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Abstract: Many deep learning models, such as convolutional neural network (CNN) and recurrent
neural network (RNN), have been successfully applied to extracting deep features for hyperspectral
tasks. Hyperspectral image classification allows distinguishing the characterization of land covers
by utilizing their abundant information. Motivated by the attention mechanism of the human
visual system, in this study, we propose a spectral-spatial attention network for hyperspectral
image classification. In our method, RNN with attention can learn inner spectral correlations within
a continuous spectrum, while CNN with attention is designed to focus on saliency features and spatial
relevance between neighboring pixels in the spatial dimension. Experimental results demonstrate that
our method can fully utilize the spectral and spatial information to obtain competitive performance.

Keywords: hyperspectal image classification; attention mechanism; RNN; CNN

1. Introduction

Hyperspectral imaging, also known as imaging spectroscopy, captures the electromagnetic
energy reflected or emitted from the same area over hundreds of narrow, continuous spectral
bands from the visible to infrared wavelength ranges [1–4]. Hyperspectral images (HSIs)
captured from land surface-observing aircrafts or satellites have become increasingly important in
environmental monitoring, urban planning, mining, defense and agriculture due to their rich spectral
information [2,5,6]. These images are combined to form a three-dimensional (x, y, λ) hyperspectral
data cube for processing and analyzing, where x and y represent two spatial dimensions of the scene,
and λ represents the spectral dimension (comprising of a range of wavelengths).

Hyperspectral image classification, which assigns every pixel vector to a certain set of classes,
is one of the major tasks in the analysis of HSIs, and it has received much attention from researchers.
Numerous traditional methods, such as support vector machine (SVM) [7] and k-nearest neighbor
(KNN) [2], have been proposed. However, these approaches disregard the correlations among pixels
in spatial axes and cause a waste of spatial information. Jiang et al. [8] proposed an unsupervised
superpixel wise principle component analysis to learn the intrinsic low-level features of different
homogeneous regions by segmenting the entire HSI based on superpixel segmentation. It takes
full advantage of spatial information contained in the HSIs. Thus, spectral-spatial based methods
improve classification performance because they incorporate additional spatial information from
an HSI. For example, Roscher et al. [9] took spectral as well as spatial information by an incremental
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learning strategy for import vector machines and discriminative random fields. Another highlight of
this work was the concept of self-training for sequential classification of HSI, which was comprised
of the inclusion of new training samples to increase the classification accuracy and the deletion of
non-informative samples to be memory- and runtime-efficient. Li et al. [10] constructed a family
of generalized composite kernels by utilizing spectral and spatial information from HSI data.
Jiang et al. [11] developed a random label propagation algorithm, which constructed a spectral-spatial
probability transfer matrix that simultaneously considered the spectral similarity and superpixel based
spatial information to cleanse the label noise under the label propagation framework.

1.1. Motivation

Deep learning algorithms have been introduced to modern HSI analysis due to their outstanding
predictive power, and they can extract more discriminative features and achieve a better performance
than traditional shallow classifiers [2,12]. Deep models, such as networks with 1D [13,14], 2D [15],
and 3D [16] convolutional layers, have been proposed for hyperspectral data analysis.

Methods with a 1D network take spectra as input and only use spectral information to learn
features. Mou et al. [13] utilized recurrent neural network (RNN) to model pixel spectra in an HSI
as 1D sequence for classification, and they found that the modified gated recurrent unit (GRU)
outperforms traditional approaches and the baseline convolutional neural network (CNN). Given that
spatial information has been proven to be useful in improving the interpretation of HSI classification
results, the study of classification models based on deep spectral-spatial features has been promoted.
For example, Yang et al. [15] designed a two-CNN model to learn the spectral features and spatial
features jointly. Cao et al. [17] used a CNN in combination with a Markov random field in a unified
Bayesian framework to classify HSI pixel vectors. Spatial-spectral unified network [18] combined
a spectral dimensional band grouping-based long short-term memory (LSTM) model with 2D CNN
for spatial features and integrated the spectral finite element (FE), spatial FE, and classifier training
into a unified neural network. The result showed that the full use of spectral and spatial information
can considerably improve accuracy.

The attention mechanism, which becomes a vital part in human perception, is based on
a reasonable assumption that human vision does not process an entire image at once, and it only focuses
on specific parts of the entire visual space at “high resolution” while perceiving the surrounding in
“low resolution” [19,20]. Hence, this mechanism heightens the sensitivity to features containing the
most valuable information. Several attempts have been exerted to incorporate attention mechanism
as an effective technique processing into visual tasks to strengthen some features and to improve the
performance as a result. It has been proven to be productive in many applications, including image
captioning [21], matching [22–25] and saliency detection [26].

Attention mechanism enables models to focus on key pieces of the feature space and differentiate
irrelevant information [27]. It was first introduced for language translation [28], which learned to
focus on particular words or phrases when translating sentences, showing large performance gains
especially on long sequences. Considering the spectral dimension data in HSIs as sequence data,
attention mechanism can capture the high spectral correlation between adjacent spectra by the above
method completely.

