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Abstract: The TanDEM-X (TDX) mission launched by the German Aerospace Center delivers
unprecedented global coverage of a high-quality digital elevation model (DEM) with a pixel spacing
of 12 m. To examine the relationships of terrain, vegetation, and building elevations with hydrologic,
geologic, geomorphologic, or ecologic factors, quantification of TDX DEM errors at a local scale
is necessary. We estimated the errors of TDX data for open ground, forested, and built areas in a
coastal urban environment by comparing the TDX DEM with LiDAR data for the same areas, using
a series of error measures including root mean square error (RMSE) and absolute deviation at the
90% quantile (LE90). RMSE and LE90 values were 0.49 m and 0.79 m, respectively, for open ground.
These values, which are much lower than the 10 m LE90 specified for the TDX DEM, highlight
the promise of TDX DEM data for mapping hydrologic and geomorphic features in coastal areas.
The RMSE/LE90 values for mangrove forest, tropical hardwood hammock forest, pine forest, dense
residential, sparse residential, and downtown areas were 1.15/1.75, 2.28/3.37, 3.16/5.00, 1.89/2.90,
2.62/4.29 and 35.70/51.67 m, respectively. Regression analysis indicated that variation in canopy
height of densely forested mangrove and hardwood hammock was well represented by the TDX
DEM. Thus, TDX DEM data can be used to estimate tree height in densely vegetated forest on nearly
flat topography next to the shoreline. TDX DEM errors for pine forest and residential areas were
larger because of multiple reflection and shadow effects. Furthermore, the TDX DEM failed to capture
the many high-rise buildings in downtown, resulting in the lowest accuracy among the different
land cover types. Therefore, caution should be exercised in using TDX DEM data to reconstruct
building models in a highly developed metropolitan area with many tall buildings separated by
narrow open spaces.
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1. Introduction

Digital terrain and surface models (DTM and DSM) are essential for modeling freshwater and
coastal flooding, estimating vegetation biomass and carbon storage, monitoring urban changes, and
quantifying the effects of human activity on climate [1–3]. Airborne light detection and ranging
(LiDAR), an active remote sensing technology, provides accurate and high-resolution measurements
of topography, vegetation, and buildings on the Earth’s surface [4]. During the past twenty years,

Remote Sens. 2019, 11, 876; doi:10.3390/rs11070876 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-6131-3391
http://dx.doi.org/10.3390/rs11070876
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/11/7/876?type=check_update&version=2


Remote Sens. 2019, 11, 876 1 of 20

airborne LiDAR mapping has gradually become the preferred means to derive DTM and DSM in
developed countries. However, the cost of data collection and processing prohibits the extensive
utilization of LiDAR technology in the developing world, and even in large developed countries for
nationwide mapping. In addition, changes in vegetation, buildings, and topography caused by human
activity occur on a global scale, thus global DTM and DSM are needed to assess the cumulative effect
of human-induced changes on climate and disasters such as flooding. Satellite based technology like
synthetic aperture radar (SAR), which is independent of sunlight, cloud, and weather, offers a viable
option for collecting global elevations of the Earth’s surface [5].

In 2000, the shuttle radar topography mission (SRTM) created a digital elevation model (DEM) for
lands between latitude 60◦N and 56◦S [6], and provided the first free global topographic data set for
large-scale hydrological process studies [7]. Note that the term DEM, representing the elevations from
a datum to the tops of vegetative, built, or ground surfaces, is often used as the generic term for DSM
and DTM by many data providers [8]. Unfortunately, the coarse pixel spacing (30 m at best) and large
vertical error (5.6–9.0 m at the 90% quantile) [9] limits the application of SRTM DEMs in hydrologic and
geomorphic studies in low-relief areas, although vertical error in such settings is at the low end of the
distribution [10,11]. Additionally, ground elevation in densely vegetated and built floodplains is often
overestimated because the SRTM sensor detects a surface midway between the bare ground and the
canopy. It is challenging to remove vegetation and buildings from SRTM DEMs to derive DTM because
of the coarse horizontal (30 m) and vertical (1 m) resolutions. In order to fill the gap in high quality
global DTM and DSM data for many applications associated with ecology, geology, geomorphology
and hydrology, the German Aerospace Center (DLR), in partnership with private industry, launched
the TanDEM-X (TDX) DEM mission from 2010 to 2015 [12–14]. By employing bistatic X-band SAR
sensors mounted on two closely flying satellites, the TDX DEM mission achieved an absolute vertical
error of 10 m at the 90% quantile (LE90) and a relative vertical error of 2–8 m at an approximate pixel
spacing of 12 m. The vertical errors of TDX DEMs have been determined by comparing the data with
GPS control points, ice, cloud, and land elevation satellite (ICESat) LiDAR measurements, and SRTM
DEMs on the continental level [12,15–17]. The TDX DEM dataset provides a consistent and global
source for estimating the elevations of terrain, vegetation, and buildings by covering all of the Earth’s
surface at least twice during the mission [12,18].

In 2014, the DLR released the intermediate TDX DEM (IDEM) data to the scientific community
for experimental research, based on the first-pass of the TDX DEM mission [19]. The IDEMs were
subsequently verified by ICESat, airborne LiDAR and GPS measurements at many study sites [20–23]
and have been used to map canopy heights of boreal forests [24], urban tree heights [25], and building
heights [26]. In 2016, the DLR released the final TDX DEM product to the scientific community [27].
The accuracy of the final TXD DEM was improved by inclusion of measurements from multiple
flight paths and quality control. Rizzoli et al. [12] and Wessel et al. [17] conducted vertical accuracy
assessment by comparing TDX DEM elevation with ICESat, GPS and LiDAR height measurements on
a global scale and demonstrated that the LE90 error of the TDX DEM in areas not covered by ice or
forest was only 0.88 m, much lower than the LE90 value specified for the product and highlighting
the potential of TDX DEMs for many applications requiring elevations of terrain, trees, and buildings.
However, the categories of land cover on which the global accuracy analysis was conducted were
too generic and the question whether and how the vertical accuracy of the final TDX DEM product
varies as land cover types change remained to be answered. In addition, the horizontal accuracy of
TDX DEMs, which is important to analyze the geometric characteristics of Earth’s surface features
has not been examined. Therefore, to provide guidance for users to appropriately utilize the data for
mapping terrain elevations, canopy heights, above ground biomass, and building heights, the accuracy
of final TDX DEMs must be examined systematically for detailed types of land cover at a local scale.
The landscape of south Florida, USA, which includes a mixture of high-rise buildings, single-family
residential homes, condominiums, and trees as well as surrounding preserved forests and wetlands
within Everglades National Park, is an ideal location for examining the accuracy of the final TDX
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DEM products. The objective of this paper is to estimate the accuracy of TDX DEM data in urban,
wildland and wetland environments by comparing TDX DEMs with airborne LiDAR measurements.
More specific objectives include (1) quantifying the horizontal and vertical errors of TDX DEMs in
open ground without buildings and trees, (2) estimating the vertical errors of TDX canopy heights in
subtropical and tropical slash pine, hardwood hammock, and mangrove forests, and (3) assessing the
vertical accuracy of TDX building measurements in high-rise and single-family residential areas.

