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Abstract: In this study, the China Hourly Merged Precipitation Analysis (CHMPA) data which
combines the satellite-retrieved Climate Prediction Center Morphing (CMORPH) with the automatic
weather station precipitation observations is firstly assimilated into the Weather Research and
Forecasting (WRF) model using the Four-Dimensional Variational (4DVar) method. The analyses and
subsequent forecasts of heavy rainfall during Meiyu season occurred in July 2013 over eastern China
is evaluated. Besides, the sensitivity of rainfall forecast skill of assimilating the CHMPA data to the
rainfall error, the rainfall thinning distance, and the rainfall accumulation time within assimilation
window are investigated in this study. Then, the impact of 4DVar data assimilation with and without
CHMPA rainfall data is evaluated to show how the assimilation of CHMPA impacts the precipitation
simulations. It is found that assimilation of the CHMPA data helps to produce a better short-range
precipitation forecast in this study. The rainfall fields after assimilation of CHMPA is closer to
observations in terms of quantity and pattern. However, the leading time of improved forecast is
limited to about 18 hours. It is also found that CHMPA data assimilation produces stronger realistic
moisture divergence, precipitabale water field and the vertical wind field in the forecasting fields,
which eventually contributes to the improved forecast of heavy rainfall. This study can provide
references for the assimilation of CHMPA data into the WRF model using 4DVar, which is valuable
for limited-area numerical weather prediction and hydrological applications.
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1. Introduction

Rainfall is one of the most conventional observations, which is observed by almost all the surface
stations. The rainfall variable can also be derived from remote sensing measurements like satellite
product. Rain gauge and satellite remote sensing have been widely used to measure precipitation.
Both have been assimilated into NWP models to improve heavy rainfall forecasts [1,2]. On one hand,
a rain gauge may provide accurate measurements of surface precipitation at a point location; however,
it lacks spatial representation in complex terrain and for intense precipitation with high spatial
variation [3]. On the other hand, satellite-based precipitation products are capable of detecting spatial
patterns and temporal variations of precipitation at a finer resolution, which is particularly useful
over poorly gauged regions like ocean [4]. However, satellite-based remote sensing is an indirect
estimate of precipitation, inherently containing regional and seasonal systematic biases and random
errors [5,6]. Since these errors can be corrected by merging satellite products with rain gauge data [7],
great progresses have been made in developing combined rainfall products with higher accuracy over
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the globe [8–11]. Recently, the National Meteorological Information Center of China Meteorological
Administration has developed an operational satellite-gauge merged precipitation product with
the hourly and 0.1◦ (~10 km) resolution (CHMPA) [12]. This product has been widely used in
many operational centers for monitoring, diagnosing and verifying heavy rainfall events. However,
the CHMPA rainfall data has not been used in NWP models quantitatively, and the effectiveness of
this rainfall product in data assimilation for improving rainfall forecast should be investigated.

Several approaches to assimilating precipitation observations into NWP models have been
developed to improve the model initial states and the sub-consequent short-range rainfall forecasts in
the past few decades. The initialization schemes, such as the dynamical initialization [13], physical
initialization [14] and cumulus convection initialization [15,16] had been widely used. However,
the initialization methods are indirect ways of assimilating precipitation data because they usually
restructure the moisture and temperature fields. The shortcoming of these methods is that they
don’t guarantee dynamically consistent initial conditions [17]. The nudging technique [18–22] is also
one of the simplest and most computationally economical methods for rainfall data assimilation.
However, the initial conditions generated by this method are also dynamically inconsistent [17,23]
which is same as the initialization methods. Compared to the schemes mentioned above, the
4DVar can assimilate precipitation data directly. The major advantages of 4DVar is that it uses the
full model dynamics to adjust the model variables according to the observed precipitation [24,25].
Zupanski and Mesinger (1995) [26] demonstrated the technical feasibility of the 4DVar and showed
an improvement of precipitation forecast using a regional forecast model and an incomplete adjoint
model. Later, studies [17,27–31] indicated that the precipitation data assimilation using the 4DVar leads
to reductions in the spin-up time, improving the moisture distributions in model initial conditions
and the subsequent short-range rainfall forecasts. Some operational weather services have assimilated
precipitation data operationally using 4DVar method to improve precipitation forecasts, including
Japan Meteorological Agency (JMA) [32] and European Centre for Medium-Range Weather Forecasts
(ECMWF) [33–35]. Therefore, the 4DVar method is used in this study to assimilate the CHMPA rainfall
data into WRF model.

As the first test to assimilate a new kind of rainfall data like CHMPA in this paper,
some observation-related parameters such as observation error, thinning distance, accumulated
time corresponding with the 4DVar assimilation window should also be investigated. Thus, two basic
questions arise in this study: How does the rainfall observation error, rainfall accumulation time within
assimilation window, rainfall thinning distance for assimilation of CHMPA data using the 4DVar affect
the rainfall forecasts? Will the assimilation of CHMPA rainfall data improve the rainfall forecasts using
the 4DVAR approach? In this study, capability of assimilating the CHMPA rainfall data is developed
within the WRF 4DVar [36,37]. The purpose of this study is to assimilate CHMPA rainfall data in
WRFDA 4DVar and to explore its impact on heavy rainfall forecast that occurred over Jianghuai area
in eastern China. A series of experiments were conducted in this study. The sensitivity of forecast
skill of assimilating the CHMPA rainfall data to the rainfall observation error, the rainfall observation
thinning distance, the rainfall accumulation time within 6 h assimilation window is first investigated,
respectively. Then, the impact of assimilation with and without CHMPA rainfall data was evaluated.

