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Abstract: Pan-sharpening (PS) is a method of fusing the spatial details of a high-resolution
panchromatic (PAN) image with the spectral information of a low-resolution multi-spectral (MS)
image. Visual inspection is a crucial step in the evaluation of fused products whose subjectivity
renders the assessment of pansharpened data a challenging problem. Most previous research
on the development of PS algorithms has only superficially addressed the issue of qualitative
evaluation, generally by depicting visual representations of the fused images. Hence, it is highly
desirable to be able to predict pan-sharpened image quality automatically and accurately, as it
would be perceived and reported by human viewers. Such a method is indispensable for the
correct evaluation of PS techniques that produce images for visual applications such as Google
Earth and Microsoft Bing. Here, we propose a new image quality assessment (IQA) measure
that supports the visual qualitative analysis of pansharpened outcomes by using the statistics
of natural images, commonly referred to as natural scene statistics (NSS), to extract statistical
regularities from PS images. Importantly, NSS are measurably modified by the presence of
distortions. We analyze six PS methods in the presence of two common distortions, blur and
white noise, on PAN images. Furthermore, we conducted a human study on the subjective quality
of pristine and degraded PS images and created a completely blind (opinion-unaware) fused
image quality analyzer. In addition, we propose an opinion-aware fused image quality analyzer,
whose predictions with respect to human perceptual evaluations of pansharpened images are
highly correlated.

Keywords: pan-sharpening; image quality assessment; remote sensing

1. Introduction

Pan-sharpening (PS) is a conventional approach for integrating the spatial details of a
high-resolution panchromatic (PAN) image and the spectral information of a low-resolution
multi-spectral (MS) image (both simultaneously obtained over the same region) to produce a
high-resolution MS image [1]. The fused images obtained are known to be spatially and spectrally
enhanced compared to the MS and the PAN images, respectively. Hence, these images are
known as PAN-sharpened because the information of the PAN image is used to sharpen the
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MS bands. Furthermore, PS is a preliminary step for enhancing images prior to conducting
remote sensing tasks, such as change detection [2], object recognition [3], visual image analysis,
and scene interpretation [4]. The scientific literature has categorized classical PS methods into
component substitution (CS) and multiresolution analysis (MRA). CS approaches substitute
the spatial information contained within an original MS image with spatial details contained
in a PAN image. This substitution can yield visually-appealing PS images that are robust
against small misregistration errors. MRA methods extract PAN details via spatial filtering
while preserving spectral information, yielding outcomes that are also robust with respect to
temporal misalignments [5]. Modern approaches have been recently developed that advance the
performance of classical methods. These techniques reformulate PS as an inverse problem, where
the goal is to obtain a high-resolution MS image from low-resolution MS and PAN measurements.
Previous efforts have utilized priors for the PS ill-posed inverse problem such as total variation [6–8]
and sparsity models [9–11]. During the fusion process, algorithms may introduce spatial distortions
and spectral distortions that can adversely affect the quality of pan-sharpened images.

In [12], the authors proposed the first quantitative quality assessment method for PS.
They stated that PS outcomes should have the properties of consistency and synthesis. Consistency
implies that the fused image should be as similar as possible to the original multispectral image,
which means that the fused image should be compared to the original image at its lower spatial
resolution. Synthesis entails that: (i) any fused synthetic image should be as identical as possible
to the image that the corresponding MS sensor would observe with the highest resolution, and
(ii) the MS set of synthetic images should be as identical as possible to the MS set of images that
the corresponding sensor would observe with the highest resolution. The consistency property
can be easily tested. However, the evaluation of the synthesis property is unattainable in practice
because of the lack of a reference image. This issue is overcome by reduced resolution (RRes)
assessment. The RRes approach examines the images at a spatial resolution lower than the original
(induced artificially) and uses the original MS image as a reference. Quality indices such as
spectral angle mapper (SAM), root mean squared error (RMSE), erreur relative globale adimensionnelle
de synthèse (QERGAS), the universal image quality index (Qq), spatial cross-correlation (QsCC), and the
universal image quality index of pan-sharpened multispectral imagery (Qq4 ) [13] have enabled reasonably
accurate assessment of the results. Nonetheless, there might be differences between the image
quality assessment (IQA) results obtained at reduced resolution and the perceptual quality of
the fusion product at the original scale [13]. The full resolution (FRes) assessment refers to
the evaluation of the pan-sharpened images without a reference image and can also employ
no-reference (NR) IQA indexes such as the quality w/no reference (QQNR) index [13] (composed
of a spectral distortion index Qdλ