2. Materials and Methods

2.1. The Study Area

The study area is Miami-Dade County in South Florida, USA, where high resolution LiDAR data
were collected in 2015. Miami-Dade County is bounded by Biscayne Bay and the Atlantic Ocean on
the east, Florida Bay on the south, Everglades National Park to the west, and Broward County on
the north (Figure 1a). The earliest urban development occurred in the eastern portion of the county,
following the Atlantic Coastal Ridge, where elevations reach 4–6 m above the current sea level [28].
Subsequently, and especially in the past 30 years, the built area expanded toward the Everglades,
the largest subtropical wetland in North America. High-rise buildings are clustered downtown in
the northeastern part of the County next to Biscayne Bay, while single-family and condominium
residential areas surrounding the urban core occupy the greatest portion of the area. Large tracts of
agricultural land prevail in the less developed southwest, shore-parallel bands of mangrove forest
occur along the southeastern and southern coasts, and small tracts of pine and hardwood hammock
(i.e., mesic broadleaved forests with trees of tropical origin) occupy an area inside Everglades National
Park. With a gently sloped topography and vast areas only a few meters above the current sea level,
Miami-Dade County is one of the most vulnerable areas in the USA to storm surge, sea level rise, and
urban freshwater flooding (Figure 1b). The total population, real property, and gross domestic product
of Miami-Dade County represent about 15% of the total for the State of Florida which is composed of
67 counties [29], making Miami-Dade one of Florida’s social and economic centers.
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2.2. Data

The 1◦ × 1◦ (N25◦W081◦) TDX DEM tile that was collected in 2013 and 2014 covers urban
Miami-Dade County and part of the Everglades. The pixel spacing of the TDX DEM is 0.4 arc seconds
(about 12 m) in latitudinal direction, and varies in longitudinal direction between 0.4 arc seconds at
the equator and 4 arc seconds above 85◦N/S latitude [13]. The TDX twin X-band SAR sensors in a
bistatic mode utilize the strip-map mode with a resolution of 3 m, swath width of 30 km, and slant
angles of 30◦–50◦ to derive the elevations of the Earth’s surface [3,30]. The 32 bit float elevations of the
TDX DEM were generated by averaging all SAR height values falling in a given pixel using weights
based on the standard deviations of the errors for these heights. For each DEM image, there are
seven auxiliary information layers including height error map (HEM), SAR mean amplitude mosaic
(AMP), SAR minimum amplitude mosaic (AM2), water indication mask (WAM), coverage map (COV),
consistency mask (COM), and layover and shadow mask (LSM). The horizontal datum for DEM
and auxiliary images is WGS84-G1150 and the heights of the DEM are ellipsoid heights referenced
to WGS84-G1150 [31]. It is noteworthy that the TDX DEMs represent DSMs including canopy and
building measurements because electronic and magnetic waves emitted and recorded by radar cannot
penetrate fully through vegetation and buildings to reach the ground.

Airborne LiDAR data were acquired using a Rigel LMS-Q680i scanner mounted on a Cessna 206
flying at an altitude of 550 m with a moving speed of 57 m/s. The laser scanner ranged the Earth’s
surface at a pulse rate of 400 KH and a 60 degree field of view, resulting in a point density of 8 points
per square meter [32]. Most of the 4,175 km2 surveyed area was covered by east-west oriented and 50%
overlapped swaths collected in February and April 2015. The LiDAR points in binary LAS (https://ww
w.asprs.org/divisions-committees/lidar-division/laser-las-file-format-exchange-activities, accessed 27
January 2019) format and a 1.5 m (5 ft) bare earth DTM were delivered to Miami-Dade County by the
vendor in state plane projection (feet) with high accuracy reference Network (HARN) North American
Datum of 1983 (NAD83) and the vertical North American Datum of 1988 (NAVD88). The vertical root
mean square error (RMSE) of the LiDAR data was about 0.06 m, based on comparison of LiDAR DTM
with 97 GPS measurements at well-defined road surfaces, and horizontal RMSE was less than 0.067 m.

Auxiliary data used in the analysis include GPS survey benchmark data in the City of Miami
Beach, a land use map created by South Florida Water Management District (SFWMD) in 2009 [33],
a vegetation map for the Everglades National Park created by the University of Georgia (UG) in
1998 [34], and an urban land cover map for Miami-Dade County created by University of Florida and
Florida International University (UF-FIU) in 2016 [35]. The SFWMD land use map was generated
by photo-interpretation of 2008–2009 aerial photography, using the Florida Land Use and Cover
Classification System [36] modified by SFWMD. The SFWMD map covers the urban and agricultural
areas of Miami-Dade County with minimum mapping units of 0.8 hectares for wetlands and two
hectares for uplands, but does not cover most forest areas in Everglades National Park. The UG
map, with a minimum mapping unit of one hectare, was created by digitizing color-infrared aerial
photographs of 1:40,000 scale obtained in 1994 and 1995, and covers all of the Everglades National Park.

The UF-FIU land cover map was generated for the urban area of Miami-Dade County using
WorldView-2 images with a 2 m pixel spacing acquired between 2011 and 2014 [35]. Atmospherically
corrected multi-spectral images were initially classified using a random forest algorithm. Various
vector data layers provided by Miami-Dade County were incorporated into the map generation process
to improve the accuracy of the initial classification; these included large buildings, small buildings,
pavement edges, railroads, water bodies, and agricultural areas. The classification accuracy was
estimated to be 90% with a 95% confidence based on a stratified random sampling method. The UF-FIU
land cover product had varying minimum mapping units for different categories, ranging from 8 m2

for trees and buildings to 200 m2 for wetland and cropland. Due to its higher spatial resolution, the
UF-FIU land cover data were used for the entire area covered by the UF-FIU map, and the SFWMD
and UG maps were used in the remaining areas.

https://www.asprs.org/divisions-committees/lidar-division/laser-las-file-format-exchange-activities
https://www.asprs.org/divisions-committees/lidar-division/laser-las-file-format-exchange-activities
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2.3. Datum Conversion