Self-attention proposed by Lin et al. [29] uses attention scores to weight all features to obtain
salient features. Pei et al. [30] designed a specific spatially-indexed attention mechanism among the
convolutional layers to extract the salient facial regions in each individual image and a temporal
attention layer to assign attention weights to each frame. Inspired by them, since local features at
neighboring spatial positions have high relevance in HSI’s spatial domain, adding attention mechanism
is helpful in learning spatial dependence and saliency features.
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1.2. Contribution

The major contributions in this paper involve the following three aspects:

• We design a joint network with a spectral attention bi-directional RNN branch and a spatial
attention CNN branch to extract spectral-spatial features for HSI classification. An attention
mechanism is used to emphasize meaningful features along the two branches, as shown in
Figure 1. Our goal is to improve representation ability by using the attention mechanism, namely,
to focus on the correlations between adjacent spectral dimensions and the spatial dependency in
spatial domain, as well as to suppress unnecessary features.

• A bi-directional RNN with an attention mechanism is designed for spectral information in
both backward and forward directions. For each pixel, a spectral vector is decomposed into
a set of ordered single data and fed into GRU units one by one. Additional attention weights
strengthen the spectral correlation between spectrum channels. We compare the attention RNN
to the ordinary bi-directional RNN, and the experimental results in Tables 7–9 have proven its
effectiveness for the classification with spectral information.

• For spatial axes, we add attention to 2D CNN and train this model on the image patch around the
pixel. Compared with the average consideration of each image region, the attention parameter
assigns a greater weight to the key parts to make the model focus on the primary features.
The classification results of attention CNN and CNN in Tables 7–9 show that the central pixel is
classified better by adding attention weight.

The remainder of this paper is organized as follows. Section 2 briefly introduces the related works.
Section 3 describes the proposed method for HSI classification, including the two-branch network and
co-training. The information of datasets used in this work and the experimental results are given in
Section 4. Finally, Section 5 concludes this paper briefly.

Origin 
hyperspectral data

Spatial attention  
CNN

Spectral attention 
RNN 

Merge Classification map

groundtruth

Figure 1. Our framework for hyperspectral images (HSI) classification. It consists of a spatial attention
convolutional neural network (CNN) branch and a spectral attention recurrent neural network (RNN)
branch, followed by a merge block which learns spectral-spatial features jointly.

2. Related Works

In this section, we mainly recall the background information of bidirectional RNN, CNN and
attention mechanism.

2.1. Bi-Directional Recurrent Network

RNN, which extends conventional feedforward neural networks with loops in connections, has
gained significant attention for solving many challenging problems involving sequential data analysis,
such as speech recognition and language modeling [31,32]. Unlike feedforward neural networks,
RNN is called recurrent because of its recurrent hidden state, whose activation at each step depends
on the previous computations. RNN has a memory function, which can remember the information
about what has been calculated so far.
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The architecture of RNN is illustrated in the left part of Figure 2. For a hidden layer in RNN,
which maintains a hidden state at each time iteration, it receives the input vector x, and generates the
output vector y. The unfolded structure of a bi-directional RNN (Bi-RNN), shown in the right part of
Figure 2, presents the calculation process. Bi-RNN connects two hidden layers running in opposite
directions to a single output, allowing them to receive information from both past and future states.
Neither of these output states is connected to inputs of the opposite directions. By simultaneously
employing both directions of input data, information both from the past and future can be used to
calculate the output.

x

h

y

xt-1

yt-1

xt

yt

xt+1

yt+1

…

…

…

…

…

…

…

…
Input layer

Hidden layer

Output layer

Backward layer

Forward layer

Figure 2. The left part is a brief illustration of RNN, and the right part shows the unfold bidirectional
RNN (Bi-RNN) structure.

LSTM [33] and GRU [34] are introduced to learn long-term dependencies and alleviate the
vanishing gradient problem. These two architectures do not have any fundamental difference from
RNN, but they use different functions to compute the hidden state. Compared with LSTM, GRU does
not maintain a cell state C and uses two gates instead of three. GRUs have fewer parameters and thus
may be trained a bit faster and need less data to generalize.

2.2. CNN

Another popular deep learning model for vision tasks is CNN [35]. Fundamentally,
the mammalian visual system has a spatial hierarchy. Inspired by this, CNN has a trainable multilayer
architecture composed of a series of convolution layers, non-linearity layers, and pooling layers stacked
alternately. It is used to learn low-level features such as edges or textures and high-level features with
more discriminative information [36–40]. A typical CNN structure is shown in Figure 3.

Image Patch

Convolution Pooling
Fully 

Connection

Convolution Pooling

Softmax

Output label

Figure 3. Illustration of typical CNN structure.