The outline of the paper is as the follows: The data used in assimilation experiments is described
in Section 2. WRFDA 4DVar and experiments design are introduced in Section 3. The results and
discussions are presented in Section 4. The conclusion is given in Section 5.

2. The CHMPA Data and Preprocessing

The precipitation observations to be assimilated in this study are China Hourly Merged
Precipitation Analysis (CHMPA) data, which is developed by the National Meteorological Information
Center of China Meteorological Administration [12]. The CHMPA rainfall data combines rainfall
observations from satellite-retrieved CMORPH with high-density, hourly automatic weather stations
rainfall data, utilizing a two-step merging algorithm. The merging algorithm combines a probability
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density function (PDF) matching method and optimal interpolation (OI) which was developed by Xie
and Xiong (2011) [7]. The global CMORPH precipitation estimates have a temporal interval of 30 min
and a horizontal resolution of 8 km covering the area between 60◦S and 60◦N [38]. To generate the
merged rainfall data, the CMORPH precipitation is accumulated to an hourly rate and also interpolated
onto a horizontal resolution of 0.1◦ in latitude and longitude. The hourly rain gauge data at more
than 30,000 automatic weather stations over China which have been under quality control [39] are
used. Then, the quality-controlled hourly rain gauge data are interpolated onto regular grid points
with a spatial resolution of 0.1◦ over the mainland China using a modified climatology-based OI
interpolation algorithm [40,41]. So far, the CHMPA rainfall data are available on China meteorological
data network (http://data.cma.cn/data). The precipitation observations data used in this study had
been converted into the WRFDA readable data format. Observations with innovations greater than
three times the assumed observation error standard deviation were rejected.

3. System Description and Experiments Design

3.1. WRF Model

The data assimilation and forecast system constructed in this study is based on version 3.9.1 of
the Advanced Research Weather Research and Forecasting (ARW-WRF) [42]. Two nested domains are
configured with a parent domain of 20 km horizontal resolution with 217 × 199 model grid points and
an inner two-way nesting domain at 4 km with 541 × 521 grid points (Figure 1). Both the parent domain
and inner domain have 45 vertical levels with the model top at 50 hPa. The WRF single-moment 6-class
microphysics scheme (WSM6) [43], Kain–Fritsch cumulus scheme [44], Dudhia Shortwave Scheme [45],
RRTM longwave scheme [46], Noah–MP land surface scheme [47], and the Mellor–Yamada–Janjic (MYJ)
planetary boundary layer (PBL) scheme [48] are used for all experiments. In addition, the Kain–Fritsch
cumulus scheme is turned off in inner domain.
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3.2. WRF 4DVar

The WRF 4DVar built in WRF model’s Data Assimilation system (WRFDA) [37] is used to
assimilate CHMPA rainfall data in this study. Huang et al. (2009) [36] described the formulation of
WRF 4DVar system and presented preliminary results from real-data 4DVar experiments.

The objective of 4DVar is to find the optimal state of the true atmospheric state at the analysis
time by iteratively minimizing a cost function which can be written as,

J =
1
2
(xn
− xb)

T
B−1(xn

− xb) +
1
2

K∑
k=1

(HkMk(xn
− xn−1) − dk)

T
R−1(HkMk(xn

− xn−1) − dk) (1)

where J includes quadratic measure of distance between (i) the analysis and the background, and (ii) the
analysis and the observations. In the background term, xn is the analysis vector of model control
variables at the nth outer loop, xb is the background. B is the covariance matric for background error.
In the observation term, K is the total number of time slots on which observations are available. H is the
linearized observation operator which transforms variables from gridded analysis space to observation
space. M is the tangent linear model. xn is the analysis vector from the previous outer loop. dk is the
innovation vector given by dk = Hk[Mk(xn−1)] − yk. H and M are the nonlinear observation operator
and simplified WRF nonlinear model, respectively. R is the observation error covariance matrix.
The conjugate gradient method is used to minimize the cost function [49].

WRF tangent linear model (TLM) and adjoint model (ADM) used here are developed by
Zhang et al. (2013) [50]. It contains both cumulus parameterization and large-scale condensation as well
as a simple warm rain microphysics scheme, which makes it possible to add the function of assimilating
precipitation data in WRF 4DVar. In this study, we use the standard Kessler warm rain scheme in
WRF model to assimilating rainfall data because it is relatively simple yet captures the major physical
processes for warm-season convection [31]. The WRF Kessler microphysics scheme is composed of
the three microphysical variables of water vapor, cloud water, and rainwater. The microphysical
processes included are the production, fall, and evaporation of rain, the accretion and auto-conversion
of cloud water, and the production of cloud water from condensation [51]. Wang et al. (2013) [52] and
Ban et al. (2016) [31] also showed that this warm-rain liquid-only microphysics scheme can be used as
an acceptable substitute for both radar and precipitation data assimilation with WRF 4DVar.