In order to make a consistent comparison among TDX and LiDAR DEMs, all measurements
must refer to the same horizontal and vertical datum. Hence, all data were converted to State
Plan HARN NAD83 horizontal datum and NAVD88 vertical datum in units of meters using the
National Geospatial-Intelligence Agency (NGA) Conversion Tool (http://earth-info.nga.mil/GandG/w
gs84/gravitymod/egm96/egm96.html, accessed 27 January 2019), National Oceanic and Atmospheric
Administration (NOAA) VDatum (https://vdatum.noaa.gov/, accessed 27 January 2019), and the ArcGIS
Projection tool following the flowchart in Figure 2. For LiDAR data, the 5 ft LiDAR DTM was first
converted to a 1.5 m LiDAR DTM in the State Plane meter coordinate system in ArcGIS using the
Raster Projection tool with the nearest neighbor resampling method and the Map Algebra tool. Then a
12 m DTM was generated by averaging the 1.5 m LiDAR DTM using the Raster Aggregation tool in
ArcGIS. The 12 m DSM was generated following a similar procedure. First, a 5 ft DSM was generated
from the first return measurements of the LAS point data in ArcGIS using the Mosaic Dataset tool.
Then, the 5ft DSM was converted to 1.5 m DSM in the State Plane and NAVD 88 coordinate system and
aggregated to 12 m. For TDX data, the DEM was first converted to an ASCII text file using the Raster
to ASCII tool in ArcGIS. Then, the elevations in the ASCII file were converted to State Plane HARN
NAD 83 (meter) elevations with NAVD88 vertical datum using the VDatum tool. The GEOID12A
model was used when ellipsoid heights were converted to NAVD88 because the LiDAR measurements
were converted to NAVD88 from ellipsoid heights using GEOID12A [32]. Finally, the ASCII file with
converted elevations was transferred back to an image file using the ASCII to Raster tool in ArcGIS.
The entire transformation procedure was automated using Python script. The auxiliary GPS survey
benchmark data, SFWMD land use map, UG vegetation map, and UF-FIU urban land cover map were
all converted to the same reference system in ArcGIS.
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Figure 2. Flowchart for datum conversion.

2.4. Accuracy Analysis

A collection of 210 survey benchmarks in the City of Miami Beach were employed to examine the
accuracy of the 1.5 m LiDAR DTM. Survey benchmarks on bridges and other non-ground features,
and within 10 m of the shoreline were removed, retaining 152 survey benchmarks used in the analysis.
LiDAR DTM cells close to the shoreline have relatively large vertical errors because the filtering method
to separate ground and non-ground points often performs poorly here due to the influence of the
water body and missing data, and the horizontal error has a large impact on vertical accuracy due to a
relatively steep slope between the land and water surface. The elevations of grid cells of the 1.5 m
LiDAR DTM in which the benchmarks fall were extracted using the extract point tool in ArcGIS to
make the comparison between LiDAR DTM and survey benchmark elevations.

The accuracy of TDX DEM was analyzed for the selected land cover types in Miami-Dade County
by comparing it with the 12 m LiDAR DSM. Since the LiDAR data and TDX DEM were not collected
simultaneously, cover types such as agricultural land that might change substantially between 2013 and
2015 were not included in the analysis. Water bodies were also excluded from the accuracy analysis
because of low backscatter of LiDAR and SAR beams on smooth water surfaces [4,37]. High-rise

http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm96/egm96.html
http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm96/egm96.html
https://vdatum.noaa.gov/
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buildings, low-rise commercial and residential buildings, and wooded areas for which little change
was expected over the period were selected for analysis. Open spaces such as sports fields, golf
courses, lawns, and landfills of sufficient size to expect consistent ground elevations were selected
to determine the TDX DEM errors for open ground (terrain). A systematic sampling method was
employed to select the check points (pixels) for open ground by dividing the study area into square
tiles. Since the locations of sample pixels were often limited by the number and spatial distribution of
open spaces within a tile, it was impractical to attain a perfectly even distribution of samples. To select
check points in a consistent manner, the study area was first divided into 5 × 5 km tiles, and then
the pixels were visually sampled as evenly as possible within each tile. An auxiliary criterion was to
choose pixels whose elevations were similar to those of neighboring pixels, in order to maximize the
representativeness of the sample, and reduce the effect of possible horizontal errors of the TDX data
(Figure 3).
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Comparison of the TDX DEM and LiDAR DSM elevation differences of open ground free from
the influence of non-ground features is relatively straightforward. However, analysis of TDX DEM
and LiDAR DSM elevation differences in areas with buildings and trees is more complex because the
interaction of the radar beams from the TDX satellites with both ground and non-ground features
influence SAR elevation measurements [1]. To examine the effect of buildings and trees on TDX
elevation measurements, sample areas covering dense tall buildings in the urban core, sparse residential
buildings surrounded by dense trees, dense residential buildings with sparse trees, and forests including
mangrove, hardwood hammock, and slash pine (Pinus elliottii var densa) woodlands were selected to
analyze the differences between TDX DEM and LiDAR DSM across units recognized in land cover and
use maps.

Given a test DEM (TDX DEM) elevation (yi) and reference (LiDAR DSM) elevation (xi) at sample
point i, the difference (∆hi) between yi and xi, and the total number of samples (N), the following
metrics were employed to quantify the vertical errors of DEMs [17,38–40]:

Mean Error : ME =
1
N

N∑
i=1

(yi − xi) =
1
N

N∑
i=1

∆hi (1)

Absolute Mean Error : AME =
1
N

N∑
i=1

|∆hi| (2)

Mean Normalized Bias : MNB =
1
N

N∑
i=1

∆hi
xi
·100% (3)

Root Mean Square Error : RMSE =

√√√
1
N

N∑
i=1

∆h2
i (4)
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Standard Deviation : SD =

√√√
1

N − 1

N∑
i=1

(∆hi −ME)2 (5)

These error measures perform well if the ∆hi follows a normal distribution, however, the error
distribution of a DEM is often not normal [39,40]. Therefore, Höhle and Höhle [39] proposed the
following robust accuracy measures based on non-parametric statistics for vertical DEM errors that do
not follow normal distributions:

Median (50% quantile) o f Di f f erences : MD = Q∆h(0.5) = m∆h (6)

Normalized Median Absolute Deviation : NMAD = c·median(|∆hi −m∆h|) (7)

Absolute Deviation at 90% Quantile : LE90 = Q|∆h|(0.9) (8)

The constant c in Equation (7) is approximately equal to 1.4826 (which is the value used in this
paper) if the distribution of ∆hi is normal after disregarding the abnormality induced by outliers [41,42].
NMAD is a more robust estimator for the deviation of non-normally distributed data that have
outliers. The absolute deviations at the 68.3% and 95% quantiles were employed by Höhle and
Höhle [39] and Müller et al. [40] to specify the elevation error range, while LE90 (Equation (8)) was
used by Wessel et al. [17] to align the error calculation to the accuracy specification of TDX DEM [14].
We followed the latter procedure and represented the deviation by LE90.

