) and LAI, pasture
height and AGB was consistently stronger than the correlation with co-polarisation (VV). Regarding
cross-polarisation, the correlation between LAI, pasture height and AGB and backscattering coefficients
for all DEM analyses varied between R? = 0.29 to R? = 0.71. The strongest correlation values were



Remote Sens. 2019, 11, 872 11 of 19

observed for the 1 m DEM analysis in that the LAI, pasture height and AGB measured against the
backscattering coefficients produced R? values of 0.51, 0.49 and 0.71, respectively. However, it was
only the relationship between AGB and VH for the 1 m DEM anlysis that proved to be statistically
significant. The convexity of the observed parabola in Figure 8e suggests lower values of AGB have
an inverse linear relationship with the backscattering coefficient up until an AGB value of ~1750 kg/ha.
At higher levels of AGB, the relationship is positive. For co-polarisation, the correlation values varied
between R? = 0.003 and R? = 0.35, but none of the relationships is statistically significant. There was no
statistically significant relationship observed between VSI and any of the biophysical variables.
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Figure 8. Relationship between the VH cross-polarisation and VV co-polarisation and biophysical
variables; (a,b) leaf area index, (c¢,d) pasture height and (e,f) aboveground biomass. The parabola is
a representation of the relationships observed for the 1 m DEM analysis only. The parabolas for 30 m
and 90 m DEM analyses were not shown to preserve clarity of figures. The R? values are for the 1 m,
30 m and 90 m DEM analyses, respectively. * denotes significant relationship at 95% confidence level.

3.3.3. The Biophysical Variables against Polarimetric Scattering Parameters

Scatterplots of scattering entropy (H) and mean scattering angle (x) as a function of the biophysical
variables (LAI, pasture height and AGB) are presented in Figure 9. The associated R? values between
the scattering entropy and the LAI, pasture height and AGB were 0.53, 0.54 and 0.45, respectively
(Figure 9a—c). The R? values associated with mean scattering angle and the LAI, pasture height and
AGB were 0.58, 0.72 and 0.83, respectively. The relationships between these polarimetric measures and
the biophysical variables were exponential or quadratic and with exception of pasture height, were
monotonically decreasing (scattering entropy) or increasing (mean scattering angle) with increasing
parameter values. There were significant relationships between the scattering entropy and LAI and
AGB only (p < 0.05). On the other hand, the relationships between mean scattering angle and all the
biophysical variables were statistically significant.
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Figure 9. Scatter plots of polarimetric scattering entropy, H (a—c) and mean scattering angle,  (d—f) as

functions of and leaf area index, pasture height (LAI) and aboveground biomass (AGB).

3.4. Generalised Additive Model for AGB Estimation

A statistically significant, generalised additive model (GAM) for AGB estimation was created
using the mean scattering angle («) (Table 2). A post-model Breusch-Pagan analysis produced a test
statistic of 0.336, implying a constant variance of the model, producing an RMSE of 391.93 kg /ha for
AGB values that ranged between 443 kg/ha and 2642 kg/ha (Figure 10).

Table 2. Summary statistics of a generalised additive model (GAM) to predict AGB. The model
is characterised by standard error (se), p-value at 95% confidence level and adjusted R? (adj. R?).
The spline function over the mean scattering angle is further explained by the estimated degrees of

freedom (edf) and percentage of unexplained deviance in the model (deviance).

Model  Coefficient  Estimate se p-Value adj.R®> edf Deviance (%)
GAM intercept 1445.3 1155 1.55e-06
smooth 7.96e-04 0.73 1 24.3
post-model statistic
Breusch-Pagan 0.336
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Figure 10. Relationship between observed and estimated aboveground biomass (AGB) from the
generalised additive model.

4. Discussion

4.1. The Influence of Topography on SAR Measures

The spatial resolution of the DEM played a significant role in the ability of S1 derived metrics to
explain the variance observed in the biophysical variables at the field sites. Only when incorporating
the 1 m DEM did the S1 metrics provide a statistically significant explanation of the variability in
pasture AGB (Figure 8e). This finding is similar to Hinse et al. [25] who showed that DEM products of
higher spatial resolution than the SRTM 30 m DEM captured more backscatter variations in a SAR
image. Similarly, Ortiz et al. [29] reported that, compared to the traditional SRTM DEM (90 m), a DEM
of 5 m spatial resolution minimised errors in pixel location and prediction of forest types. As with the
field sites examined in this work, the effects of significant topographic variations can be mitigated with
higher spatial resolution DEMs because errors in scattering mechanisms associated with terrain slope
in azimuth and range directions are minimised [27,30,63].

