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Abstract: Recent flood events have demonstrated a demand for satellite-based inundation mapping
in near real-time (NRT). Simulating and forecasting flood extent is essential for risk mitigation.
While numerical models are designed to provide such information, they usually lack reference at fine
spatiotemporal resolution. Remote sensing techniques are expected to fill this void. Unlike optical
sensors, synthetic aperture radar (SAR) provides valid measurements through cloud cover with high
resolution and increasing sampling frequency from multiple missions. This study reviews theories
and algorithms of flood inundation mapping using SAR data, together with a discussion of their
strengths and limitations, focusing on the level of automation, robustness, and accuracy. We find
that the automation and robustness of non-obstructed inundation mapping have been achieved in
this era of big earth observation (EO) data with acceptable accuracy. They are not yet satisfactory,
however, for the detection of beneath-vegetation flood mapping using L-band or multi-polarized
(dual or fully) SAR data or for urban flood detection using fine-resolution SAR and ancillary building
and topographic data.

Keywords: flood inundation mapping; synthetic aperture radar; microwave remote sensing;
natural hazard

1. Introduction

Near-real-time (NRT) inundation extent mapping during flood events using remote sensing data
is vital to support rescue and damage recovery decisions and to facilitate rapid assessment of property
loss and damage. It also provides a two-dimensional reference for validating and calibrating real-time
numerical modeling, including flood risk analysis at a regional to global scale [1–3]; flood event
prediction at a small scale [4–7]; and the tradeoff evaluation between the accuracy and complexity of
hydrodynamic simulation [8–11]. It is, moreover, a validation source for geomorphological analysis
of flood vulnerability [12–16]. Retrieved inundation extent can also be converted to inundation
depth [17–20].

Both optical sensors and passive and active microwave sensors can be used for inundation
mapping, offering different levels of capacity, accuracy, and solution difficulty. By means of water
indices, optical remote sensing data can be used to extract water surfaces straightforwardly and reliably.
As long-term, fine-resolution satellite data (such as Landsat data) are accumulated and new satellites
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(such as Sentinel-2) are started to serve, optical remote sensing methods are contributing significantly
to the delineation of global and regional water surfaces [21–24]. The validity of optical observations is
limited, however, by clouds and unclear weather conditions, which are common during flood events.

Microwave remote sensing techniques, on the other hand, have good penetration through the
atmosphere and therefore can provide more efficient measurement. Pixel water fraction estimated
from passive microwave measurement—the brightness temperature—features low spatial (~25 km,
1
4 degree) but fine temporal resolution (daily) [25,26]. The result is, therefore, usually downscaled up to
90 meters by topography [27] and/or optical sensor-derived water probability [28]. Such downscaling
mechanisms may be valid for fluvial inundation at global and regional scale but can be problematic for
small pluvial flooding at local scale.

By detecting the scattering mechanism, synthetic aperture radar (SAR) can be used to map
inundation under almost any weather condition at fine to very fine spatial resolution (from 30 m to
<1 m). As an active sensor, SAR works nocturnally as well. The retrieval algorithms using SAR data
are more difficult to design than the sensors discussed above, and purely automated algorithms that
require zero human interference are so far rare. With the growing availability of remote sensing data
and the development of retrieval techniques, the automation and reliability of SAR data are expected
to emerge soon.

This study focuses on evaluating existing inundation mapping algorithms, using SAR data
developed from 1980 to the present. Given that the data, study areas, and validation methods vary
among studies, we primarily evaluate algorithms, along with some recently emergent approaches,
according to four criteria: automation, robustness, applicability, and accuracy.

2. Techniques to Produce SAR Inundation Maps

2.1. Principles

Change in surface roughness is the key to detecting inundation using SAR data. Where the ground
surface is covered with water, its low roughness exhibits almost ideal reflective scattering, in strong
contrast to the scattering of natural surfaces in dry conditions. Consequently, different scattering
mechanisms can cause two opposing changes in the total backscattering intensity: dampening
and enhancement.

In the case of an open flood where water is not obscured by vegetation or buildings, dampening
occurs because most of the scattering intensity is concentrated in the forward direction, whereas
the back direction is very weak. In vegetated areas, different scattering mechanisms can happen,
depending on the vegetation structure and submerge status. In fully submerged locations, scattering
dampening occurs as in an open flood, while scattering enhancement is observed in partially or
unsubmerged locations because the dihedral scattering dominates. The backscattering components of
vegetation (with a canopy layer) are derived in the enhanced Michigan microwave canopy scattering
(enhanced MIMICS) model by Shen et al. [29] from the first-order approximation of the vectorized
radiative transfer (VRT) equation [30,31].