Linear regression was also utilized to examine the correlation between LiDAR and TDX
DEM elevations

yi = a + bxi + εi (9)

The variable εi is the random error following a normal distribution. The R-squared value of the
linear regression equation was calculated by

R2 =

∑N
i=1(a + bxi − ym)

2∑N
i=1(yi − ym)

2 (10)

The variable ym is the mean of yi. The p-value (i.e., the two-sided probability value for a null
hypothesis that the slope of the regression equation is zero [38]) was employed to examine the
significance of the regression parameter. A low p-value (e.g., < 0.01) indicates that the null hypothesis
should be rejected.

Examination of TDX DEM’s horizontal accuracy is more challenging than its vertical accuracy
because of the difficulty in finding reference features. Two landfills located at the north and south ends
of the study area were selected for comparison analysis (Figure 1b). The surface and neighborhood of
the two trash mounds were free from trees and tall buildings, minimizing errors of multipath reflection
and shadow effect from SAR. Sample points at a spacing of 12 m along two perpendicular transects
were extracted from TDX DEM and LiDAR DSM for error analysis. A spatial correlation analysis [38]
was employed to analyze possible shifts in the TDX DEM:

rk =
1

N − k

N−k∑
i=1

(xi − xm

sx

)
·

(
yi+k − ym

sy

)
(11)

The variable xi is the LiDAR DSM elevation at sample point i, and yi+k is the TDX DEM elevation
at sample point i+k. The variables xm, ym, sx, and sy are means and standard deviations of xi and yi,
The index k is the spatial lag between sample points xi and yi+k with a maximum value of N/2.
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3. Results

3.1. LiDAR DTM Accuracy and Horizontal Accuracy of TDX DEM

The vertical RMSE of the 1.5 m LiDAR DTM was about 0.10 m (Figure 4), indicating that the
vendor’s vertical accuracy claim (RMSE = 0.06) for the urban area was reasonable given that a
considerable number of benchmarks were located at the edges of street curbs, which were usually
0.15 m higher than the adjacent road surface. The DTM value at these benchmarks was generated by
interpolating the points at the higher curb and lower road surface. Also, there was no large systematic
offset between LiDAR DTM and GPS measurements as indicated by a low intercept value of 0.05 m
in the linear equation. It should be noted that these GPS benchmarks are only available in urban
settings with commercial buildings, residential homes, open ground, and forested parks, which do
not represent all land cover types in the study area. It is expected that the vertical accuracy of LiDAR
DTMs vary in the forested and marsh areas, depending upon the coverage of trees, low vegetation,
and ground [1].
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LiDAR DSM and TDX DEM elevations along four transects across two trash mounds were
analyzed to detect the magnitude of the horizontal shift in TDX DEM (Figure 5). The TDX DEM
elevations matched well with the LiDAR DSM elevations in most cases along four profiles, although
there were considerable differences at several locations along Profiles 2 and 3. The correlation analysis
between TDX DEM and LiDAR DSM indicated that the correlation coefficients with a lag value of
0 reached maxima with r values of 0.99, 0.88, 0.99, and 0.97, respectively, for Profiles 1, 2, 3, and
4. The relatively low correlation coefficient of Profile 2 was caused by the large fluctuation of TDX
DEM elevations over a water surface that occupied the interval between 100 m and 400 m (Figure 5).
The correlation coefficient with 0 lag for Profile 2 reached 0.99 if the elevations less than 400 m were
removed from the calculation. Thus, the spatial correlation analysis demonstrated that there was no
significant horizontal shift in TDX DEM.
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3.2. Vertical Accuracy for Different Types of Land Cover

The RMSE and LE90 values of TDX DEM elevations versus LiDAR DSM elevations for the land
area of 3500 km2 were 2.25 m and 2.30 m (Table 1), respectively. The RMSE value was reduced to
1.80 m if pixels with height errors larger than 1 m in the corresponding HEM map were removed,
while the RMSE value became 1.81 m after removing large height inconsistent pixels by selecting
only pixels with COM values of 2, 8, and 10. These numbers represented smaller inconsistency (2),
all height consistency (8), and smaller inconsistency but at least one consistent height pair (10) in
SAR measurements [13]. The RMSE value was reduced to 1.67 m if both criteria were used to select
the pixels. The linear regression between TDX DEM and LiDAR DSM elevations showed that the
correlation was highest when both criteria were used to select pixels, generating an R-squared value of
0.68. The analysis of errors revealed the overall accuracy of TDX DEM elevations for the entire study
area that was occupied by various types of land cover. The interaction between incident radar waves
with different objects on the Earth’s surface varied with land cover type, resulting in the fluctuation of
SAR measurement uncertainty. Additionally, agricultural land which may have changed in the period
between TDX DEM mission and LiDAR surveys were not excluded from the error analysis for the
entire study area. Therefore, it was necessary to conduct an error analysis of TDX DEM for individual
types of land cover expected to undergo minimal temporal change as shown in the following sections.

3.2.1. Open Ground Area

Figure 6 shows an almost perfect one to one relationship between the LiDAR DSM and LiDAR
DTM elevations for open ground areas. Based on the linear regression between these two values, DTM
values were only 0.02 m lower than DSM values. This was expected because there were few above
ground features in open ground locations. The TDX DEM elevations were lower than LiDAR DSM
elevations by 0.13 m in terms of the median of the elevation difference values (Table 1). The histograms
in Figure 7a,b illustrate that open ground differences exhibited the least variation of all land cover
types, and most differences were within the range of −2.0 m to +1.5 m. The RMSE and LE90 errors
of TDX DEM elevations versus LiDAR DSM elevations were 0.49 m and 0.79 m, respectively, for 326
sample locations (Table 1). The RMSE and LE90 values were reduced to 0.48 m and 0.78 m if pixels
with height errors greater than 1 m were removed, while these values increased to 0.49 m and 0.80 m
after removing large height-inconsistent pixels (COM values other than 2, 8, and 10). The RMSE and
LE90 values were reduced to 0.48 m and 0.78 m again if both criteria were used to select the pixels.
In contrast to a small variation of RMSE values, the NMAD values had the same value of 0.41 m for the
four pixel selection criteria (Table 1). The reason for small changes of RMSE and NMAD was that only
a few pixels had large height errors and/or height inconsistency. The linear regression between TDX
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DEM and LiDAR DSM elevations showed that they too had an almost one-to-one relationship, with a
small intercept value of −0.16 m and coefficient of 1.01 (Figure 6). These demonstrated that the TDX
DEM vertical accuracy for open ground was much smaller than the error range of 10 m specified by
product guidance [13].