In the convolution layer, rather than being fully connected to the input, each hidden layer unit
is connected via shared weights to the local receptive field around the input, which might be k
two-dimensional feature maps of size m× n. The convolution layer computes convolution of input
feature maps xi with convolutional kernel Wi of size l × l × q, followed by an element-wise nonlinear
activation function. Activity of the ith feature map is Ci = ∑

q
j Wi × X j + bi in the lth layer, where bi is

the bias term for the ith feature map, Xj is the jth channel of the previous layer.
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The non-linear activation function summarizes the responses at several input locations, and it
computes the output feature map pi = f (ci) commonly via a rectified linear unit (ReLU)
f (x) = max(0, x). The pooling layer computes the maximum or average value within a small patch of
each feature map, and the most common type is max pooling. The pooling operation offers invariance
by reducing the resolution of feature maps. After completing the stacked layers, fully connected layers
and a softmax layer are usually adopted to predict the classification labels. Compared with other
neural networks, CNN is easier to train with its fewer connections and parameters because of weight
sharing and local connection scheme.

2.3. Attention Mechanism

Using attention mechanism, neural networks focus on a certain part of the given information,
and every pixel has an independent weight, highlighting discriminative and effective features,
and weakening information detrimental to classification.

Spatial Transformer Networks [41] which intelligently focused on a particular area of image
was a special case of attention. Moreover, Kim et al. [42] used a joint residual attention model
which utilized the attention mechanism to select the most valuable visual information so as to
enhance language feature selection and feature extraction for visual question-answering problems.
Additionally, Yang et al. [43] proposed an attention mechanism to extract additional meaningful
information on the transition layer and passed to the next feature extraction block for subsequent
feature exploitation. As for HSI classification, a proposed network [20] was constructed by stacking
the proposed attention inception module and it could adaptively learn the network architecture by
dynamically routing between the attention inception modules. They designed a novel neural network
which has a “trunk branch” with a feedback attention mechanism and a “mask branch” with a gate
control attention mechanism to perform pixel-wise classification for very high-resolution remote
sensing images.

As noted in previous studies, many networks have adopted the attention mechanism to model
the internal relationships and dependencies of the original data through global information, assigning
higher priority to more informative areas. The acquired attention weight map can be used for feature
recalibration. It simulates the biological process which causes human visual systems to be instantly
attracted to a tiny piece of important information in an intricate image. We can relearn feature-based
weights for more relevant and noteworthy information.

3. Methods

There are three subsections playing crucial roles in our methodology: A bidirectional
RNN-based spectral attention feature learner, a CNN-based spatial attention feature learner and
a co-training model.

In our work, attention is of much concern. For spectral classification, considering that each pixel
can be represented as a continuous spectral curve that contains rich spectrum characters, we can focus
on the inter-band relationship of features by attention. In spatial dimensions, we regard spatial features
as complements to spectral ones; this branch improves the representation of interests and focuses on
the inter-spatial relationships of features by exploiting spatial attention to CNN. Then, we concatenate
two branches and feed them to the fully connected layers to learn high-level joint spectral-spatial
features and acquire a prediction class after a softmax layer.

3.1. Attention with RNN for Spectral Classification

RNNs are popular architectures for modeling various sequential problems, and Bi-RNN is
proposed to make full use of both latter and previous information. By considering all spectra of
a hyperspectral pixel as a sequence, we develop a Bi-RNN model, containing a forward GRU layer
and a backward GRU layer, as illustrated in Figure 4. Our model processes the input in both forward
and backward directions to the same output layer with two separate hidden layers.
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Its input is a spectral vector of one hyperspectral vector x, x = (x1, x2, . . . , xn), and the
bi-directional hidden vector is calculated as:

Forward hidden state: −→
ht = f (

−→
W xt +

−→
V ht−1 +

−→
b ), (1)

Backward hidden state: ←−
ht = f (

←−
W xt +

←−
V ht+1 +

←−
b ), (2)

where t ranges from the first spectral band 1 to the last nth one, the coefficient matrices
←−
W and

−→
W are

from the input at the present step,
−→
V is from the hidden state ht−1 at the previous step,

←−
V is from ht+1

at the succeeding step, f is the nonlinear activation of the hidden layer, and the memory of the input
as the output of this encoder is gt:

gt = concat[
−→
ht ,
←−
ht ], (3)

where concat(·) is a function of concatenation between the forward hidden state and backward
hidden state.

 

Forward

Backward
Hidden

Attention 

Output

Input

softmax

αt1

αt2

αti

αt(n-1)

αtn

x1 x2 xi xn-1 xn

yt
Spectrum

Figure 4. Bi-RNN model with attention mechanism for spectral classification. Every pixel vector is
regarded as a sequence, the hundreds of spectral bands are input into the gated recurrent unit (GRU)
cell one by one. Both forward and backward features are captured by Bi-RNN and re-weighted by the
attention layer.

Bi-RNN allows the spectral vector to be fed into one by one to learn continuous spectrum features
with forward and backward directions. If we directly sum and average the data of each spectral band,
it means that each spectral channel contributes equally to the classification task. The fact is that the
spectrum is a continuous curve with peaks and troughs, rather than a straight line with a fixed value.
Therefore, some bands in the spectrum should have a smaller weight while those key spectral bands
should have a greater weight. Introducing the attention mechanism into the Bi-RNN, our model
assigns an appropriate weight to each spectral channel and makes the model capture inner spectral
relationships and classify much better.