4.2. Relationship between the Biophysical Variables and Polarimetric SAR Parameters

Compared to VH cross-polarisation, the backscatter values for the VV co-polarisation were higher
and this could be attributed to the predominantly vertical (erectophile) canopy of the grass blades
oriented parallel to the electrical field vector of the incident microwave energy [64,65]. Similarly,
surface scattering from the exposed soil and detached (horizontal) pasture components resulting
from grazing could account for the high backscatter values for the VV co-polarisation. Whilst the VV
polarisation is also noted to be more sensitive to soil moisture, the conditions at the field site at the
time of data collection were such that surface moisture was considered negligible.

The aboveground pasture biomass, whilst a quantitative measure of pasture amount of
importance to pasture managers, from a radar sensor perspective, is effectively the integration
of gross morphological characteristics such as LAI, leaf orientation (predominantly erectophile)
and canopy height. The only statistically significant relationship between S1 parameters and AGB
was observed with VH (1 m DEM analysis), and this is consistent with previous studies where
cross-polarised channels were observed to be more responsive to variation in AGB than co-polarised
channels [34,40,66]. The quadratic relationship observed between VH and AGB is likely the result of
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two interacting phenomena. At lower AGB values which were recorded in more heavily grazed sites,
the grazing activity exposes the underlying soil and thus the relative high backscattering coefficient
could be attributed to surface roughness contributions. At higher AGB the contribution of volume
or multiple scattering from the grass canopy to the backscattering coefficient dominates. The curves
suggest the switch from surface to canopy-dominance in the S1 response occurs at approximately
1750 kg /ha (Figure 8), coinciding with a, LAI of ~1.3 and a pasture height of ~10 cm. This is consistent
with the canopy peneration limits noted in other work [18,19]. On the other hand, the polarimetric
scattering was highly random given the dominance of the entropy and anisotropy (in combination
with the alpha) (Figure 6).

A non-linear relationship was observed between the LAI, pasture height and AGB and the
polarimetric scattering parameters (entropy and alpha) (Figure 9). Particularly, significant relationships
were observed between scattering entropy and LAI and AGB while the relationships between the
mean scattering angle (x) and all the biophysical variables (LAI, pasture height and AGB) were
significant. This suggests that the LAl and AGB were more strongly driving the S1 response. Given the
similarity in the relationship between all the biophysical variables (LAI, pasture height and AGB) and
the polarimetric scattering parameters, the discussion is focused on only the LAIL The LAI estimates
decay with increasing scattering entropy to explain the influence of grazing on return backscattering
signal. Since the leaf area is reduced by grazing, the exposed rough surface and lower pasture height
with different leaf orientations are likely to subject incident microwave energy to many scattering
events before reaching the receiving antenna. In other words, the sites with low LAI values minimise
the contributions of volume scatterers. Conversely, the LAI estimates grow with increasing mean
scattering angle. This observation is likely to be caused by a more active volume scattering at sites
with denser canopies.

4.3. Estimation of Pasture Grass AGB

The GAM model offered a significant intercept term which estimated the overall mean AGB
at 1445.3 kg/ha (£115.5 as standard error). An estimated degree of freedom of 1 implies the
near-approximation of the GAM model to a linear function. Meanwhile, the smoothing function
applied in the GAM to explain the non-linear relationship between AGB and mean scattering angle
was statistically significant (p-value < 0.05). The GAM model explained 75.7% of deviance in the
AGB observations and a comparison of the observed versus GAM-estimated AGB yielded an RMSE
of 391.93 kg/ha (R? = 0.66) (Figure 10). Such a result should be interpreted with caution given the
sparsity of data and the consequent use of a leave one out cross validation process instead of separate
calibration and validation datasets. Moreover, the data were collected in just a single season which
does not enable conclusions to be made around seasonal translatability. However, the results of
this preliminary investigation are encouraging given the fact that the S1 system is satellite based
and offers advantages over optical satellite systems such as ability to collect data under observation
conditions that preclude the use of optical satellite sensors. The use of comparable spatial resolution
optical systems such as Landsat TM and SPOT XS which have been observed to yield pasture biomass
estimations with an RMSE of 315 kg DM /ha [8] could be augmented through the use of radar systems
such as S1, not only if/when constrained by target visibility but also when the target comprises of
senesced grasses which is typically beyond the sensitivity of pigment-based, spectro-optical indices
such as the NDVL