and a spatial distortion index Qds ), the Khan protocol [14], the
hybrid QQNR (HQNR) [15], and the edge-based image fusion metric (EFM) [16]. These do not require
a reference image, but instead operate on the relationships among the source images (MS and
PAN) and the pan-sharpened image. Even though these approaches process the images at the
native scale, they are biased by the definition of the indexes. A more recent work proposed an
approach for estimating an overall quality index at FRes by using multiscale measurements [17].
The problem is recast into a sequential Bayesian framework by exploiting a Kalman filter to find its
solution. This methodology has been assessed both on simulated and real scenarios acquired by
four different sensors (GeoEye-1, Pléiades, WorldView-3, and WorldView-4) and has demonstrated
a superior consistency of their estimates at RRes and a better match with the qualitative analysis
at FRes with respect to the benchmark. It is important to observe that the visual assessment is
crucial in the process of PS image evaluation and complements quantitative quality assessment.
Apart from the fact that artifacts cannot be easily quantified, human interpretation adds valuable
information to the process. In this work, we propose a human perceptual quality assessment
perspective to the FRes evaluation of PS outputs that is intended to support the qualitative (visual)
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analysis of RBG representations of the fused products like those that have been widely used in
previous reports [13,17–22]. This proposal is of crucial importance for the development of PS
algorithms that are employed to build products for visual applications, such as Google Earth
and Microsoft Bing maps. Hence, we follow a different path by proposing a new FRes PS IQA
measure based on the statistics of natural images, commonly referred to as natural scene statistics
(NSS), which seeks to extract statistical regularities from PS images. Natural images have statistical
properties that are sensitive to distortion in such a way that deviations of these statistics from their
regular counterparts reflect the extent of the impairment. Here, a “natural image” is one formed
by sensing radiation projected from interactions with the real-world, including both man-made
and naturally-occurring objects, but excluding computer-generated images. NSS models have
been demonstrated to capture the statistical consistencies of natural images successfully both in
the spatial [23] and wavelet domains [24]. Examples of NSS models include the 1/f model of
the amplitude spectrum of visible light (VL) images, sparse coding characteristics of cortical-like
filters [25], and the underlying Gaussianity of perceptually-processed band-pass images [26].
Since the human visual system has adapted to reflect the statistical structure of natural images,
the statistical regularities of the real-world environment are quite relevant to the design of visual
interpretation algorithms [27–31]. We build completely blind and opinion-aware fused image
quality analyzers, whose relative predictions match better to human perceptual evaluations than do
state-of-the-art reduced and full-resolution quality metrics. Section 2.1 presents the development
of our proposed fused image quality analyzer, and we also describe a human study we conducted
on the subjective quality of pristine and degraded PS images, including PAN images impaired with
blur distortion. Section 3 explains the correlation outcomes between the image quality analyzers
and the human ratings. Finally, we draw conclusions in Section 5.

2. Materials and Methods

2.1. Blind Image Quality Assessment

An important advance in NR or blind image quality assessment (BIQA) (i.e., methods that
do not require access to the pristine reference image at all) was the realization that the otherwise
highly-regular natural scene statistics (NSS) of photographic images are predictably modified by
distortions. NSS describe regularities in images captured by an optical camera, as opposed to
machine-generated images. Previous studies [23,24,32] have developed image quality (IQ) metrics
based on NSS that achieve high correlation against human quality perception. Moreover, in [33,34],
Goodall et al. and Moreno-Villamarin et al. described the use of NSS to account for image quality
in long-wave infrared (LWIR) and fused visible and LWIR images, while [35] established an IQA
model for hyperspectral images using quality-sensitive features. In [18], the authors proposed a
generalized quality with no reference (QGQNR) predictor to assess hyper-sharpening performance.
This metric builds on the natural image quality evaluator (QNIQE), which is a “completely blind”
IQA model that only makes use of measurable deviations from expected statistical regularities
that are observed on high-quality natural images, without the need for training on human-rated
distorted images and without any exposure to or training on distorted images. This model
is based on the construction of a “quality-aware” collection of statistical features that derive
from on a simple and successful space domain NSS model. These features are trained on a
corpus of natural, high-quality short-wave infrared (SWIR) images. QGQNR predicts the quality of
high-resolution (HR) SWIR images for WorldView-3 images. Before we build new IQA models for
our application, we next describe the human subjective study, which we later use to design both
opinion distortion-unaware and opinion-aware pan-sharpened image quality analyzers.
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2.2. Subjective Study

Subjective studies of (reduced and full-resolution) PS image quality assessment require
qualitative evaluation of PS results through visual inspection to understand the local spectral,
radiometric, and geometric distortions that can occur and that manifest as color changes and
degradations of spatial details in the PS images. However, subjective studies are time consuming
and expensive. In previous comparative studies of PS algorithms, visual quality assessment was
directed towards general impressions of each image: good or poor sharpness and degrees of
color distortion [19,36]. The reference images and fused images were displayed side by side (a
double-stimulus (DS) study) to enable the subjects to rank the images produced by the various
methods. In a different approach presented in [37], the authors developed a visual quality
assessment protocol (VQAP) in which the human evaluator is guided through the process of fused
image assessment from global to local features. Criteria such as sharpness, color preservation,
and object recognition support the judgment on the quality of the images. In total, 46 experts
participated in the study, who evaluated 23 aspects of PS images related to spatial, spectral, and
object-level quality criteria on a global, regional, and local scale. Weighting factors quantified
the importance of these individual aspects. As a result, each criterion is weighted according
to the answers provided by the experts. We conducted a different human study because this
kind of resource was not already available. The new database is a useful tool for assessing how
well pan-sharpened image quality prediction models perform, as measured by how well they
correlate with subjective judgments. In our experiment, 33 subjects evaluated 135 images, where
each subject participated in five sessions. Half of the presented images were in true color, while
the other half of the images were pseudo-colored. The true color (TC) images were composed
of the red (R), green (G), and blue (B) bands. The pseudo-color (PC) images were composed of
near-infrared (NIR), R, and G bands, using the definition in [19]. Among these images, five were
pristine multi-spectral reference images (REF), five were interpolated multi-spectral images using
a polynomial kernel with 23 coefficients (EXP) [38], and 125 were images fused using six different
fusion techniques, as shown in Table 1. Ninety of these 135 PS images were generated by blurring
the PAN images artificially.