Compared with the traditional RNN model that treats the input in the same manner, we add an
attention layer to decode different spectral information to learn many characteristics. Our attention
layer can be defined as follows:

eit = tanh(Wigt + bi), (4)

αit = softmax(Wi
′eit + bi

′), (5)

where Wi and Wi
′ are transformation matrices, bi and bi

′ are bias terms, and the softmax (·) is to map
the non-normalized output to a probability distribution and constrain output to be in the interval (0, 1).
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So we can compute the predicted label yt of pixel x as follows:

yt = U[gt, α], (6)

where U(·) is a function of summing over all states which are weighted by their corresponding
attention weights.

Equation (4) is a one-layer neural network. This layer rearranges the state of Bi-RNN in its current
vector space, and then the tanh activation transforms it to get eit as a new hidden representation of
ht. The attention weight α is produced through the softmax layer, formulated as Equation (5), where
we measure the importance of input based on the relevance of et with another channel-wise vector.
After obtaining the newly learned attention weights, we update the label representation vector y using
the soft-attention operation show in Equation (6).

With the attention mechanism, our model adopts a more reasonable explanation that some spectral
data play a key role and some of them are meaningless. Meanwhile, our Bi-RNN model can better
characterize the spectrum features of hyperspectral origin data, pay more attention to the correlation
of adjacent bands, and make the training model more accurate.

3.2. Attention with CNN for Spatial Classification

Our CNN model aims to extract robust spatial features. The attention mechanism we added on
the spatial CNN focuses on the dependence between spatial neighboring pixels and the significant
features on the entire input patch. Experiments in Section 4 for CNN and attention CNN show that
attention weights contribute greatly to spatial classification. The attention CNN architecture is shown
in Figure 5.
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Figure 5. CNN model with attention mechanism for spatial classification. The original HSI is firstly
processed by principal component analysis (PCA) for dimensionality reduction. Spatial attention
map is calculated from an initial input patch for CNN and superimposed on the patch to the
subsequent network.

First of all, in order to fuse the spatial information of all bands and suppress noise, we reduce
the dimensions of an HSI to the low-dimensional subspace via principal component analysis (PCA).
The tighter the relationship between the target pixel and its neighborhood, the smaller the patch
created for the target pixel. After PCA, for instance, the first three components of the Pavia University
dataset are reserved because they have almost 99.3% information. Around each pixel, we create a
patch of size k× k× 3 as a neighbor region as the input of the spatial branch. With the addition of
the attention mechanism, our CNN model can estimate the salience and correlation inner different
image regions.

Different from the spectral attention, the spatial attention focuses on where the informative part is,
which is a kind of complementary. CNN attention is added before the convolution layer. For the
input neighbor region S of size m× n× c, we generate an efficient feature descriptor by utilizing the
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inner-spatial relationships of features. The spatial attention is denoted by a weight matrix α with the
same size m× n as the feature map, and the element αij of α bespeaks the attention weight for the pixel
vector Sij composed of c PCA channels located at (i, j) in the neighbor region.

Particularly, the spatial attention weight map α is calculated by two steps. The first step is to get a
distributed representation through a single-layer neural network, as Equation (7). In the second step,
a sigmoid function calculates αij which evaluates the impact between the ith position and jth position.
Moreover, the more similar feature representations indicate the greater relevance of the two positions
contributed. The definition of the spatial attention model is shown below:

sij = tanh(Ws · Sij + bs), (7)

αij = σ(Wz · sij + bz). (8)

where Ws ∈ Rk×C and Wz ∈ Rk are transformation matrices that map image visual features, bs ∈ Rk

and bz ∈ Rl are model biases, and σ(·) is a sigmoid function which also could constrain the attention
weight to lie in the interval (0, 1).

For each patch, the convolutional layer uses a sliding window as a kernel to move across, and it
can locate similar features in this patch by calculating the point-to-point inner product. The pooling
layer selects values to reduce the feature map dimension. The kernels of the convolutional layers are
5× 5, and the strides of the max pooling layers are 2. The fully connected (FC) layer owns 1024 units.
Table 1 lists the rest settings about the spatial attention network.

Table 1. Network settings in the spatial attention CNN.

Layer Size Activation Strides

conv1 32× 5× 5 ReLU 1
max pooling 2× 2 / 2

conv2 64× 5× 5 ReLU 1
max pooling 2× 2 / 2

FC 1024 / /

3.3. Merge

In our method, the last step concatenates the two branches to co-training them, and the complete
framework is shown in Figure 6. The proposed Bi-RNN with attention network and the CNN
with attention network are adopted as the spectral feature learner and the spatial feature learner,
respectively. In order to exploit both spectral correlation and spatial features and extract the intergrated
spectral-spatial features, we concatenate the last fully connected layer in the Bi-RNN with the one in
the CNN to form a new fully connected layer, which is followed by another FC layer to represent the
joint spectral-spatial features and a softmax regression layer to predict the probability distribution of
each class.

Spectral RNN with attention mechanism focuses more on distinguishable essential characteristics
and the inner spectral correlations, but the attentive spatial CNN supplements the neighbor information
with spatial structure features and internal spatial relevance, enabling a more homogeneous
classification map and a higher accuracy. The merge layer fuses and balances the spatial and spectral
information, and its result has the largest diversity in class probability estimation.