As shown in Figure 1, the vegetation-ground system can be conceptualized by three layers from
top to bottom: the canopy layer (C), the trunk layer (T), and the rough ground surface (G). Term 1
(G-C-G) in the figure, for instance, refers to the wave scattered by the ground surface after it penetrates
the canopy, which is then scattered by the canopy back to the ground and is finally scattered back to
the sensor after penetrating the canopy. Term 7 (direct scattering) indicates that the scattering process
on the ground surface only occurs once between the two penetrations of the canopy.

A trunk is usually modeled by a cylindrical structure whose length is much greater than its
diameter. Term 4a (T-G-C) in Figure 1 represents the scattering wave that consecutively penetrates the
canopy layer first, is scattered forward by the trunk, is scattered back in the antenna’s direction, and,
finally, penetrates the trunk and canopy layer. Term 4b (C-G-T) represents the scattering wave in the
reverse order; under physical optical approximation, its forward scattering (in all azimuth directions)



Remote Sens. 2019, 11, 879 3 of 17

dominates. As a result, in 4a and 4b, only the forward scattering from the trunk is retained. If G is
rough, the ground scattering energy is distributed to the upper hemisphere, and the forward direction
is not very strong. When flooded, the ground surface is close to ideally smooth, and the forward
scattering is significantly enhanced, which, in turn, significantly enhances 4a and 4b.Remote Sens. 2019, 11, x FOR PEER REVIEW 3 of 17 
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Another principle is to utilize interferometric SAR (InSAR) formed from repeated passes to detect
non-obstructed flooded areas by identifying the loss of coherence over water surfaces [32–35]. However,
coherence may only be used as the primary indicator where the background exhibits strong coherence,
such as in highly developed urban areas whereas can only be used as a complementary source because
the surface of a water body is not the only kind of area that loses coherence—the background is full of
low-coherence areas, such as vegetation, shadow [36]. Similarly, utilizing differential InSAR (DInSAR)
pairs from repeated tracks to detect inundation depth may only be feasible over background areas of
strong coherence, which is not the case of beneath-vegetated inundation or non-obstructed inundation
in natural areas.

Both non-obstructed flood and beneath-vegetation inundation can occur in natural areas; in urban
areas, both non-obstructed-flood dampening effects and L-shaped-caused enhancement can be
observed. A horizontal smooth inundated surface together with a vertical building can form an
L-shaped corner reflector [37], which can be a strong scatterer when illuminated by the radar antenna.
In addition, more areas can be shadowed by buildings than by natural terrain, resulting in greater
uncertainty about flood detection in urban areas.

2.2. Error Sources

We attribute commonly seen errors to three sources: water-like surfaces, noise-like speckle,
and geometric correction.

Water is not the only surface that exhibits close-to-specular scattering. Smooth surfaces at the scale
of the measuring wavelength and shadowed areas share almost identical scattering properties with
water surfaces; we refer to them hereafter as water-like surfaces. Water-like surfaces vary slightly with
frequency and flood mapping algorithms. With sufficiently little roughness relative to wavelength,
even bare soil can be misidentified as water. In procedures to detect non-obstructed water, water-like
surfaces can create “false positives” or “over-detection.”

Noise-like speckle is encountered for almost all SAR applications and, in many, is considered
a major disadvantage of SAR images over optical images. For example, unlike optical images,
noncommercial SAR images with 5–10 m resolution, may not be suitable for detecting headwater
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flood. Since the floodplain of headwater may be only one or a few pixels wide, the water pixels can
be contaminated severely by speckle and surrounding strong scatterers. Speckle is not real noise.
The formation of speckle was well explained by Lee and Pottier [38] (p. 101): As “the distances
between the elementary scatterers and the radar receiver vary due to the random location of scatterers,
the received waves from each scatterer, although coherent in frequency, are no longer coherent in
phase. A strong signal is received if wavelets are added relatively constructively, while a weak signal is
received if the waves are out of phase.” As a result, homogeneous and continuous areas exhibit strong
inhomogeneity in SAR images. As the sample number decreases with the improvement of spatial
resolution, the backscattering of a pixel may not, be represented well by a known fully developed
speckle model which increases the difficulty in classification. Although many SAR filtering techniques
are developed, most of them reduces noise at the price of damaging image details, which can also
propagate to inundation mapping. Modern techniques such as the selection of the optimal filter [39]
and machine learning may offer some advanced way in suppressing speckle.