Table 1. Description of images employed in the subjective study. TC, true color; PC, pseudo-color;
MS, multi-spectral; PS, pan-sharpening.

TC PC

EXP 5 5
Undistorted MS 5 5

PS images 125 125
Total 135 135

We used the component substitution (CS) and multiresolution analysis (MRA) PS algorithms
following [13]. The algorithms were classified into low-, medium-, and high-performance methods
based on the scores computed at full- and reduced resolution on the regions of interest (ROI)
named Coliseum, Villa, Road, Urban, and River and extracted from dataset IKONOS. Each ROI of
256 × 256 × 4 pixels for MS and 1024 × 1024 pixels for PAN was extracted from specific regions
of one larger image of the city of Rome with size of 6452 × 6432 pixels for PAN and 1613 ×
1608 × 4 pixels for MS images. The reduced resolution metrics were applied on 64 × 64 × 4 MS
images that were obtained by filtering and sub-sampling the original 256 × 256 × 4 MS images.
PAN image size was 256 × 256 for this case. We selected one algorithm from each performance
group, yielding a set of PS techniques having a wide range of performances. Specifically, we
used: [13] (i) CS approaches: principal component analysis (PCA), intensity-hue-saturation (IHS),
and band-dependent spatial detail (BDSD); and (ii) MRA methods: a trous wavelet transform using
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Model 2 (ATWT-M2), high-pass filtering (HPF), and the modulation transfer function Laplacian
pyramid with context-based decision (MTF-GLP-CBD).

Blur distortion was applied at three levels to the PAN images by defining a Gaussian blur
kernel σblur of size 25 × 25 pixels, chosen from Xblur = {0.05, 0.1, 0.15}. The 33 subjects who
participated in the test were students and professors at Pontificia Universidad Javeriana Cali (May
2018), with ages ranging from 18–38 years, without prior experience participating in subjective
tests or image quality assessment. The gender ratio of the subjects was 1:3, with less females than
males. Before the start of the study, the subjects were explained the different types of distortion
present in the images such as artifacts, insufficient color representation, lack of sharpness, and
over-/under-exposure as follows:

• Artifacts: noise and blockiness distortions not part of the image content.
• Color: images with incorrect or insufficient color representation.
• Sharpness: general unsharpness, i.e., lack of detail, texture, or sharpness. This distortion

differs from out-of-focus distortion in that with sharpness distortion, objects are in focus, but
do not appear “crisp” or detailed.

• Exposure: over-/under-exposure, making it difficult to see parts or the entirety of the scene.

At the start of the first session, the subjects had their vision examined using Snellen and
Ishihara tests. Test images were displayed to acquaint the participants with the images and the
interface. A total of four images with different color representation and distortions were presented
to the subjects in the test procedure. These images were not related to the images of the study
to avoid biasing the participants. The session routines were developed in MATLAB and the
PsychToolbox [39]. The procedure followed the recommendations mentioned in [40], where the
subjects indicated the quality of the video on a continuous scale between [0, 100], in which each
original image was included in the experiment, but not identified as such. The test was performed
with an HP S1933 monitor (18.5”) and an Intel HD 4000 graphic card to observe the images.
The screen resolution was set to 1366 × 768 at 60 Hz, at a viewing distance between 45 cm and
55 cm. The stimulus images were displayed at their native resolution to prevent distortions due
to scaling operations. Areas outside the images were set to black. In addition, the Spyder5 PRO
calibrated the display to an industry color reference standard [41]. The study took place during
three sessions of 25 min each with 33 volunteers for a total of 440 images evaluated. The sequence
started displaying a single stimulus image for 5 s. Then, the subject rated the image using a
continuous sliding quality bar with labels “Bad”, “Poor”, “Fair”, “Good”, or “Excellent” and
selected the most relevant distortion doing a keyboard selection.

Figure 1 depicts the reference undistorted multi-spectral images scenes: Coliseum, Villa,
Road, Urban, and River, used for the subjective study. Examples of the images presented in the
subjective study are shown in Figure 2, which depicts a true color image of the Coliseum scene
fused with BDSD using a local parameter estimator, distorted with blur and distortion levels.
Histograms of the collected differential mean opinion scores (DMOS) are shown in Figure 3,
depicting a fairly broad distribution. Scores before subject rejection fell within the range [25, 85],
while scores after subject rejection fell within [25, 80], yielding a narrower range of visual quality.
DMOS histograms of true color representation has a wider range than pseudo-color representation.
This subjective study provided a set of human scores on PS images that supported the design,
implementation, and test of NR full-resolution PS image quality metrics in the next section.
The results of the subjective study and the proposed image quality analyzers can be found at
https://github.com/oscaragudelom/Pansharpening-IQA. In the next section, we present the
results of the opinion-aware (QOA) and opinion-unaware (QD) quality analyzers.

https://github.com/oscaragudelom/Pansharpening-IQA
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2.3. Opinion- and Distortion-Unaware Pan-Sharpened Image Quality Analyzer