Compared to the hand-crafted features, the deep joint spectral-spatial features trained in this
end-to-end framework are more discriminative and robustness. The co-training network consisting
of Bi-RNN and CNN, both of which have added attention mechanism, enhances the effectiveness of
extracting features and promotes hyperspectral classification accuracy.
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Figure 6. The whole structure of our proposed model. The spectral attention Bi-RNN branch and
the spatial attention CNN branch are followed by a multi-layer merge network to extract conjoint
spatial-spectral characteristics.

4. Experiment Results

In this section, we introduce three public datasets used in our experiment and the configuration
of the proposed spectral-spatial attention network (SSAN). In addition, classification performance
based on the proposed method and other comparative methods are presented. All the experiments are
implemented with an NVIDIA RTX 2080Ti GPU, tensorflow-gpu 1.9.0 and Keras 2.1.0 with python 3.6.

4.1. Data Description

To evaluate our method, we train and test it on three public HSI classification datasets, namely,
the Pavia University dataset, the Pavia Center dataset and the Indian Pines dataset, which are widely
used to evaluate classification algorithms.

• Pavia Center: The first dataset is gained by ROSIS. We utilize 102 spectral bands after removing
13 noisy channels. The image is of 1096× 715 pixels covering the center of Pavia. The available
training samples contain nine urban land-cover classes.

• Pavia University: The second dataset is obtained by the ROSIS sensor during a flight campaign
over Pavia. The ROSIS-03 sensor recorded the orginal image in 115 spectral channels ranging
from 430 to 860nm. Removing 12 noisy bands, the left 103 bands are adopted. The spatial size of
the image is 610× 340 pixels. The ground truth map contains nine different urban land-cover
types with more than 1000 labeled pixels for each class.

• Indian Pines: The third dataset is gathered by AVIRIS sensor over the Indian Pines test site in
Northwestern Indiana. Removing bands that cover water absorption features, the remaining
200 bands with 145× 145 pixels are used in this paper. The original data consists of observations
from 16 identified classes representing the land cover types.

In our experiment, the training set is generated randomly from the ground reference data and the
remaining reference samples consist of testing sets. For deep learning models, the training set consists
of labeled samples and validation samples. To overcome the categories’ imbalance problem, instead of
splitting dataset by an average percentage of each class, we randomly select 100 labeled samples and
100 validation samples of each annotated class for training set in the Pavia Center dataset and Pavia
University dataset, details are listed in Tables 2 and 3. As for the same problem in the Indian Pines
dataset, some class samples of this dataset are less than 100. Table 4 provides the detail information
about different classes and the corresponding training sets and testing sets.
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Table 2. Number of training and testing samples in Pavia Center dataset.

Label Class Name
Training

Testing
Labeled Validation

1 Waters 100 100 65,771
2 Trees 100 100 7398
3 Asphalt 100 100 2890
4 Self-Blocking Bricks 100 100 2485
5 Bitumen 100 100 6384
6 Tiles 100 100 9048
7 Shadows 100 100 7087
8 Meadows 100 100 42,626
9 Bare soil 100 100 2663

Total 900 900 146,352

Table 3. Number of training and testing samples in Pavia University dataset.

Label Class Name
Training

Testing
Labeled Validation

1 Asphalt 100 100 6431
2 Meadows 100 100 18,449
3 Gravel 100 100 1899
4 Trees 100 100 2864
5 Painted mental sheets 100 100 1145
6 Bare Soil 100 100 4829
7 Bitumen 100 100 1130
8 Self-Blocking Bricks 100 100 3482
9 Shadows 100 100 747

Total 900 900 40,976

Table 4. Number of training and testing samples in Indian Pines dataset.

Label Class Name
Training

Testing
Labeled Validation

1 Alfalfa 8 4 34
2 Corn-notill 100 100 1228
3 Corn-mintill 100 100 630
4 Corn 50 50 137
5 Grass-pasture 50 50 383
6 Grass-trees 100 100 530
7 Grass-pasture-mowed 8 4 16
8 Hay-windowed 50 50 378
9 Oats 8 4 8
10 Soybean-notill 100 100 772
11 Soybean-mintill 100 100 2255
12 Soybean-clean 100 100 393
13 Wheat 50 50 105
14 Woods 100 100 1065
15 Buildings-Grass-Trees-Drives 100 100 186
16 Stone-Steel-Towers 20 10 63

Total 1044 922 8283

In the Pavia Center dataset, we choose four principal components that could consist of 99%
information of the original data, and then extract image patches as CNN branch input. Similarly,
three principal components are chosen in the Pavia Center dataset and four principle components for
the Indian Pines dataset.
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4.2. Parameter Setting

There are three main parameters that have significant impact on our experiment: Learning
rate, spatial size and dropout. In this section, we evaluate the sensitivity of performance to different
parameter settings of our proposed model in detail.