The original geometry of SAR images is range-azimuth. To be georeferenced, SAR images are
often corrected to ground distance before high-level products are generated. Limited by the accuracy
of input elevation data, the geometric correction algorithm, and orbit accuracy, it is common to see
location errors at the level of a few pixels, as demonstrated in Figure 2. The offset in 10-pixel order
in Figure 2 reflects the cumulatively geometric error of using Sentinel-1 images from different orbits,
which can be significantly reduced using image pairs from the same orbit.
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International Airport, Texas.  

3. Relative strengths and limitations of existing techniques 

Figure 2. (a) Vertical and (b) horizontal swipe demonstration of the geometric error (circulated tracks)
between two Sentinel-1 SAR images georeferenced by Range-Doppler algorithm in Sentinel Application
Platform (SNAP) 6.0 software using the Shuttle Radar Topography Mission (STRM) 3” DEM data.
The background and foreground images were obtained, respectively, over George Bush International
Airport, Texas.

3. Relative Strengths and Limitations of Existing Techniques

3.1. Approaches

SAR-based inundation mapping methods are usually more complex than those based on optical
sensors because of the processes added to mitigate the error propagated from one or more of the
error sources mentioned above. Consequently, one study may consist of several different approaches
introduced in the following.
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3.1.1. Supervised Versus Unsupervised Methods

Mapping water extent is a matter of classification using supervised or unsupervised approaches.
Supervised classification methods require a training set consisting of labeled inundated areas or
core water locations and their corresponding pixels extracted from SAR data. Using training sets,
mappers can achieve better accuracy without deeply understanding the physics of the data signal
before designing an algorithm [40–46]. Drawbacks are at least twofold, however, the generation
of training sets cannot be automated, and the algorithm has local dependence—that is, a classifier
well-trained over one area may not work well in another.

Pulvirenti et al. [47] developed an “almost automatic” fuzzy logic classifier, which used fixed
thresholds determined by a theoretical scattering model to classify pixels automatically or to use
human-labeled samples. This method has proved reasonably accurate, but the automatic classification
requires a microwave scattering model and introduces modeling uncertainty, while the human labeling
of samples is time consuming. These drawbacks of supervised methods may be circumvented through
the use of three unsupervised methods: threshold determination, segmentation, and change detection.

3.1.2. Threshold Determination

The specular reflective properties of non-obstructed water have driven many efforts [48–51]
to determine a threshold below which pixels are identified as water. A single threshold may
not hold well in large-area water bodies [52] or for the whole swath of a SAR image since it
suffers from the heterogeneity of the environment, caused by wind-roughening and satellite system
parameters [53]. Martinis and Rieke [54] demonstrated the temporal heterogeneity of the backscattering
of permanent water bodies, implying the temporal variability of the threshold. To address the
spatial variability, Martinis, Twele and Voigt [53] applied a split-based approach (SBA) [55], together
with an object-oriented (OO) segmentation method [56]. Matgen et al. [51] introduced a histogram
segmentation method, and Giustarini et al. [49] generalized the calibration process.

Essentially, a threshold-based approach needs to have either a bimodal image histogram (Figure 2
in Matgen, Hostache, Schumann, Pfister, Hoffmann and Savenije [51]) or some sample data to initialize
the water distribution. To deal with non-bimodal histograms, manually drawing regions of interest
(ROIs) is the most straightforward solution, but it impedes automation. For automation, SBA [53]
ensures that only the splits showing a bimodal histogram (of water and non-water pixels) are used to
derive a global threshold. On the other hand, Lu et al. [57] loosened the bimodal histogram restriction
by initializing the water distribution using a “core flooding area” automatically derived from change
detection, using multi-temporal SAR images. As change detection using only a single dry reference is
sensitive to speckle and location error (see the subsection on change detection), the method may be
affected. Furthermore, the threshold globalization of the method can be difficult.

More recently, dual-polarized (the common configuration of many active sensors) and fully
polarized SAR data are utilized for threshold segmentation. After sampling pixels of high water
probability from the global water occurrence map [58], and then removing out-of-bound samples
by matching the peak, and 99% confidence interval of the sample histogram and the χ2 distribution,
Shen et al. [59] automatically optimized the Wishart distribution and the probability density threshold
of water in the dual-polarized domain. Since the water class is initialized before the threshold
determination, this method is not restricted to bimodal histograms.