A completely blind image quality analyzer refers to an image quality model that does not
require training on databases of human judgments of distorted images and does not rely on training
on, or tuning, or any modeling of, or exposure to specific distortions. Instead, a pristine MS image
model was constructed from 80 images (each of dimensions 256 × 256) from a region of interest
(ROI) of the original MS images from [42]. To ensure independence between the pristine model and
the test scores, the ROIs that constituted this model were different from the ROIs selected for use
in the subjective study. The idea behind this approach was to measure the dissimilarity between
the pristine image model and the test image and use it as a quality measure. A total of 276 features
were then extracted, from each image in the pristine set, which were then used to create a pristine
model. Since phenomena such as the presence of punctual colored features, saturation, or faded
colors affected the visual quality of the PS images, we extracted perceptually-relevant chroma
feature maps from true color and false color representations as shown in Figure 4. Chroma feature
maps have been employed to learn image features that effectively predict human visual quality
judgments of inauthentic and usually isolated (single) distortions in [30]. These feature maps are
expressed as a combination of the two chrominance components a* and b* of the CIELAB color
space [43] as follows:

Cab =
√

a2 + b2 (1)

(a) Coliseum (b) Villa (c) Road

(d) Urban (e) River

Figure 1. Reference undistorted multi-spectral images scenes used for the subjective study obtained
from [42].
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(a) Level 1 (b) Level 2 (c) Level 3

Figure 2. Example of distortion levels. Three different levels of distortion for (a–c) blur.

(a) (b) (c)

Figure 3. Histograms of the differential mean opinion scores (DMOS) in 33 equally-spaced bins
for (a) scores obtained for all images before subject rejection, (b) scores obtained for all images
after subject rejection, and (c) scores after subject rejection for true color and pseudo-color image
representation in the subjective study.
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the chrominance components of the TC and PC representations, respectively. Then, the processing
models extract statistical features in the vector F. NSS, natural scene statistics.
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Moreover, to capture spatial distortions in the PS images, we deployed features derived from
perceptually-relevant bandpass natural scene statistics models of such distorted images based
on bandpass statistical image models. In prior research on the quality evaluation of LWIR, fused
LWIR and visible, and X-ray images, these models played a key role in the design of successful QA
metrics [33,34,44]. Our overall blind IQA models used the following quality-aware processes [34]:

• Mean-subtracted contrast normalized (MSCN) coefficients [45].
• Four “paired products” of horizontal (H), vertical (V), and diagonally-adjacent (D1 and D2)

coefficient pairs (which may be viewed as empirical directional correlations) calculated as the
products of adjoining MSCN coefficients [23].

• The MSCN coefficients were supplemented by a set of log derivative coefficients (PD1. . . PD
7), which were intended to provide higher sensitivity to high-frequency noise [46].

• The coefficients obtained from a steerable pyramid image decomposition were used to capture
oriented band-pass characteristics, as in [24].

In Figure 4, the feature identifiers that we labeled the MSCN, paired products, paired
log-derivatives, and steerable pyramid coefficients with are f, pp, pd, and sp, respectively. Vector
fk is composed of statistical features such as (i) shape and variance extracted from a generalized
Gaussian distribution (GGD) that models pp coefficients and (ii) the shape, mean, left variance,
and right variance obtained from an asymmetric Gaussian distribution (AGGD) that models the
f, pd, and sp coefficients [33]. We built a multivariate Gaussian model (MVG) based on the features
extracted from a given image. Thus, the number of features represents the dimensionality of the
MVG model. The two parameters of the MVG model (i.e., µ and Σ) were estimated as in [32], using
a maximum likelihood estimator:

fX = (x1, x2, . . . , xm) =
e((−1/2)(x−µ)TΣ−1(x−µ))

(2π(m/2)|Σ|(1/2))
(2)

where (x1, x2, . . . , xm) is the m-dimensional vector that represents the perceptual quality features,
µ denotes the mean vector, and Σ is the co-variance matrix of the MVG model. A set of pristine
images (original MS images) and a set of distorted PS images (distorted, down-sampled, then
fused) were fitted to the MVG model, making it possible to predict the quality by comparing the
pristine model to the model of the degraded image using the Mahalanobis distance:

QD(µ1, µ2, Σ1, Σ2) =

√
(µ1 − µ2)T

(
Σ1 + Σ2

2

)−1
(µ1 − µ2) (3)

where µ1, µ2 and Σ1, Σ2 are the mean vectors and co-variance matrices of the models obtained with
a standard maximum likelihood estimation procedure [47]. QS and QC are the quality measures
defined on the features extracted only from the spatial map and from the chroma map, respectively.
In application and as shown in Figure 5, QD receives as unique input a fused image M̂S and extracts
a feature vector (x1, x2, . . . , xm)M̂S with m = 46 × 6 = 276 (46 features extracted from four spatial
maps (R, G, B, and NIR) and from two chroma maps, i.e., true color CTC and pseudo-color CPC).
Hence, in Equation (3) µ2 = (x1, x2, . . . , xm)M̂S, and µ1, Σ1, and Σ2 are the parameters extracted by
the standard maximum likelihood estimation procedure. The pristine model was composed of 80
original MS images deemed to be of high visual quality. No pan-sharpened images were included.
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Figure 5. Flowchart of the opinion- and distortion-unaware quality analyzer.