Table 1. Error measures and linear regression parameters for TDX DEM versus LiDAR elevations.
Case 1 (e.g., P-1) is for all pixels in a sample area. Case 2 (e.g., P-2) is for the pixels after the removal of
height errors larger than 1 m in terms of the corresponding HEM map for the TDX DEM. Case 3 (e.g.,
P-3) is for the pixels after the removal of large height inconsistent pixels by selecting the pixels with
COM values of 2, 8, and 10. Case 4 (e.g., P-4) is for the pixels after the removal of the pixels by applying
both criteria. LC: Land Cover; NP: Number of Pixels; PC: Percentage calculated by (number of all
pixels - number of pixels after removal of inconsistent pixels)/number of all pixels × 100; PV: P-Value;
EA: Entire Area; OG: Open Ground; M: Mangrove; H: Hammock; P: Pine; D: Downtown; SR: Sparse
Residential areas, DR: Dense Residential areas. The definition of ME, MD, AME, MNB, SD, RMSE,
NMAD, LE90, and R2 can be found in Equations (1)–(10).

LC NP/PC ME MD AME MNB SD RMSE NMAD LE90 R2 PV

EA-1 24671844/0 −0.51 0.42 0.94 2.8 2.19 2.25 0.62 2.30 0.52 0.000

EA-2 24284337/1.6 −0.50 0.41 0.89 2.9 1.73 1.80 0.61 2.23 0.65 0.000

EA-3 24362012/1.3 −0.49 0.41 0.90 2.8 1.74 1.81 0.61 2.26 0.64 0.000

EA-4 24057905/2.5 −0.49 0.40 0.88 2.9 1.60 1.67 0.60 2.21 0.68 0.000

OG-1 326/0 −0.15 −0.13 0.37 −7.3 0.47 0.49 0.41 0.79 0.99 0.000

OG-2 319/2.1 −0.14 −0.13 0.36 −6.5 0.46 0.48 0.41 0.78 0.99 0.000

OG-3 325/0.3 −0.15 −0.13 0.37 −7.3 0.47 0.49 0.41 0.80 0.99 0.000

OG-4 319/2.1 −0.14 −0.13 0.36 −6.5 0.46 0.48 0.41 0.78 0.99 0.000

M-1 94040/0 −0.65 −0.46 0.77 −21.1 0.95 1.15 0.60 1.75 0.95 0.000

M-2 93026/1.1 −0.64 −0.45 0.76 −21.4 0.91 1.11 0.59 1.70 0.95 0.000

M-3 93621/0.4 −0.65 −0.46 0.77 −21.3 0.93 1.13 0.60 1.73 0.95 0.000

M-4 92752/1.4 −0.64 −0.45 0.75 −21.6 0.90 1.10 0.59 1.69 0.95 0.000

H-1 7943/0 −1.97 −1.93 2.01 −23.2 1.15 2.28 1.00 3.37 0.86 0.000

H-2 7936/0.1 −1.97 −1.93 2.01 −23.2 1.15 2.28 1.00 3.37 0.86 0.000

H-3 7943/0 −1.97 −1.93 2.01 −23.2 1.15 2.28 1.00 3.37 0.86 0.000

H-4 7936/0.1 −1.97 −1.93 2.01 −23.2 1.15 2.28 1.00 3.37 0.86 0.000

P-1 42253/0 −2.60 −2.35 2.64 −46.0 1.80 3.16 1.66 5.00 0.14 0.000

P-2 38943/7.8 −2.55 −2.30 2.58 −46.0 1.73 3.08 1.60 4.85 0.16 0.000

P-3 42253/0 −2.65 −2.35 2.64 −46.0 1.80 3.16 1.66 5.00 0.14 0.000

P-4 38943/7.8 −2.55 −2.30 2.58 −46.0 1.73 3.08 1.60 4.85 0.16 0.000

D-1 12146/0 −14.35 −2.42 18.03 −36.9 32.70 35.70 7.99 51.67 0.00 0.000

D-2 6860/43.5 −9.23 −1.50 11.85 −10.2 25.23 26.86 4.94 33.73 0.01 0.000

D-3 6921/43.0 −8.48 −1.20 10.91 −2.4 24.93 26.33 4.55 29.10 0.01 0.000

D-4 5172/57.4 −7.20 −1.13 9.19 −4.6 22.35 23.48 3.82 22.49 0.00 0.000

SR-1 79565/0 −0.86 −0.70 2.01 −1.5 2.48 2.62 2.31 4.29 0.44 0.000

SR-2 79526/0.0 −0.86 −0.70 2.01 −1.5 2.48 2.62 2.31 4.28 0.44 0.000

SR-3 79523/0.1 −0.86 −0.70 2.01 −1.5 2.48 2.62 2.31 4.29 0.44 0.000

SR-4 79491/0.1 −0.86 −0.70 2.01 −1.5 2.48 2.62 2.31 4.28 0.44 0.000

DR-1 100253/0 −0.75 −0.62 1.37 −9.1 1.74 1.89 1.42 2.90 0.23 0.000

DR-2 99687/0.6 −0.76 −0.62 1.37 −9.1 1.73 1.89 1.42 2.89 0.23 0.000

DR-3 100005/0.2 −0.75 −0.62 1.37 −9.1 1.73 1.89 1.42 2.89 0.23 0.000

DR-4 99472/0.8 −0.75 −0.62 1.37 −9.1 1.73 1.88 1.42 2.89 0.23 0.000
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DEM versus LiDAR DSM elevations.

Figure 7. (a) Histogram of elevation differences between TDX DEM and LiDAR DSM in open ground
(OG) and mangrove (M), hammock (H), and pine (P) forest areas. (b) Histogram of elevation differences
between TDX DEM and LiDAR DSM in downtown (D), sparse residential (SR), and dense residential
(DR) areas. Q-Q plots for open ground (c), mangrove forest (d), hammock forest (e), and pine forest (f),
downtown (g), sparse residential (h), and dense residential (i) areas.
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3.2.2. Forested Area