3.1.3. Segmentation

In contrast to pixel-based threshold determination, image segmentation techniques that group
connected homogeneous pixels into patches can provide information at the object level—that is,
at a higher level than the pixel—and are therefore believed to be more resistant to speckle because
they utilize morphological information instead of radiometric information alone. The active contour
method (ACM; [60,61]) allows a certain amount of backscattering heterogeneity within a water body
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and incorporates morphological metrics, such as curvature and tension. Martinis et al. [53] have
applied OO segmentation [56] with SBA to reduce false alarms and speckle. Heremans et al. [62]
compared the ACM and OO and concluded that the latter delineated the water areas more precisely
than the former, which tend to overestimate their extension. Pulvirenti et al. [63] developed an
image segmentation method consisting of dilution and erosion operators to remove isolated groups
of water pixels and small holes in water bodies, which are believed to be caused by speckle.
Giustarini et al. [49], Matgen et al. [51] and Lu et al. [57] employed the region growing algorithm
(RGA) to extend inundation areas from detected water pixels. RGA starts from seeding pixels and
then keeps absorbing homogenous pixels from neighbors until no more homogenous pixels exist in
neighboring areas.

3.1.4. Change Detection

Change detection approaches traditionally refer to techniques for comparing pre- and in-flood
backscattering intensities to detect changes in pixels caused by flooding [48,50,57,64,65]. One or
more prior- and post-flood SAR image or images are needed; we refer to this hereafter as
“dry reference.” The principle behind change detection techniques is straightforward, and the
techniques should, theoretically, be effective in overcoming the first source of error—over-detection on
water-like surfaces—as was shown by Giustarini et al. [49,51]. In the past, however, limited by their
availability, change detection traditionally used only two SAR images. As a result, the aforementioned
second-geometric error can only be avoided by limiting the using SAR images obtained from the
same orbit or by indireclty evaluating the change from binary water mask; and the third error
sources—speckle-caused noise—could compromise the effectiveness [66]. Shen et al. [59] have
proposed an improved change detection (ICD) method that employs multiple (~5) pre-flood SAR
images and a multi-criteria approach to reject false positives caused by water-like bodies and to reduce
the effect of speckle.

More generally, change detection can be extended to the use of multiple dry references [59,67],
the comparison of binary water maks [59], or InSAR coherence. The loss of InSAR coherence might
be a more promising signature than the enhancement of intensity to detect buildings surrounded by
inundation [33–35]. We refer to buildings surrounded by inundation as flooded buildings for simplicity,
which should not be understood as flooded building floor or basement because satellite remote sensing
images cannot detect the internal of buildings.

Besides isolating inundated areas from permanent (or, more precisely, preexisting) water
areas, change detection techniques have been used to initialize water pixel sets before thorough
detection [53,57], especially when full automation is an objective and no a priori water information is
available. Change detection methods can also be used to detect flood beneath vegetation, as described
in the next section.

3.1.5. Visual Inspection/Manual Editing Versus Automated Process

As discussed above, SAR-derived inundation results are affected by many error sources,
which can hardly be eliminated by most algorithms. Visual inspection and manual editing could
help in drawing training ROIs [42] and reducing false positives/negatives. As manual editing
requires an overwhelmingly large workforce, it however, cannot be applied to rapid response to
flood disasters, especially during back-to-back flood events. Studies aiming to improve automation
include Pulvirenti et al. [47], Giustarini et al. [49], Matgen et al. [51], Martinis et al. [53], Horritt [60];
Horritt et al. [61], Pulvirenti et al. [63], Horritt et al. [68]; and Pulvirenti et al. [69].

3.1.6. Unobstructed, Beneath-Vegetation Flood Versus Urban Flood

Inundation detection over vegetated areas, partially submerged wetlands, and urban areas has
gained attention recently. Theoretically, scattering is enhanced during flood time if a trunk structure
exists. Ormsby et al. [70] evaluated the backscattering difference caused by flooding under canopy.
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Martinis and Rieke [54] analyzed the sensitivity of multi-temporal/multi-frequency SAR data to
different land covers and concluded that X-band can only be used to detect inundation beneath
sparse vegetation or forest during the leaf-off period, while L-band, though characterized by better
penetration, has a very wide range of backscattering enhancement, which also obscures the reliability
of the classification. Townsend [44] utilized ground data to train a decision tree to identify flooding
beneath a forest using Radarsat-1 (http://www.asc-csa.gc.ca/eng/satellites/radarsat1/Default.asp).
Horritt et al. [68] input the enhanced backscattering at C-band and phase difference of co-polarizations
(HH-VV) to the ACM to generate water lines from selected known open water (ocean) and coastal
dryland pixels. The area between the dry contour and open water was considered as flooded vegetation.
Pulvirenti et al. [42] trained a set of rules using visually interpreted ROIs to extract flooded forest and
urban areas from COSMO-SkyMed SAR data. Pulvirenti et al. [69] combined a fuzzy logic classifier [47]
and segmentation method [63] to monitor flood evolution in vegetated areas using COSMO-SkyMed
(http://www.e-geos.it/cosmo-skymed.html).