2.4. Opinion-Aware Pan-Sharpened Image Quality Analyzer

An opinion-aware (OA) quality analyzer refers to a model that has been trained on a
database(s) of distorted images with associated human subjective opinion scores. In this case,
a mapping is learned from a quality-aware feature space of quality scores using a regression
module, yielding an opinion-aware quality model QOA. In our implementation, we used a support
vector machine (SVM) regressor (SVR), as shown in Figure 6. This method has been previously
applied to IQA using NSS-based features [23,33,34]. SVR is generally noted for being able to handle
high-dimensional data, although the framework is generic enough to allow for the use of any
regressor. We utilized the LIBSVM package [48] to implement an ε-SVR with a radial basis function
(RBF) kernel, finding the best fitting parameters C = 29 and γ = 2−5 using 5-fold cross-validation.

SUPPORT VECTOR
REGRESOR (SVR)

PS Image

STATISTICAL
FEATURES

DMOS

Q
OA

PS Images

TRAINING

STATISTICAL
FEATURES

Figure 6. Flow chart of the ODAquality analyzer.

Figure 3 depicts the extraction of the vector F that represents the input quality-aware feature
space to the SVR that implements QOA. Since the QOA requires a training procedure, we divided
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the data from the subjective study into random subsets, where 80% was used for training and 20%
for testing, and we took care not to overlap between training and test content. This was done to
ensure that results did not depend on features extracted from content, rather than distorted content.

3. Results

The experimental results were developed on the dataset acquired by the sensor, whose
characteristics are detailed in [13]. We calculated the geometric mean of the resulting DMOS
(DMOSGM = DMOSTCDMOSPC) obtained by evaluating the true and pseudo-color versions
of the PS images in order to generate one score to be mapped by the SVR. In order to account
for a possible nonlinear relationship, the scores of the algorithm were passed through a logistic
function to fit the objective models to DMOS. Table 2 tabulates the means and standard deviations
of 11 reduced resolution, full-resolution, and proposed PS images’ quality analyzers for blurred
and undistorted (UD) PS images, while Table 3 presents the analysis for only UD PS images.
These scores were obtained from 125 PS images that included 35 UD and 90 blurred PS outcomes.
All metric scores indicated better quality results for the UD case. Furthermore, Tables 4–8 show
the RRes metrics scores, while Tables 9–13 tabulate the RRes metrics, the proposed PS images’
quality analyzers’ outputs, and the DMOSGM values. The bold numbers in these tables indicate
the best performing PS methods. Both sets of metrics were calculated on 35 UD PS images from
five different PS scenes extracted from IKONOS satellite images: Villa, Urban, Road, River, and
Coliseum. Many results provided by the proposed PS images’ quality analyzers agreed with
the human judgments. Furthermore, the proposed PS images’ quality analyzers’ outputs were
in line with those obtained at RRes and FRes. We ranked the PS algorithms into high, medium,
and low performance according to the scores provided by RRes, RRes, the proposed PS image
quality analyzers, and DMOS in Tables 14–17. These rankings were obtained from 125 PS images
that included 35 UD and 90 blurred PS outcomes. The small number of PS techniques evaluated
prevented the application of clustering techniques such as k-means. Therefore, to rank the PS
techniques, we used the number of times a PS technique was placed in the top three ranks
according to a given set of metrics (i.e., RRes, RRes, PS IQA analyzers, or DMOS) to determine
its classification as low, medium, or high performance. According to RRes and RRes evaluations,
BDSD and MTF-GLP-CBD achieved high and medium performance, while the proposed PS IQA
analyzers and DMOS classified BDSD and PCA with high and medium performance. The CS
algorithms yielded a higher fidelity in rendering the spatial details in the final image than the
MRA techniques. Nonetheless, this usually incurred a higher spectral distortion. This justified the
greater alignment between the CS-based algorithms (e.g., BDSD and PCA) and the DMOS data, as
shown in Table 18. In fact, Google Earth employs a modified version of the Brovey transformation
to sharpen the MS images. Nonetheless, the increment of the spectral distortion of the component
substitution methods led to lower performance when indexes such as QERGAS and Qq4 were used,
as shown in Table 14, where the best approaches were BDSD followed by MTF-GLP-CBD. These
results agree with those presented in Vivone et al. [13] when an IKONOS dataset is explored.
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Table 2. Means and standard deviations of quality scores from 11 reduced resolution and
full-resolution quality metrics. In this case, each algorithm analyzed 125 PS images affected
by three different levels of blur distortion.

µmetrics σmetrics

Qq 0.75 0.10
QERGAS 9.25 1.91
QsCC 0.80 0.11
Qq4 0.50 0.26
Qds 0.11 0.08
QQNR 0.84 0.07
QS 722.66 351.80
QC 457.36 126.26
QD 1508.58 443.02
QNIQE 5.38 1.40
QOA 54.95 8.83

Table 3. Means and standard deviations of quality scores from 11 reduced resolution and
full-resolution quality metrics. In this case, each algorithm analyzed 35 PS undistorted images (6
PS algorithms + EXP) in five different scenarios.

µmetricsUD σmetricsUD

Qq 0.79 0.13
QERGAS 8.38 2.42
QsCC 0.85 0.15
Qq4 0.54 0.25
Qds 0.14 0.08
QQNR 0.81 0.09
QS 479.95 259.90
QC 418.99 126.44
QD 1182.35 379.18
QNIQE 4.38 1.22
QOA 47.54 11.36

Table 4. IKONOS Roma Villa scene, reduced resolution metrics quantitative results. IHS,
intensity-hue-saturation; BDSD, band-dependent spatial detail; ATWT-M2, a trous wavelet
transform using Model 2; HPF, high-pass filtering; MTF-GLP-CBD, modulation transfer function
Laplacian pyramid with context-based decision. The bold number indicates the best performing
PS method according to each quality metric.