(1) Learning rate: Firstly, we test the impact of different learning rates. The learning rate
controls the learning process and the amount of allocate error when updating model weights
each time. At extremes, a learning rate could be too large and results in an oscillation over
training epochs, or too small to be converged. The learning rate of our model is chosen from
[0.0003, 0.0005, 0.0008, 0.001, 0.003, 0.005, 0.01], and the optimal learning rate based on the classification
accuracy is 0.005 for the Pavia Center dataset, 0.0005 for the Pavia University dataset, and 0.0005 for
the Indian Pines dataset.

(2) Spatial size: Spatial features learning from CNN badly depend on the size of the
spatial neighbor region. As we have fixed the reduced channel number, we test spatial sizes
[15 × 15, 19 × 19, 23× 23, 27× 27, 31× 31] to capture sufficient spatial information. The results are
listed in Table 5, and all of them are acquired in 10,000 training iterations with batch size 128 and the
optimal learning rate of each dataset. Larger size sof spatial input would supply more chance to learn
more spatial features. Nevertheless, a larger size of spatial region would also bring negative effect with
unnecessary information and a possibility of over-smoothing phenomenon. To make a fair comparison,
we fix the spatial size of 27× 27 in different classification methods.

Table 5. Overall accuracy (OA) of the proposed method with different spatial sizes.

Spatial Size
Overall Accuracy

Pavia Center Pavia University Indian Pines

15× 15 97.71 94.18 92.69
19× 19 98.24 96.57 94.70
23× 23 98.66 98.21 96.55
27× 27 99.25 98.87 97.23
31× 31 98.51 96.33 97.01

(3) Dropout: During training, the neural network develops co-dependency among neurons which
lead to over-fitting of training data. Dropout is a regularization approach in neural networks which
helps reduce interdependent learning and preventing over-fitting. We test it with different dropout
proportions. The results in Table 6 represent that 60% dropout for the Pavia University dataset and 50%
dropout for the Pavia Center dataset, and that the Indian Pines dataset acquires the highest accuracy.

Table 6. OA of proposed method with different spatial sizes.

Dropout
Overall Accuracy

Pavia Center Pavia University Indian Pines

0.2 94.78 90.32 92.55
0.3 95.33 95.49 91.74
0.4 98.11 97.12 95.26
0.5 97.32 98.66 97.14
0.6 99.13 96.45 96.32

4.3. Classification Results

To demonstrate the superiority and effectiveness of the proposed SSAN model, we compare
it with traditional methods such as KNN and SVM, and advanced machine-learning methods such
as CNN, RNN, RNN with attention (ARNN), and CNN with attention (ACNN). The comparative
methods are summarized as follows:
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(1) KNN: k nearest neighbors, the parameter k is set to [3, 5, 5] for the Pavia Center dateset, the Pavia
University dataset and the Indian Pines dataset, respectively.

(2) SVM: Support vector machine with radial basis function kernel.
(3) RNN: GRU-based bi-directional RNN, which is the base RNN model in our proposed SSAN.

Learning rate and the training step have been optimized to fulfill a great classification accuracy.
(4) CNN: Two-dimensional CNN, which has the same structure with CNN branch in SSAN.

Learning rate and the spatial input size are optimized on validation samples.
(5) ARNN: Our attention Bi-RNN branch in SSAN.
(6) ACNN: Our attention CNN branch in SSAN.
(7) SSAN: The proposed spectral-spatial attention network.

For a fair comparison, we utilize the same training and testing datasets for all methods,
and all algorithms are executed twenty times. The average results which add the standard deviation
obtained from the 20 runs are reported to reduce random selection effects. Overall accuracy (OA),
average accuracy (AA), and the kappa coefficient k are used as the evaluation measurements for the
compared methods.

4.4. Results on the Pavia Center Dataset

The classification maps of Pavia Center dataset from deep learning models and our proposed
model are provided in Figure 7, and the corresponding accuracy indexes including OAs, AAs and
kappa coefficients are presented in Table 7. Obviously, the performance of our proposed method
is much better than other methods, and SSAN generates the highest OA, AA, kappa and the best
classification results. From Table 7, comparing the OAs and AAs, we can see that most results are
unbalanced, such as class Bitumen in SVM, and class Self-Blocking Bricks in RNN. Our method SSAN
acquires more smooth and homogeneous results, and it proves that only using spectral or spatial
information is insufficient for this task. Comparing ARNN and RNN, Self-Blocking Bricks is improved
obviously from 50.46% to 76.69%, and classification accuracies of Asphalt, Tiles and Shadows in ACNN
are increased respectively compared to CNN. Taking the accuracy of all classes into consideration,
our method shows more robustness even with a small number of training samples and unbalance
among classes.