Given its potential for flood detection under vegetation, most studies have adopted a supervised
classification, which can hardly be automated. Specifically, the enhanced dihedral scattering of
vegetation cannot be considered as a single class because of different vegetation species, structure,
and leaf-off and leaf-on conditions. Such heterogeneity makes it difficult to determine automatically
a threshold of backscattering enhancement. In other words, the issue in detecting floods beneath
vegetation is identifying multiple classes from an image, the automation of which is more challenging
than identifying a single class.

Until now, few studies have been made available on flood mapping in urban areas [33–35,49,53,71,72],
and only a handful [33–35,73] investigated the use of dihedral scattering to extract flooded buildings
using either the intensity enhancement or the loss coherence. Because of the vertical structure
of many buildings, the challenges in detecting urban inundation using intensity enhancement
share some similarities with those of identifying floods under vegetation. An additional challenge
arises from asymmetric building structure as compared to the symmetric structure of vegetation.
Such enhancement only occurs when the radar line of sight (LoS) is orthogonal to the horizontal
alignment of the building face [33,35]. Consequently, utilizing intensity enhancement cannot guarantee
complete detection of flooded buildings and requires to know the geometry, orientation, and even
material of buildings, and the direction of illumination [74]. Such more ancillary data may not always be
available. In contrast, the loss of coherence, though can be created by the dihedral scattering, may still
work when the LoS moves away from the orthogonal direction. Either the enhancement or the presence
of water, breaks the original backscattering arrangement of building pixels, causing the decrease of
coherence. Moreover, smooth artificial surfaces and shadowing areas may also create over-detection
which need to be masked out from detection. At present, the major challenge to an operational system
for urban flood mapping is still data availability. Ultra-fine resolution data (~1 m) such as TerraSAR-X
(https://directory.eoportal.org/web/eoportal/satellite-missions/t/terrasar-x) and COSMO-SkyMed
(http://www.e-geos.it/cosmo-skymed.html) are less accessible than free datasets.

3.2. Selected Studies of Combined Approaches

Many operational agencies are dedicated to providing NRT flood maps based on SAR, including
the International Charter Space and Major Disasters (https://disasterscharter.org/web/guest/home),
the United Nations Institute for Training and Research (UNITAR, https://unitar.org/unosat/),
the Copernicus Emergency Management Service (EC EMS, https://emergency.copernicus.eu/
mapping/ems/emergency-management-service-mapping), the European Space Agency (ESA, http:
//www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-1), the German Aerospace
Center (DLR https://www.dlr.de/), the Centre d’Etudes Spatiales de la BIOSphère (CESBIO, http:
//www.cesbio.ups-tlse.fr/index_us.htm), and the Canada Space Agency (CSA, http://www.asc-
csa.gc.ca/eng/satellites/disasters.asp). Despite this, past studies have only partially addressed the
operational demands of real-time inundation mapping in terms of automation and accuracy. Often,
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tedious human intervention to reduce over-detection, as well as filtering to reduce under-detection
caused by strong scatter disturbances and speckle-caused noise, are needed when using satellite
SAR data for inundation mapping. As our space is limited, we selected from the studies mentioned
above some representative ones for in-depth analysis to show how and why different methods can be
combined and the strengths and limits of such combinations. These are summarized below.

Martinis et al. [53] applied SBA [55] to determine the global threshold for binary (water and
non-water) classification. In SBA, a SAR image is first divided into splits (sub-tiles) to determine their
individual thresholds using the Kittler and Illingworth (KI) method [75], global minimum, and quality
index. Then, only qualified splits showing sufficient water and non-water pixels are selected to get the
global threshold. The OO segmentation algorithm (implemented in e-cognition software) is used to
segment the image into continuous and non-overlapping object patches at different scales. Then the
global threshold is applied to each object. Eventually, topography is used as an option to fine-tune
the results.