Qq QERGAS QsCC Qq4

EXP 0.51 13.45 0.51 0.88
PCA 0.73 10.16 0.93 0.88
IHS 0.73 10.32 0.91 0.88
BDSD 0.93 5.61 0.95 0.87
ATWT-M2 0.63 11.72 0.86 0.88
HPF 0.81 8.94 0.91 0.88
MTF-GLP-CBD 0.93 5.83 0.94 0.93
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Table 5. IKONOS Roma Urban scene, reduced resolution metrics quantitative results. The bold
number indicates the best performing PS method according to each quality metric.

Qq QERGAS QsCC Qq4

EXP 0.60 11.89 0.50 0.48
PCA 0.80 8.63 0.93 0.49
IHS 0.80 8.58 0.93 0.49
BDSD 0.94 5.31 0.94 0.70
ATWT-M2 0.70 10.27 0.86 0.48
HPF 0.86 7.58 0.91 0.51
MTF-GLP-CBD 0.94 5.39 0.94 0.71

Table 6. IKONOS Roma Road scene, reduced resolution quantitative results. The bold number
indicates the best performing PS method according to each quality metric.

Qq QERGAS QsCC Qq4

EXP 0.58 11.63 0.52 0.59
PCA 0.82 8.30 0.93 0.60
IHS 0.83 8.16 0.94 0.60
BDSD 0.94 5.18 0.95 0.70
ATWT-M2 0.68 10.10 0.85 0.59
HPF 0.86 7.15 0.92 0.62
MTF-GLP-CBD 0.94 5.24 0.94 0.73

Table 7. IKONOS Roma River scene, reduced resolution quantitative results. The bold number
indicates the best performing PS method according to each quality metric.

Qq QERGAS QsCC Qq4

EXP 0.58 10.43 0.51 0.09
PCA 0.81 7.42 0.93 0.08
IHS 0.81 7.51 0.93 0.07
BDSD 0.95 4.45 0.95 0.61
ATWT-M2 0.68 9.07 0.84 0.08
HPF 0.86 6.58 0.91 0.21
MTF-GLP-CBD 0.94 4.54 0.94 0.55

Table 8. IKONOS Roma Coliseum scene, reduced resolution quantitative results. The bold number
indicates the best performing PS method according to each quality metric.

Qq QERGAS QsCC Qq4

EXP 0.58 12.12 0.51 0.30
PCA 0.73 10.34 0.87 0.31
IHS 0.77 9.58 0.90 0.30
BDSD 0.88 6.51 0.92 0.57
ATWT-M2 0.68 10.74 0.83 0.30
HPF 0.83 7.98 0.89 0.35
MTF-GLP-CBD 0.88 6.61 0.91 0.51
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Table 9. IKONOS Roma Villa scene, full-resolution, image quality assessment metrics, and
DMOSGM quantitative results. The bold number indicates the best performing PS method
according to each quality metric.

Qds QQNR QS QC QD QNIQE QOA DMOS-GM

EXP 0.40 0.59 1055.62 524.89 2266.59 5.79 69.75 69.44
PCA 0.13 0.84 531.40 385.05 988.53 4.85 42.96 42.86
IHS 0.13 0.84 604.92 377.77 1208.89 4.78 51.27 46.10
BDSD 0.05 0.88 447.97 312.53 908.14 5.77 43.88 43.92
ATWT-M2 0.26 0.71 1001.56 486.65 1625.02 7.53 59.24 58.81
HPF 0.10 0.85 488.97 290.10 865.49 4.53 53.77 53.44
MTF-GLP-CBD 0.06 0.85 481.73 445.63 1120.57 5.58 45.33 45.10

Table 10. IKONOS Roma Urban scene, full-resolution, image quality assessment metrics, and
DMOSGM quantitative results. The bold number indicates the best performing PS method
according to each quality metric.

Qds QQNR QS QC QD QNIQE QOA DMOS-GM

EXP 0.26 0.74 993.92 400.93 1841.59 6.17 71.32 71.38
PCA 0.07 0.90 273.39 255.64 801.77 3.56 39.31 38.90
IHS 0.06 0.91 261.11 305.48 965.23 3.47 46.61 40.69
BDSD 0.07 0.88 265.99 311.59 843.91 4.42 42.20 39.93
ATWT-M2 0.10 0.88 486.16 369.68 1148.38 6.46 61.52 60.21
HPF 0.05 0.89 271.42 203.53 828.77 3.80 50.14 49.84
MTF-GLP-CBD 0.09 0.82 251.77 362.45 911.05 4.23 47.19 39.84

Table 11. IKONOS Roma Road scene, full-resolution, image quality assessment metrics, and
DMOSGM quantitative results. The bold number indicates the best performing PS method
according to each quality metric.

Qds QQNR QS QC QD QNIQE QOA DMOS-GM

EXP 0.26 0.73 975.01 568.75 2023.48 5.31 65.33 64.98
PCA 0.09 0.86 297.67 345.64 913.40 2.71 32.04 33.19
IHS 0.08 0.87 272.50 444.76 1094.48 2.62 32.11 31.97
BDSD 0.07 0.86 293.88 344.67 855.00 4.05 36.30 32.53
ATWT-M2 0.11 0.87 381.90 364.40 1127.49 4.35 54.08 53.83
HPF 0.06 0.88 335.78 312.76 861.62 2.61 44.79 42.37
MTF-GLP-CBD 0.09 0.83 279.91 371.91 925.52 3.70 41.69 35.50

Table 12. IKONOS Roma River scene, full-resolution, image quality assessment metrics, and
DMOSGM quantitative results. The bold number indicates the best performing PS method
according to each quality metric.