A comparison of TDX DEM and LiDAR DSM for the 13.5 km2 mangrove area showed that the
TDX DEM captured the spatial variation of mangrove trees in the study area well (Figure 8a). Tall
mangrove forest with heights of 14–16 m prevailed close to the coast, while canopy height decreased
landward, reaching about 1 m in the dwarf mangrove communities of the interior forest. This was
verified by an R-squared value of 0.95 for the linear regression equation between LiDAR DSM and
TDX DEM elevations (Figure 8c). The value of MNB indicated that TDX DEM underestimated canopy
heights by an average of 21% (Table 1). The RMSE and LE90 values of TDX DEM were about 1.15 m
and 1.75 m, which reduced slightly to 1.10 m and 1.69 m, respectively, after the removal of pixels with
large height errors and height inconsistency. The reason for the small change of R-squared values was
that the number of pixels with large height errors and height inconsistency was small, representing
only 1.4% of the total number of pixels (Table 1).
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The protected pine rockland ecosystem in the Everglades National Park (Figure 1), which occurs
only in south Florida and the Bahamas, has many species of rare plants. These open stands of slash
pine, with a rich understory of herbs and low shrubs, form the matrix in which small tropical hardwood
stands are scattered [43]. The TDX DEM elevations for the 1.1 km2 area occupied by hardwood
hammocks exhibited a strong linear relationship with LiDAR DSM elevations (Figure 9), with an
R-squared value of 0.86 (Table 1). The TDX DEM elevations underestimated the LiDAR tree canopy
heights somewhat, generating an MNB value of -23%. The RMSE and LE90 values of TDX DEM
without the removal of the large height error or height-inconsistent pixels were about 2.28 m and
3.37 m, respectively, while the removal of such pixels did not change the RMSE value because the
number of pixels with large errors was small. In contrast to the good correlation observed between
TDX DEM and LiDAR DSM in hardwood hammock, the correlation between these data in 6.1 km2 pine
forest was poor, generating R-squared values of 0.14–0.16 (Table 1). The RMSE values with and without
the removal of large height error and height-inconsistent pixels were 3.08 m and 3.16 m, respectively.
The MNB value of −46% indicated that the TDX DEM elevations largely underestimated the canopy
heights of the pine forest. Underestimation of canopy heights increased as the canopy became taller
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(Figure 9) because the size of the radar beam from the sensor was larger than the small, thin crowns of
tall pine trees, capturing instead the height of mixed tall pine trees and low understory vegetation.
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3.2.3. Built Area

A comparison of TDX DEM and LiDAR DSM for the 1.7 km2 downtown area indicated that
the TDX DEM significantly underestimated the heights of tall buildings (Figure 8b,d). The largest
building height from TDX DEM was about 110 m, while many pixels from LiDAR DSM exceeded
110 m elevation, with the largest values ranging from 200–240 m. The number of TDX DEM pixels
with values less than LiDAR DSM values exceeded the number of TDX DEM pixels with larger values
(Figure 8d). TDX DEM and LiDAR DSM pixels with heights less than 40 m were not strongly correlated,
and almost no viable TDX DEM measurements were above 80 m (Figure 8d). Over the entire data
range, linear regression analysis showed that the R-squared value between TDX DEM and LiDAR
DSM elevations was less than 0.01 (Table 1). The RMSE and LE90 values were 35.70 m and 51.67 m,
respectively (Table 1), much larger than the RMSE for the open ground and forested areas. The RMSE
and LE90 values were reduced to 26.86 m and 33.73 m when pixels with height errors larger than 1 m
were removed, while the RMSE and LE90 values were reduced to 26.33 m and 29.10 m after removal of
large height-inconsistent pixels by selecting the pixels with COM values of 2, 8, and 10. The RMSE and
LE90 values were further reduced to 23.48 m and 22.49 m if both criteria were used to select the pixels,
but were still worse than the range specified for TDX DEMs. Note that the number of pixels with large
height errors and height inconsistency were much larger than in other types of land cover, reaching
about half of the total number of pixels (Table 1).

There are two distinct types of residential housing areas in urban Miami: one is a sparse residential
area where parcel sizes of residential buildings are large, and trees and lawns occupy the spaces
between houses. In this landscape, the vegetated area is usually larger than the built area, and the
dense tree canopy overhangs the roads from both sides (Figure 10a). In the second type of residential
area, housing is dense, there are fewer open spaces and trees between buildings, and trees covering the
roads are not as dense as in the sparse residential area (Figure 10c). Two sample areas, representing
sparse and dense residential areas of 11.5 and 15.7 km2, respectively, were selected to examine the
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relationship between TDX DEM and LiDAR DSM. In both cases, more TDX DEM pixels underestimated
the elevations of LiDAR DEM pixels than overestimated them (Figure 10b,d).

Figure 10. (a) TDX DEM for a sparse residential area, (b) scatter plot of LiDAR DSM and TDX DEM
elevations for the sparse residential area, (c) TDX DEM for a dense residential area, and (d) scatter plot
of LiDAR DSM and TDX DEM elevations for the dense residential area.

TDX DEM and LiDAR DSM elevations in the sparse residential area were reasonably well
correlated, with an R-squared value of 0.44, while the correlation in the dense residential area was
poor, with an R-squared value of 0.23 (Table 1). The RMSE values for the sparse and dense residential
areas were 2.62 m and 1.89 m, respectively. The removal of pixels of large height errors or height
inconsistency did not change RMSE and LE90 values much (Table 1). The MNB values of −2% and
−9% for the sparse and dense residential areas, respectively, indicated that the TDX DEM elevations
underestimated the LiDAR DSM elevations slightly for both types. The statistical differences in the
relationship between TDX DEM and LiDAR DSM elevations for sparse and dense residential areas
implied that the composition of buildings, trees, and open ground, including uncovered roads and
lawns, might have an effect on the correlation between elevations derived by TDX and LiDAR.

3.2.4. Error Measures

A series of statistical parameters (Equations (1)–(8)) were employed to quantify the errors of TDX
DEM. The SD and NMAD values should be similar when the difference between TDX DEM and LiDAR
DSM follows a normal distribution because NMAD is the estimator of SD [39,42]. For example, the SD
and NMAD values for open ground were 0.46 m and 0.41 m, respectively, and the difference values
distributed almost normally in the Q-Q plot (Figure 7c). The ME of open ground was also close to
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the median value of the elevation differences. Small differences of 0.15 m and 0.17 m between SD
and NMAD also occurred in the hardwood hammock forest and sparse residential areas, respectively,
where the Q-Q plot was almost identical to 1:1 line (Figure 7e,h). The fits of the Q-Q plots for differences
in the mangrove, pine rockland, and dense residential areas (Figure 7d,f,i) were intermediate between
these best cases and the downtown area. The differences between SD and NMAD were 20–28 m
(Table 1) in downtown, depending on the criteria for removal of error pixels based on the height
errors and consistency codes. The Q-Q plot line for downtown was almost horizontal (Figure 7g).
The NMAD values for downtown was much smaller than SD values, indicating that there were many
outliers among the elevation difference values. Overall, the changes of the median and NMAD values
were less than the variation of ME and SD values across all sample sites. This demonstrated that the
median of elevation differences and NMAD were more robust error measures than ME and SD, which
supported conclusions from a previous study of DEM accuracy analysis [39].