SBA is employed to deal with the heterogeneity of SAR backscattering from the same object in
time and space. The intention of applying the OO segmentation algorithm is to reduce false alarms and
speckle noise. OO was, however, originally designed for high-resolution optical sensors, which have
no consideration of noise like speckle and water-like areas. The fine-tuning procedure can only
deal with floodplain extended from identified water bodies, leaving inundated areas isolated from
known water sources. To avoid the drawback of fixing tile size to SAR images of different places and
resolution [53,55,76], Chini et al. [77] propose the hierarchical SBA (HSBA) method with variable tile
size, and they post-processed the binary water mask derived by HSBA using RGA and CD, similar to
Giustarini et al. [49], Matgen et al. [51].

The ACM, also known as the snake algorithm [60], was, to the authors’ knowledge, the first
image segmentation algorithm designed for SAR data. It allows a certain amount of backscattering
heterogeneity, while no smoothing across segment boundaries occurs. A smooth contour is favored by
the inclusion of curvature and tension constraint. The algorithm spawns smaller snakes to represent
multiple connected regions. The snake starts as a narrow strip moving along the course of a river
channel, ensuring it contains only flooded pixels. Overall, it can deal with low signal-to-noise ratio.

Horritt et al. [68] used ACM to map waterlines under vegetation. They started from known pure
ocean pixels to map the active contour of open water and then to map the second active contour,
which was the waterline beneath vegetation. Two radar signatures—the enhanced backscattering
at C-band and the HH-VV phase difference at L-band—forced the ACM. Unlike the OO method,
which aggregates objects from the bottom (pixel level) to the top, the segmentation in ACM requires
seeding pixels, whose detection is difficult in an automated approach. In addition, similar to RGA,
ACM cannot detect inundated areas isolated from a known water body.

To assess flooding beneath vegetation, Pulvirenti et al. [63] developed an image segmentation
method using multi-temporal SAR images and utilized a microwave scattering model [78] that
combines matrix doubling [30,31] and the integral equation model (IEM) [31,79] to interpret the
object backscattering signatures. The image segmentation method dilutes and erodes multi-temporal
SAR images using different window sizes. Then, an unsupervised classification is carried out at the
pixel level. The object patches are formed based on connected pixels of the same class. Eventually,
the trend of patch scattering can be compared with canonical values simulated by a scattering model
to derive the flood map.

Pulvirenti et al. [47] proposed a fuzzy logic–based classifier to incorporate texture, context,
and ancillary data (elevation, land cover, and so on), as an alternative to thresholding and segmentation
methods. Eventually, they combined the segmentation and fuzzy logic classifier [69] by using
backscattering change and backscattering during flooding as input for densely vegetated areas.
The thresholds of the membership functions were fine-tuned with a scattering model. The use of image
segmentation reduces the disturbance by speckle; the use of multi-temporal trend takes into account
the progress of the water receding process, and the comparison with a scattering model sounds
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more objective and location independent than a supervised classification or empirical thresholds.
The adopted image segmentation may, however, reduce the inundation extent detail, and it does not
guarantee the removal of speckle. Scattering models require detailed vegetation information (moisture,
height, density, canopy particle orientation and size distribution, trunk height, and diameter) and
ground soil information (moisture, roughness) as input; these data are heterogeneous in space and
usually not available.

Pulvirenti et al. [33] and Chini et al. [34] argued the advantages of utilizing the loss of coherence
as the primary signature of flooding buildings over the enhancement of intensities [73], as has been
briefly summarized in Sections 2.1, 3.1.4 and 3.1.6. To rule out false positives created by vegetated
areas, Chini et al. [35] first identified buildings by thresholding temporally averaged intensities
using the HSBA method, in conjunction with (via logical OR) thresholding temporally averaged
coherence. Then they masked out layover and shadowed areas by using the local incidence angle to
prevent false alarms there. As stated in [80] both polarized intensities and coherence exhibit contrasting
behaviors over built-up and vegetated areas. Over vegetated areas with naturally distributed scatterers,
as modeled by the Freeman-Durden three-component decomposition [38,81], volume scattering
contributes significantly to both co- and cross-polarized intensities while the dihedral scattering
only contributes to co-polarizations. Whereas over built-up areas, modeled by the Yamaguchi
four-component decomposition [38,82], the helix component contains the correlated contribution
from dihedral scattering to both co- and cross-polarizations. For coherence, buildings show persistent
strong values, while vegetation does not.