Qds QQNR QS QC QD QNIQE QOA DMOS-GM

EXP 0.07 0.92 998.36 556.13 1872.33 4.96 68.88 68.50
PCA 0.20 0.79 301.85 468.15 947.26 2.50 39.39 40.14
IHS 0.20 0.78 307.58 579.74 1252.39 2.49 40.98 40.63
BDSD 0.07 0.88 298.84 499.56 954.65 3.61 39.36 40.37
ATWT-M2 0.08 0.91 461.56 765.40 1438.87 3.71 59.04 56.96
HPF 0.14 0.81 312.69 521.22 978.25 2.59 47.73 48.82
MTF-GLP-CBD 0.11 0.81 276.91 497.61 930.82 3.42 41.15 41.83
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Table 13. IKONOS Roma Coliseum scene, full-resolution, image quality assessment metrics,
and DMOSGM quantitative results. The bold number indicates the best performing PS method
according to each quality metric.

Qds QQNR QS QC QD QNIQE QOA DMOS-GM

EXP 0.10 0.86 978.35 641.87 1787.43 5.20 63.04 62.91
PCA 0.27 0.63 616.29 210.12 1244.64 4.75 35.28 34.26
IHS 0.26 0.65 396.08 621.18 1396.54 4.08 35.22 34.74
BDSD 0.16 0.73 291.14 346.07 874.35 4.94 33.39 34.07
ATWT-M2 0.09 0.84 451.73 458.47 1313.14 4.95 54.03 53.64
HPF 0.20 0.69 464.43 316.12 1143.46 4.44 40.65 44.65
MTF-GLP-CBD 0.20 0.66 389.77 398.16 1123.17 5.46 34.91 34.81

Table 14. Clustering of pan-sharpening algorithms applied to IKONOS Roma Villa, Urban, Road,
River, and Coliseum scenes’ data into high, medium, and low performance. Input data for
clustering are the reduced resolution scores indexes Qq,QERGAS, QsCC, and Qq4 in Tables 4–8.

High Medium Low

Villa MTF-GLP-CBD BDSD HPF
Urban BDSD MTF-GLP-CBD HPF
Road BDSD MTF-GLP-CBD HPF
River BDSD MTF-GLP-CBD HPF
Coliseum BDSD MTF-GLP-CBD HPF

Table 15. Clustering of pan-sharpening algorithms applied to IKONOS Roma Villa, Urban, Road,
River, and Coliseum scenes’ data into high, medium, and low performance. Input data for
clustering are the full-resolution index QQNR in Tables 9–13.

High Medium Low

Villa BDSD MTF-GLP-CBD HPF
Urban IHS PCA HPF
Road HPF IHS ATWT-M2
River ATWT-M2 BDSD MTF-GLP-CBD
Coliseum ATWT-M2 BDSD HPF

Table 16. Clustering of pan-sharpening algorithms applied to IKONOS Roma Villa, Urban, Road,
River, and Coliseum scenes’ data into high, medium, and low performance. Input data for
clustering are the full-resolution image quality assessment (IQA)-based indexes QS, QC, QD, and
QNIQE, QOA in Tables 9–13.

High Medium Low

Villa BDSD HPF PCA
Urban PCA IHS BDSD
Road PCA BDSD IHS
River PCA BDSD MTF-GLP-CBD
Coliseum BDSD IHS HPF
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Table 17. Clustering of pan-sharpening algorithms applied to IKONOS Roma Villa, Urban, Road,
River, and Coliseum scenes’ data into high, medium, and low performance. Input data for
clustering are the DMOSGM = DMOSTCDMOSPS IQA-based indexes QS, QC, QD, QNIQE, and
QOA in Tables 9–13.

High Medium Low

Villa PCA BDSD MTF-GLP-CBD
Urban PCA BDSD MTF-GLP-CBD
Road PCA IHS BDSD
River PCA IHS BDSD
Coliseum PCA IHS BDSD

Table 18. Means (µUD) and standard deviations (σUD) of DMOSGM for each PS technique extracted
from 30 PS undistorted images (6 PS algorithms) in five different scenarios). The PS techniques are
organized from high to low performance.