4.5. Results on the Pavia University Dataset

Figure 8 shows the qualitative classification maps of deep learning networks and our method.
Table 8 lists the index results and evaluation measurements quantitatively. It is obvious that the
proposed SSAN surpasses other methods and owns the highest accuracy on most classes except
class Asphalt and class Meadows, where the results of these two classes in our method have slightly
lower precisions than ACNN. By adding attention mechanism, classification accuracies of Meadows
and Self-Blocking Bricks in ARNN are improved significantly compared with RNN, while Trees,
Bitumen and Shadows are better classified in ACNN in comparison to CNN. Viewing the classification
maps, we notice that most ground objects are classified well and the house and road edges are clear.
Nevertheless, a few scattered and diverse misclassifications are inside the natural vegetation area,
which destroy the object integrity, especially class Bitumen and class Bare Soil. By adding attention
mechanism and combining ARNN with ACNN, the results show that our SSAN model outperforms
other approaches in acquiring more homogenized and favorable classification maps.
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(a) (b) (c) (d)

(e) (f) (g)

Waters

Trees

Asphalt

Self-Blocking Bricks

Bitumen

Tiles

Shadows

Meadows

Bare Soil

(h)

Figure 7. Classification maps using different methods on the Pavia Center dataset: (a) False-color
image, (b) Ground-truth map, (c) RNN, (d) CNN, (e) RNN with attention (ARNN), (f) CNN with
attention (ACNN), (g) spectral-spatial attention network (SSAN).

Table 7. Classification performance of different methods for the Pavia Center dataset. Bold indicates
the best result.

Label Class Name KNN SVM RNN CNN ARNN ACNN SSAN

1 Waters 99.15 99.17 99.63 98.22 98.87 99.63 99.97
2 Trees 88.76 80.54 86.34 89.37 91.32 92.15 98.37
3 Asphalt 76.34 94.22 85.46 77.92 86.28 84.63 93.04
4 Self-Blocking Bricks 81.92 83.27 50.46 86.39 76.69 87.35 94.22
5 Bitumen 86.39 51.33 94.29 89.77 94.05 98.07 98.40
6 Tiles 91.44 93.24 91.75 79.89 95.88 87.36 97.11
7 Shadows 81.31 75.47 81.63 87.28 84.21 96.42 97.03
8 Meadows 93.67 94.55 97.18 98.27 98.75 97.91 98.22
9 Bare soil 97.18 98.16 99.31 93.87 99.13 89.22 99.63

OA 92.66 93.11 99.04 99.13 99.24 99.39 99.69
±0.34 ±0.67 ±0.25 ±0.19 ±0.08 ±0.11 ±0.05

AA 88.22 85.74 89.21 90.26 92.56 93.72 98.31
±0.42 ±0.33 ±0.16 ±0.25 ±0.11 ±0.20 ±0.17

Kappa 90.13 90.03 97.34 97.37 97.48 98.33 99.18
±0.21 ±0.44 ±0.23 ±0.30 ±0.24 ±0.17 ±0.09
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(a) (b) (c) (d)

(e) (f) (g)
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Figure 8. Classification maps using different methods on the Pavia University dataset: (a) False-color
image, (b) Ground-truth map, (c) RNN, (d) CNN, (e) ARNN, (f) ACNN, (g) SSAN.

Table 8. Classification performance of different methods for the Pavia University dataset. Bold indicates
the best result.

Label Class Name KNN SVM RNN CNN ARNN ACNN SSAN

1 Asphalt 76.00 78.90 80.86 92.13 88.94 98.46 98.73
2 Meadows 69.33 82.31 68.69 94.23 83.56 98.59 95.72
3 Gravel 84.00 81.41 80.23 76.83 82.99 77.36 95.27
4 Trees 95.44 93.99 95.23 74.67 94.22 94.66 96.34
5 Painted mental sheets 96.88 99.21 99.21 91.95 99.46 99.23 99.66
6 Bare Soil 71.34 83.67 82.35 86.34 86.25 87.07 98.78
7 Bitumen 95.26 92.20 86.98 72.84 90.45 97.08 96.34
8 Self-Blocking Bricks 73.00 86.56 78.22 88.86 82.29 90.39 95.26
9 Shadows 97.42 99.74 99.84 87.40 99.63 99.79 99.89

OA 84.89 84.03 95.42 97.36 97.37 98.98 99.24
±0.23 ±0.88 ±0.34 ±0.26 ±0.31 ±0.15 ±0.17

AA 84.89 88.59 87.66 86.34 90.71 94.07 98.07
±0.46 ±0.67 ±0.26 ±0.18 ±0.25 ±0.32 ±0.23

Kappa 83.57 79.94 87.21 93.77 92.22 97.17 98.17
±0.28 ±0.35 ±0.19 ±0.07 ±0.37 ±0.14 ±0.22

4.6. Results on the Indian Pine Dataset

The false-color images of the Indian Pine dataset and their corresponding ground-truth maps
along with classification maps of the models are represented in Figure 9, and the corresponding
accuracy indexes are shown in Table 9. The traditional approaches barely utilize the shallow spectral
feature and neglect abundant spatial features, which leads to a fairly unimpressive classification
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performance. The classification maps of other methods present many noisy points and confuse class
Soybean-mintill and class Building-Grass-Trees-Drives with other classes. Attention layer in RNN
effectively improves classification accuracy of almost all categories in this dataset according to the
results in ARNN and RNN. Similarly, with attention mechanism, Alfalfa, Grass-pasture-mowed,
Soybean-clean and Buildings-Grass-Trees-Drives are classified much better in ACNN than CNN.
From these classification maps we can see that some classes are hard to be correctly classified, and it
brings challenges to the effectiveness and robustness of classifier.