4. Discussion

The error measures of four cases were calculated for the entire land area of Miami-Dade County
and various types of land cover (Table 1). The improvement of accuracy achieved by removing pixels
with large height errors and inconsistent heights based on auxiliary data layers accompanying a TDX
DEM raster is noteworthy. This can be useful for applications such as deviation of ground pixels by
filtering TDX DEM [44] and comparing TDX with SRTM DEMS to document the elevation difference
in which missing pixels are acceptable. However, for applications in which the missing pixels of DEMs
are not acceptable, the removal of the low-quality pixels may cause a problem. In these cases, one
could replace the low-quality pixels by interpolation or by simply keeping the low quality pixels.
Fortunately, the amount of low-quality pixels are not high, about 2.5% for the entire study area, with
varying amounts for open ground, forest, and built areas discussed below.

4.1. Open Ground

On open ground, the TDX DEM elevations are in very good agreement with LiDAR DSM elevations
(Figure 6). The TDX DEMs deliver much more accurate estimates of ground elevation within the
study area than the 10 m absolute error range defined by TDX DEM accuracy specification [13]. The
LE90 value of 0.79 m is slightly better than the LE90 error of 0.88 m derived by comparing TDX DEM
with ICESat measurements in generic cells not covered by ice or forest [12]. Additionally, based on
the spatial correlation analysis between TDX DEM and LiDAR DSM profiles (Figure 5), there is no
horizontal shift of TDX DEM. Therefore, the TDX DEM provides reliable topographic data source for
modeling of geomorphic and hydrologic processes in developing countries, where high resolution
DEM data are lacking [45].

However, for flood mapping and analysis of geomorphic modification by human activity in
residential areas, the algorithm to separate ground and non-ground measurements from TDX DEM [44]
and to create DTM must be developed. The high quality of measurement for open ground delivered
by TDX DEM provides reliable seed points to gradually search for additional ground measurements.
Unfortunately, the separation of the ground and non-ground elevations is limited by the 12 m resolution
of TDX DEM. In heavily built metropolitan areas, where street widths are not significantly larger than
the spatial resolution of TDX DEM, the mixing of different objects in a TDX DEM pixel, in combination
with shadow effects, prevent consistent ground measurements. Deriving DTM in densely vegetated
areas such as mangroves and hardwood hammocks is also difficult because the X-band radar wave
(wavelength of 3.1 cm) cannot penetrate through the trees and reach the ground. In semi-developed
and sparse or patchy vegetated areas, ground and non-ground features are generally separable in TDX
DEM [46,47], and it is in such landscapes that TDX DEM can provide a more reliable DTM for mapping
flood impacts.
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4.2. Forested Area

TDX DEM has been used extensively to derive digital canopy models (DCM) for estimation of
tree height and above ground biomass in urban and natural environments ([23,47–49]. The TDX DEM
elevations of the mangrove forest on the southeast Florida coast exhibit the strongest correlation with
LiDAR DSM elevations among all forested samples, generating an R-squared value of 0.95 (Table 1)
which is comparable to previous studies. Feliciano et al. [50] demonstrated that the TDX DCM heights
for mangrove forest along the west coast of South Florida had a strong correlation (R2=0.85) with
LiDAR DCM heights based on comparison of the mean heights of the 100 tallest trees in 1-ha plots from
LiDAR and TDX data. In our east coast sample area, the RMSE value between TDX DEM and LiDAR
DSM elevations was about 1.15 m, less than the RMSE value of 1.89 m in the Feliciano et al. [50] study.
This difference may be due to the difference in methods for DCM comparison and the high density
of mangrove trees in our sample area, which contrasts with the mangrove forest of the southwest
Florida coast, where trees, rivers, and water bodies interweave, resulting in a more complicated DCM.
It is notable that the TDX DEM elevations of the mangrove forest underestimate the LiDAR DSM
according to the ME and median of difference values (Table 1), and the regression result (Figure 8c).
This is expected because the large side-looking angle of 30◦–50◦ of TDX SAR sensors and short X-band
radar waves result in penetration of the wave into the vegetation canopy [14,23]. The scattering
processes occur mostly in the small branches and foliage of the crown layer [1]. The MNB value
of −21% for the TDX DEM mangrove elevations indicates that the scatter center of X-band wave
is located at approximately 79% of the LiDAR DSM heights. The true scatter center of the X-band
wave should be somewhat lower than 79% of true canopy height, because the LiDAR DSM also
provides a slight underestimate of canopy height [51]. The underestimation of canopy heights by TDX
DEM is not confined to mangrove forests, but also occurs in many other types of forest, including
tropical peat swamp, patchy savanna, boreal, and urban forests [21,23–25]. Both Balzter et al. [21] and
Sadeghi et al. [24] demonstrated that the TDX DEM elevations were located between the LiDAR DTM
and DSM elevations in patchy savanna and boreal forests.

To derive the DCM of the forest, the ground elevations have to be removed from TDX DEM
elevations, thus a DTM is needed for its generation. The DTM can come from LiDAR surveys, stereo
analysis of overlapped aerial photographs or high-resolution satellite imagery, and digital topographic
maps [47,48,51]. These DTM data already exist for many developed countries but are often not available
in developing nations. In the case of the mangrove forest, the DTM elevations can be approximated by
mean sea level elevations [52] because the mangrove typically grows in an intertidal zone with near
flat topography. However, forests with such level topography are rare on the Earth’s surface, and
DTMs are needed in mountainous areas with dramatic topographic changes, including boreal forest
and hilly urban areas [47,49]. Instead of relying upon an existing DTM, one alternative is to develop
methods for extracting ground measurements from TDX DEM data directly, and generate a DTM by
interpolating among identified ground pixels [47]. However, the filtering methods are only effective
in forests with sparse trees or in patchily forested areas, because TDX DEM pixels representing the
ground elevations inside the forest are required to produce a reliable DTM by interpolation.

The TDX DEM elevations of the hardwood hammock forest also show a good correlation with
LiDAR DSM elevations, generating an R-squared value of 0.86. The MNB value of −23% for the TDX
DEM elevations of the hammock indicates that the scatter center of the X-band wave is located at
approximately 77% of the LiDAR DSM heights. Although the RMSE value of TDX DEM elevations for
hammock is larger than for mangrove, a systematic offset of TDX DEM from LiDAR DSM is obvious in
Figure 9, as indicated by a regression line that is almost parallel to the 1:1 line. The reason for the good
correlation between TDX DEM and LiDAR DSM elevations is that hardwood hammock consists of
a dense stand of broad leaved-trees, resulting in a consistent measurements of tree heights by even
scattering of the X-band wave.