The accuracy of the GAM model in this study is consistent with past studies that estimated
AGB using near-surface optical remote sensing devices or satellite-based SAR polarimetric variables.
For similar study sites in Australia, the RMSE of 391.93 kg /ha observed in this study compares with
the 288 kg/ha and 537 kg/ha prediction errors reported by Trotter et al. [6] and Andersson et al. [4],
respectively, using proximal active optical sensors. Moreover, the accuracy of the present AGB model
compares with the accuracy (RMSE of 455.28 kg/ha) reported in Schaefer and Lamb [5] who used
terrestrial LIDAR system. Regarding similar past SAR studies, the accuracy of this GAM model is
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comparable to the RMSE of 511 kg/ha produced by a linear regression model created on the difference
in backscattering coefficients of VV and VH polarisation of TerraSAR-X [33].

In addition to the qualifiers around limited data and single season data capture mentioned earlier,
the use of sites with low LAI or pasture heights limits the interaction between canopy scatterers and
transmitted radar signal, and this has limited the ability of the volume scattering process to capture
the variability of the LAI, pasture height and hence, the AGB. The eigenvector polarimetric parameters
suggest the dominance of volume scattering and surface scattering mechanisms, but this present study
was unable to separate and analyse these mechanisms individually. In future work, full polarimetric
data and a larger range of canopy conditions (LAI, height) will be included to permit the use of
other polarimetric decomposition methods such as Freeman-Durden [67] to evaluate the individual
scattering mechanisms. However it should be noted that the constraints experienced in this present
work were realistic, operational constraints that may typically occur in any real farming enterprise
(i.e., grazing pressure, biomass range restrictions to promote sustainable pasture regeneration in the
light of maintaining livestock carrying capacity, impacts of drought etc.) and so the applicability of
such ‘enhanced” datasets to the ‘real world” should be carefully considered.

5. Conclusions

The response of a range of Sentinel-1 (S1) backscatter parameters to the biophysical characteristics
of native pasture grasses including leaf area index, pasture height and aboveground biomass were
investigated in the context of a hilly, pastoral farm. The S1 parameters included VH cross-polarisation
and VV co-polarisation as well as derived metrics including volume scattering index and eigenvector
polarimetric decomposition parameters (entropy, anisotropy and alpha). Analyses involved the
use of digital elevation models of varying spatial resolutions; 90 m, 30 m and 1 m. Owing to
the enhanced ability of the highest-resolution, 1 m DEM data, to capture the terrain/topographic
induced errors in backscatter parameter analysis, the 1 m DEM-based analysis produced the highest
accuracies in explaining the relationships between the biophysical variables and Sentinel-1 polarimetric
features. This observation reinforces the value of high-resolution DEM data for analysing signals
emanating from landscapes with significant topographic variability. A generalised additive model
with mean scattering angle as a predictor was established to estimate aboveground pasture biomass.
The root mean square error of prediction for the model was 391.93 kg/ha over a biomass range
of 443-2642 kg/ha with pasture LAI ranging from 0.27 to 1.87 and height 3.25 cm to 13.75 cm.
Whilst only a preliminary investigation limited by sparse data and a single season of data capture,
the results are encouraging and should motivate further investigations for using S1 to assess pasture
biomass, especially under conditions of significant senescence and where spatial scale precludes
the use of on-ground measurement techniques. Certainly, further work is required to investigate
seasonality and transferability across multiple seasons. Additionally, this study should encourage
further investigations into augmenting existing optical sensor-based systems, for example the ‘Pastures
from Space’ programme in Australia and New Zealand.
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