µUD σUD

BDSD 37.87 4.07
PCA 38.16 4.74
IHS 38.82 5.55
MTF-GLP-CBD 39.41 4.33
ATWT-M2 47.82 4.37
HPF 56.69 2.93

We computed the Spearman rank correlation coefficient (SRCC) and the linear correlation
coefficient (LCC), over 1000 iterations for all models, and present their median and standard
deviation values in Table 19. The high performance of QOA can be explained by the use of the SVR
on a set of data (80% of the acquired samples) that are correlated to the 20% of the samples used for
the validation (e.g., samples provided by the same people, scenarios acquired by the same sensor
(IKONOS), the same hardware and software exploited for the visual inspection). Furthermore,
it is important to notice that the QOA index had access to DMOS scores in the training datasets.
Although QsCC was the second best model, its performance in terms of the standard deviations of
SRCC and LCC was more variable, but it only measured the spatial quality. No information about
the spectral quality was included, which limits the assessment of the overall quality of a fusion
product. To test whether the results presented in Table 19 are statistically significant, we carried
out a non-parametric Kruskal–Wallis statistical significance test on each median value of SRCC
between the DMOS and the quality measures (after nonlinear mapping) over 1000 training-test
combinations on the dataset. The null hypothesis was that the median SRCC for the algorithm in a
row of Table 20 was equal to the median SRCC of the algorithm in a column with a confidence
of 95%. The alternate hypothesis was that the median SRCC of the row was greater than or less
than the median SRCC of the column. Table 20 tabulates the results of the statistical significance
test, where a value of one indicates that the performance of the IQA measure in the row was
statistically better than that of the column; zero means that it was statistically worse; and “-” means
that it was statistically indistinguishable. From this table, we concluded that the models QOA

and QD produced highly-competitive quality predictions with statistical significance against all of
the other quality algorithms tested, while other measures specially designed to evaluate spatial
quality such as QERGAS, QNIQE, and Qds provided worse correlations against human scores. Since
the QERGAS index is based on RMSE, it is well-known that it has low correlation with human
quality perception [49]. This fact limits QERGAS’s range of validity. Regarding QQNR, it is relevant
to point out that the QNR index follows the no reference (NR) paradigm presented in [50], and it is
restricted by the validity of assumptions such as the parameters used to combine the two spatial
and spectral distortion indexes to get the overall quality index, the use of spatial filters and their
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design (usually matching the modulation transfer functions of the acquisition devices), and the
sensitivity to spatial misalignments. Furthermore, the metrics are different, and the agreement
should be found between the Q2n and the QOA, but always considering that the Q2n evaluates the
whole image (with a full radiometric range and all bands); instead, we were interested in another
issue involving human perception of PS images. Figure 7 depicts the scatter plot of the predicted
scores given by our quality model QOA versus DMOS, along with the best fitting logistic function.

Table 19. Median and standard deviation of the Spearman rank correlation coefficient (SRCC) and
the linear correlation coefficient (LCC) between DMOS and spatial quality indices measured over
1000 iterations.

MSRCC σSRCC MLCC σLCC MRMSE σRMSE

Qq 0.6692 0.1040 0.6739 0.1029 7.1022 1.1542
QERGAS 0.6146 0.1171 0.6352 0.1191 7.4441 1.2732
QsCC 0.8408 0.0633 0.8668 0.0487 4.7596 0.8503
Qq4 0.1502 0.1126 0.1249 0.1034 9.3622 1.1801
Qds 0.1482 0.1201 0.1379 0.1145 9.2684 1.3716
QQNR 0.1564 0.1281 0.1515 0.1214 9.1547 1.3583
QS 0.8096 0.0753 0.8229 0.0810 5.6903 1.3099
QC 0.2153 0.1446 0.2264 0.1428 9.0588 1.2170
QD 0.7762 0.0727 0.7671 0.0931 6.3339 1.2881
QNIQE 0.5496 0.1350 0.5931 0.1257 7.6390 1.1749
QOA 0.9262 0.0416 0.9374 0.0289 4.8784 1.0508

Table 20. Statistical significance matrix of SRCC between DMOS and quality indices.

Qq QERGAS QsCC Qq4 Qds QQNR QS QC QD QNIQE QOA

Qq - 1 0 1 1 1 0 1 0 1 0
QERGAS 0 - 0 1 1 1 0 1 0 1 0
QsCC 1 1 - 1 1 1 1 1 1 1 0
Qq4 0 0 0 - - - 0 0 0 0 0
Qds 0 0 0 - - - 0 0 0 0 0
QQNR 0 0 0 - - - 0 0 0 0 0
QS 1 1 0 1 1 1 - 1 1 1 0
QC 0 0 0 1 1 1 0 - 0 0 0
QD 1 1 0 1 1 1 0 1 - 1 0
QNIQE 0 0 0 1 1 1 0 1 0 - 0
QOA 1 1 1 1 1 1 1 1 1 1 -
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Figure 7. Scatter plot of QOA prediction scores versus the DMOS for all images assessed in the
subjective human study and the best fitting logistic function. Notice the linear relationship with
R2 = 0.96268.
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4. Discussion

The models QOA and QD can be seen as supplying additional numerical information with
respect to full-resolution protocols (such as QQNR and QGQNR) that quantitatively assess PS images.
This also complements the visual analysis of PS images carried out in previous work that proposed
FRes methods, as explained in Section 1. QOA and QD are also complementary to FRes indices
because they measure visual quality with another goal (i.e., prediction of human quality ratings).
It is important to notice that QOA and QD are only one part of the quality assessment procedure
and should normally be accompanied by other evaluation protocols, such as those presented
in [14,51].

5. Conclusions

NSS are affected by distortions present in PS images, as has been shown in previous work
modeling degradation in LWIR, fused LWIR, X-ray, and visible images. NSS proved to be a
powerful descriptor, principally when assessing PS images with spatial distortions. Therefore,
we proposed both completely blind and opinion-aware fused image quality analyzers whose
predictions were highly correlated with human subjective evaluations. This proposed approach
intended to support and standardize the visual qualitative evaluation of pan-sharpened images.
Our future research plans include more experiments to validate the proposed IQA measures on
other classes of satellite data.
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