Toward automation, Matgen et al. [51] developed the M2a algorithm to determine the threshold
that makes the non-water pixels (below the threshold) best fit a gamma distribution—a theoretical
distribution of any given class in a SAR image. They then extended flooded areas using RGA from
detected water pixels using a larger threshold—99 percentile of the “water” backscatter gamma
distribution—arguing that flood maps resulting from region growing should include all “open water”
pixels connected to the seeds. Then they applied a change detection technique to backscattering to
reduce over-detection within the identified water bodies caused by water-like surfaces, as well as to
remove permanent water pixels.

Based on the same concept, Giustarini et al. [49] developed an iterative approach to calibrate the
segmentation threshold, distribution parameter, and region growing threshold (M2b). They applied
the same segmentation threshold to the dry reference SAR image to obtain the permanent water
area. They claimed, however, that if the intensity distribution of the SAR image were not bimodal,
the automated threshold determination might not work.

Lu et al. [57] used a changed detection approach, first to detect a core flood area that contained
a more plausible but incomplete collection of flood pixels, and then to derive the statistical curve
of the water class to segment water pixels. The major advantage of this approach is that a bimodal
distribution is not compulsory. In practice, a non-bimodal distribution often occurs. The change
detection threshold might be difficult to determine and globalize.

Assuming even prior probability of flooded and non-flooded conditions, Giustarini et al. [83]
computed probabilistic flood maps that characterize the uncertainty of flood delineation. The probability
reported in this study, however, related to the uncertainty neither in extent nor in time. Rather, it was
the uncertainty of a SAR image classification based on backscattering.

Taking advantage of big earth observation (EO) data, the two most recent studies—Cian et al. [67]
and Shen et al. [59]—implemented full automation of inundation retrieval. With the CD principle
underpinning both methods, they employed multiple dry references instead of one supported by
operational satellite SAR data for multiple years.
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Cian et al. [67] developed two CD-based flood indices, the Normalized Difference Flood Index
(NDFI) and the Normalized Difference Vegetated Flood Index (NDVFI), assuming a number of revisits
for each pixel in dry conditions was available:

NDFI =
mean〈σ0

re f 〉 −min〈σ0
re f , σ0

f lood〉
mean〈σ0

re f 〉+ min〈σ0
re f , σ0

f lood〉
(1)

NDFVI =
mean〈σ0

re f 〉 −max〈σ0
re f , σ0

f lood〉
mean〈σ0

re f 〉+ max〈σ0
re f , σ0

f lood〉
(2)

Empirical thresholds 0.7 and 0.75 were reported sufficiently stable for generating the inundation
mask from NDFI and NDFVI, respectively. In the post-processing, Cian et al. [67] applied dilation and
closing morphological operators, a larger than 10-pixel size limit, and a smaller than 5-degree slope
limit to the inundation mask to further reduce speckle-caused noise. They concluded the potential for
detecting inundation under vegetation was limited.

Shen et al. [59] developed a four-step processor, as shown in Figure 3, the Radar Produced
Inundation Diary (RAPID), which makes use not only of time series of SAR data, but also the abundance
of available high-resolution ancillary satellite products, including land cover classification (LCC) maps
from Landsat [84,85], water occurrence from 30-year Landsat images [58], global river width from
STRM [86] and Landsat images [87], and fine-resolution hydrography [88,89]. The four steps are
as follows:

First, SAR images are classified into water and non-water masks (WMs), based on statistics from
polarimetric radar. This binary classification step was inspired by the auto-optimization method by the
m2b method [49] and extend to utilizing the dual-polarized SAR data. It removes the assumption of a
bimodal distribution made in of m2b by initializing the water PDF using the water occurrence map.

Second, morphological processing runs over the mask, consisting of two operators, water source
tracing (WST) and improved CD (ICD), to form inundated water bodies while to remove false
positives caused by water-like surfaces. WST and ICD are also designed to detect fluvial and pluvial
inundation, respectively. This morphological procedure is different from the post-processing methods
in Matgen et al. [51], Chini et al. [77], and Twele et al. [90] in three aspects: (1) in RAPID, a pixel needs
either to be accepted by WST or ICD while, in the other studies, the change detection is used to measure
the pixels accepted by the RGA, which cannot capture pluvial inundated areas; (2) both WST and ICD
utilize object-level information instead of pixel-level information to evaluate whether a detected water
body is a false positive; and (3) to prevent the disturbance of calibration error among different SAR
images, the change is detected from a binary mask instead of backscattering.