(a) (b) (c) (d)

(e) (f) (g)

Alfalfa

Corn-notill

Corn-mintill

Corn Grass pasture

Grass-trees

Grass-passture-mowed

Oats

Soybean-notill

Soybean-mintill

Soybean-clean

Wheat Woods

Building-Grass-Trees-Drives

Stone-Steel-Towers

Hay-windowed

(h)

Figure 9. Classification maps using different methods on the Indian Pines dataset: (a) False-color
image, (b) Ground-truth map, (c) RNN, (d) CNN, (e) ARNN, (f) ACNN, (g) SSAN.

Table 9. Classification performance of different methods for the Indian Pines dataset. Bold indicates
the best result.

Label Class Name KNN SVM RNN CNN ARNN ACNN SSAN

1 Alfalfa 35.91 84.89 83.43 76.52 79.32 95.44 97.76
2 Corn-notill 47.32 71.78 77.87 87.19 85.27 92.76 98.83
3 Corn-mintill 51.68 63.07 76.21 82.91 84.23 87.83 99.25
4 Corn 68.77 89.57 55.39 88.32 67.65 87.29 99.67
5 Grass-pasture 87.32 93.86 87.98 91.68 92.14 96.82 99.24
6 Grass-trees 90.24 94.62 94.57 94.35 95.57 96.37 98.36
7 Grass-pasture-mowed 82.49 92.77 89.42 81.67 98.04 99.73 100
8 Hay-windowed 96.75 98.79 94.65 87.02 99.26 91.42 99.32
9 Oats 63.26 92.36 42.47 83.14 84.41 90.87 99.76

10 Soybean-notill 61.89 76.22 68.49 85.29 83.85 89.64 98.79
11 Soybean-mintill 54.71 62.33 86.52 94.31 94.62 95.39 99.47
12 Soybean-clean 49.37 77.56 78.61 85.14 86.33 97.66 98.65
13 Wheat 96.84 98.39 93.58 94.32 95.79 99.13 100
14 Woods 84.39 93.64 94.91 96.42 96.03 98.81 99.46
15 Buildings-Grass-Trees-Drives 47.85 69.48 74.82 76.59 89.28 92.27 99.32
16 Stone-Steel-Towers 81.09 86.78 82.68 62.33 96.82 83.15 97.53

OA 64.52 78.03 91.31 95.24 94.87 97.27 99.67
±0.47 ±0.69 ±0.39 ±0.24 ±0.37 ±0.14 ±0.21

AA 69.03 83.92 82.05 86.78 89.92 94.32 99.08
±0.56 ±0.73 ±0.28 ±0.19 ±0.41 ±0.25 ±0.16

Kappa 62.39 75.26 87.67 93.05 92.71 95.86 98.37
±0.82 ±0.40 ±0.26 ±0.07 ±0.29 ±0.18 ±0.32
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Comparing ARNN with RNN and ACNN with CNN, the attention weight, which captures
spatial correlations between adjacent channels and spatial inner dependency, helps a lot in focusing
on strongly related features and correcting severe misclassified pixels. Our proposed SSAN enhances
the accuracy of indistinguishable classes and gains a more uniform and smooth result. One possible
reason for misclassification is that some indistinguishable classes may have similar features either
in the spectral or in the spatial domain. Another point worth considering is that some classes in the
Indian Pine dataset are too unbalanced to learn sufficient differentiable features. In order to overcome
these problems, our method surpasses other approaches in acquiring more homogeneous classification
maps and manifests the highest accuracy.

The results indicate that the proposed method with the attention mechanism in two branches is
effective in HSI classification. Obviously, the aforementioned traditional methods, such as SVM and
KNN, demonstrate poor performance. Deep learning methods, such as CNN and RNN, are effective
because of their discriminative features. A comparison of RNN and ARNN or CNN and ACNN
indicates that the attention mechanism plays a significant role in our method. Within the attention
weights, CNN focuses more on saliency features in the spatial domain, and RNN attempts to learn
spectral correlations from adjacent spectrum. Our fusion network combines spatial and spectral
dimensions and exhibits well-balanced results among all compared methods in all scenarios.

5. Conclusions

In this study, a novel two-branch co-training method is proposed to extract spectral-spatial features
based on ARNN and ACNN for HSI classification. Inspired by the way humans perceive images
that emphasizes informative features and suppresses unnecessary information, known as attention
mechanism, we incorporate this mechanism into our model. ARNN and ACNN are trade on learning
characteristics from spectral and spatial information, respectively, and they can grasp numerous
interspectral correlations in the continuous spectrum domain and focus on similar spatial features
between neighboring pixels in spatial dimension by adding attention weights. Specifically, we use
bi-directional RNN in ARNN to learn forward and backward information in spectra. The co-training
network can learn higher-level spatial-spectral joint characteristics and inherit features from both
ARNN and ACNN. Analysis of experimental results on three public datasets demonstrates that
our method not only performs better than the other methods, but also extracts more homogeneous
discriminative feature representations.

Our work has proven the effectiveness of attention mechanism in HSI classification in this paper,
and we plan to generalize our method for other more complex remote sensing applications, such as
unmixing and change detection, in the near future.
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