The canopy of densely vegetated mangrove and hardwood hammock causes less penetration of
X-band radar waves. By contrast, the pine forest forms an open canopy with widely spaced slash pines



Remote Sens. 2019, 11, 876 16 of 20

and an understory stratum with a mixture of grasses, herbs, palms, and small broadleaved shrubs. The
heights of pine trees are typically greater than 9 m, understory shrubs occupy a layer of 0.5–2 m above
the ground, and open ground and herbaceous plants range in height from 0–0.5 m [53]. The multiple
scattering of radar waves that occurs in these different strata causes an increase in SAR measurement
uncertainty [12]. The MNB value of −46% indicates that the X-band wave scatter center is located at
about half of adult pine tree heights.

4.3. Built Area

The TDX DEM has also been used to estimate building footprints and heights in urban settings [26].
In the developed areas of South Florida, the TDX DEM elevations showed a large discrepancy from
LiDAR DSM in the downtown areas occupied by high-rise buildings, while the discrepancies were
much smaller in both sparse and dense residential areas. Other than a few outliers, most TDX DEM
elevations were below 10 m in the dense residential area (Figure 10), while a considerable number of
TDX DEM elevations for tall trees were higher than 10 m in the sparse residential area (Figure 10). The
presence of more trees and open ground in sparse residential areas increases the chance of an X-band
wave reaching and scattering back from the tree crown and open ground, resulting in a larger range of
DEM elevation values, a stronger correlation between TDX DEM and LiDAR DSM, and a larger RMSE.

The interaction between X-band radar waves with buildings is a complicated process. The side-
looking SAR sensor can generate a layover when the foreslope angle of an object exceeds the incident
angle of the radar beam and a shadow when the region is not illuminated by SAR [1]. The layover leads
to the return waves from objects at different heights imaged into the same pixel, causing ambiguity
of elevation measurements, while the shadow results in the absence of data for pixels in the shadow
zone. Layover and shadow always occur when a slant incident radar beam meets buildings with
vertical walls [46]. According to Rossi and Gernhardt [46], the generation of TDX DEM from SAR
measurements involves phase to height conversion and the translation (geocoding) of slant-angle
coordinates to geographic coordinates. When illuminated by X-band waves with slant angles of
30◦–50◦, tall buildings in particular can cause underestimation or failure to capture object heights in
the layover zone, and an absence of measurements for objects in the shadow zone. The accuracy of
building measurements from the TDX DEM are influenced by the SAR incident angle, the geocoding
accuracy, and the sizes, heights, and orientations of buildings [46]. Layover and shadow effects were
most notable in downtown areas where high-rise buildings intermingle with narrow streets, causing
poor correlations between TDX DEM elevations and LiDAR DSM elevations, as well as the highest
percentage of low-quality pixels and largest RMSE values among the landscape types we examined
(Table 1 and Figure 8d). Unfortunately, the auxiliary layover and shadow mask layer of TDX DEM
provides little information on the locations of layover and shadow pixels in the downtown area. The
greatest number of layover and shadow mask pixels in the LSM layer were located inside water bodies
in this study, therefore the layover and shadow mask layer were not used in the error analysis.

5. Conclusions

The accuracy of TDX DEM were analyzed against high quality LiDAR DSM for the land area in a
coastal urban setting, with a range of land cover types, including open ground, subtropical and tropical
forests, high-rise buildings, and single or multi-family residential homes. The results showed that the
RMSE and LE90 values of TDX DEM for the entire study area were 2.25 m and 2.30 m. The RMSE and
LE90 values of TDX DEM versus LiDAR DSM for open ground were 0.49 m and 0.79 m, respectively.
These errors were much smaller than the absolute error of 10 m (at the 90% quantile) specified by
the TDX DEM mission statement. It was also demonstrated for the first time that no horizontal shift
occurred in TDX DEMs using spatial correlation analysis. Therefore, the global coverage of TDX DEM
makes it an essential data layer for studies of geomorphic and hydrologic processes in low relief areas
where high-resolution LiDAR data are not available.



Remote Sens. 2019, 11, 876 17 of 20

The TDX DEM represented the change of canopy heights in the densely vegetated mangrove and
hardwood hammock areas reasonably, although the TDX DEM elevations underestimated total tree
heights by 21–23% on average. The scattering centers of X-band radar waves in the mangrove and
hardwood hammock were located in the top fourth of the canopy, which is occupied by small branches
and foliage of tree crowns. The TDX DEM delivered a reliable data source for mapping tree heights
in hardwood hammock and mangrove ecosystems where the topography is nearly flat and ground
elevations are close to mean sea level. By contrast, the TDX DEM did not represent tree heights well in
the pine forest because the multiple scatterings of radar waves from tall pine trees to low shrubs and
herbaceous ground surface were imaged into the same pixel.

The correlation between TDX DEM and LiDAR DSM for the built areas was relatively low, with
R-squared values of 0.44, 0.23, and 0.00 for sparse residential, dense residential, and downtown areas,
due to the complex interaction of the incident radar wave with the buildings, trees, and ground.
In downtown areas, the layover and shadow effects due to high-rise buildings caused large RMSE and
LE90 values of 35.70 m and 51.67 m, respectively, for the differences between TDX DEM and LiDAR
DSM elevations, much larger than the error specified for the data. The RMSE/LE90 values of 2.62/4.29
m and 1.89/2.90 m, respectively, for the sparse and dense residential areas were much smaller than the
RMSE/LE90 values for downtown.

The values of NMAD were similar to standard deviation values when the differences between
TDX DEM and LiDAR DSM elevations followed a normal distribution, as was the case in open ground
and hardwood hammock areas. By contrast, NMAD differed remarkably from the standard deviation
when the differences did not follow a normal distribution, as was the case in high-rise downtown area.
Median and NMAD showed less fluctuation than the mean error and standard deviation across all
sample areas with various land cover types, and therefore represented more robust measures of error
when comparing TDX DEM to LiDAR DSM elevations.

Since TDX DEM is the first product covering the entire Earth’s Surface completely with the highest
horizontal and vertical accuracy, it is expected that the dataset will be used extensively in hydrologic,
geomorphic, ecologic related applications, particularly in developing countries where higher quality
of DEMs are lacking. Although this study found that the vertical accuracy of TDX DEM deteriorated
from open ground to forested and built areas by comparing TDX and LiDAR DEMs for a variety of
land cover over a large, low-relief coastal urban area, studies involving high-relief terrains and more
land cover types are needed in the future to verify and expand the current error ranges to provide
guidance for appropriate usage of TDX DEMs. Notably, further horizontal accuracy analyses should
be conducted to verify the result from this paper although finding large objects with distinct geometric
shapes free from the influence of multiple scattering, shadow, and layover from TDX DEMs is difficult.
Additionally, the filtering method to separate ground and non-ground measurements in TDX DEMs
and its effectiveness on various land cover types deserve a further study to improve the digital terrain,
canopy, and building models in urban and forested areas.
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