Third, a multi-threshold compensation step is applied to reduce the under-detection within water
areas, and, fourth, a machine learning–based refinement is used to remove false negatives created by
strong scatterers and to reduce further the noise level in the result. These final two steps in RAPID
reduce the error caused by speckle and strong scatterers by utilizing the PDF and physically integrating
multi-source remote sensing products instead of brutally applying a filtering technique. Thus, RAPID
reduce the noise level without sacrificing resolution to mapping quality.

Among available satellites with SAR sensors, Sentinel-1 is the most popular because it is free
to use and has relatively short revisiting intervals (six days in Europe and the Hawaiian islands
and twelve days everywhere else in the world), three-day in average revisiting tracks (the revisiting
intervals of the satellites (S1A and S1B) without the promise of producing the data), and a multi-year
data archive dating back to 2014. During an event, the satellites may add extra revisits. As illustrated in
Figure 4, for instance, for Hurricane Harvey six revisits were acquired from 27 August to 10 September
2017 in Seabrook area, and for Hurricane Irma eleven revisits from 12 September to 2 November 2017.
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4. Summary

This study has reviewed existing principles and methods for inundation mapping using SAR data.
As microwave measurements are significantly less disturbed by weather than measurements from
optical sensors, SAR has the greater potential for high-resolution flood mapping. Efforts to automate
the process leave a number of common errors unaddressed by most of the reviewed studies:

(1) The argument that flood maps resulting from region growing should include all “open water”
pixels connected to the seeds may be untrue and lead to instances of under- and over- detection.
If captured after the apex, large isolated and scattered flood pockets disconnected from the pre-flooded
water bodies can develop at times due to variability in surface elevation and barriers. Limited by
image resolution, narrow water paths or paths covered by vegetation may also appear isolated from
known core water zones. Water-like areas can be connected to real water bodies as well; airports
built, respectively, in Boston along the Atlantic Ocean and in San Francisco along the Pacific Ocean,
for example, may be identified as water areas because they are water-like (smooth) and connected to
real water bodies.

(2) Change detection at pixel level can eliminate false positives caused by water-like surfaces,
but it is sensitive to noise-like speckle and geometric errors. In SAR applications, change detection
approaches need to be applied with caution. Change in shadow areas, for instance, can be caused by
change in the looking direction. Most studies that have used change detection models (including those
reviewed here) have compared backscattering of collocated SAR pixels within and outside the flood
period. Backscattering exhibits large heterogeneity in space and time, however, indicating that in a
single object (water or non-water), the direct difference in backscattering might have led to erroneous
interpretations. In addition, change detection was carried out from the output of RGA. Consequently,
isolated inundation areas could not be detected.

(3) Although a speckle model has been taken into account by most studies, false positives
and negatives caused by speckle pixels are not effectively reduced by other than brutal filtering
techniques. More advanced approaches target on reducing the noisy effects without damaging image
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details, including selecting the optimal filter, simple morphological operators, multi-thresholding
compensation, machine learning refinement and utilization of big EO data.

(4) Most approaches have not been tested in large areas, and their validation is usually limited to
small areas along rivers. In particular, the limit of SAR-based mapping in terms of river width has not
been reported. Limited by the 5–10 m resolution of noncommercial SAR satellites and the presence of
speckle, one should not expect a successful rate in delineating inundation in headwater regions.

In the past decades, measurements based on satellite SAR have shifted from data scarcity to
abundance. At present, Sentinel-1 enables new approaches taking advantage of big EO data by offering
free and global SAR measurements from a large number of repeated observations. With its six-day
revisiting intervals, however, Sentinel-1 alone cannot provide sufficiently frequent revisits for floods
of short duration. More frequent scanning of the earth will be implemented by the constellation of
SAR satellites (e.g., the four-satellite constellation of Cosmos SkyMed can provide revisits within a few
hours) and planned SAR satellites (e.g., the NASA-ISRO SAR Satellite Mission (NISAR), planned to
launch in 2020, is designed to provide spatiotemporal resolution of 5–10 m and four to six times per
month). Consequently, newly emerging studies utilizing the big EO data have advanced to reduce the
summarized error to a great extent.

As the automation of non-obstructed inundation extent has been fully addressed by previous
studies, three topics may need further investigation: (1) the retrieval of inundation under vegetation;
(2) the retrieval of urban inundation; and (3) the estimation of inundation depth from extent.
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