The method for estimating the background error statistics is CV6 which was recently implemented
in WRFDA. CV6 uses a set of control variables: stream function (ψ), unbalanced velocity potential
(χu), unbalanced temperature (Tu), unbalanced portion of the pseudo relative humidity (RHs,u), and
unbalanced surface pressure (Ps,u). Additionally, CV6 introduces six additional correlation coefficients
in the definition of the balanced part of analysis control variables (See details for CV6 in Chen et al.
2013, 2016 [53,54]). A recursive filter is used to model the horizontal covariance, which is assumed to be
spatially homogeneous and isotropic. The vertical error correlations are modeled using the diagnosed
EOFs from an estimated background error covariance. The National Meteorological Center (NMC)
method [55] is applied to calculate the background error covariance, which computes background
error covariance by taking differences between forecasts of 24 h and 48 h lengths valid at the same time.

3.3. Experiments Design

To examine how rainfall data assimilation affects wind and moisture fields as well as the
effectiveness of the rainfall data assimilation system, a single observation test which assimilates
a single rainfall observation is first performed before real observations data assimilation experiments.
Then, four cycling data assimilation and forecasting experiments using real observations are performed
from 0000 UTC 01 to 0000 UTC 10 July 2013 as in Figure 2. A 6 h spin-up run is conducted using
NCEP Global Forecast System (GFS) Analysis with horizontal spatial resolution of 0.5 × 0.5 degree
and the output from the spin-up is used as the first guess field for the 4DVar experiments. The lateral
boundary conditions for WRF forecasts are provided by the NCEP GFS forecasts. The first experiment
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investigates the rainfall forecast skill sensitivity to the rainfall observation error. The second experiment
investigates the impact of thinning distance of the rainfall observation on the rainfall forecast
skill. The third experiment investigates the impact of the accumulation time of the rainfall
observation within 6 h assimilation window on the rainfall forecast skill. Finally, based on the
potentially optimal configurations investigated by the above three experiments, the fourth experiment
investigated the impact of assimilating rainfall observations compared with assimilating conventional
observations only. Besides the rainfall observations, the other conventional observations used in this
study include land surface, marine surface, radiosonde, pibal and aircraft reports from the NCEP
PREPBUFR which originated from a wide variety of sources (Figure 3), and it was downloaded
from http://rda.ucar.edu/datasets/ds337.0/. Quality control was performed by WRFDA and the default
observation error statistics in WRFDA were used.
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3.4. The Heavy Rainfall Event

In this study, the heavy rainfall event over China in the year 2013 is selected for deeper analysis.
During 1–10 July, there was a large range of persistent heavy rainfall in eastern China. Particularly in
5–6 July the 24 h accumulated rainfall in Jianghuai area exceeded 150 mm. The wind field on 700 hPa
and 850 hPa from the GFS analysis data from 0000 UTC 05 to 0000 UTC 06 July in Figure 4 shows that
there was a shear line over the Jianghuai area. A low vortex system was located over southwest area at
850 hPa and 700 hPa. The southwesterly flow from Bengal Bay strengthened under the influence of
subtropical high peripheral airflow, so that water vapor can be transported to the middle and lower
reaches of the Yangtze River region. The subtropical ridge stayed steady around 25◦N, leading to the
persistent precipitation. The weather system presents zonal characteristics and moves from west to
east controlling by the wind field at high altitude. This indicates a synoptic situation, favorable for
widespread rainfall over the region being situated along the shear line.

http://rda.ucar.edu/datasets/ds337.0/
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4. Results

4.1. Single Observation Test

Single observation experiment helps to gain intuitive understanding of the workings of data
assimilation system, as they characterize the correlations between variables and the structure of the
background error covariance used in the analysis update. The spatial spread of analysis increment
is primarily determined by the spatial correlation in the background error covariance and how this
is propagated throughout the assimilation window by the ADM. Thus, the assimilation of rainfall
data using 4DVar mainly has impact on wind variables, moisture variables and rainfall variables.
The structure of the background error covariance can be flow-dependent in 4DVar because of the
implicit evolution by the ADM, although the background error covariance at the start of the assimilation
window is still based on climatological method such as NMC. To the author’s knowledge, the single
rainfall observation test has been rarely studied before. To investigate how the background error
covariance in 4DVar influences the assimilation of rainfall data, a single rainfall observation is assumed
to be located at the position (32◦N, 116◦E) at the surface at 0006 UTC 05 July 2013 and then assimilated
into WRF model in this study. The value of the rainfall observation is set to 10 mm with an error
of 2 mm. The background value of rainfall at this point is 5.3 mm (i.e., the rainfall innovation is 4.7
mm). In this test, the backgrounds are the 6 h forecasts after 1 days of 6 hourly 4DVar analysis cycles
employing the full set of observations.

The analysis increments created by the single rainfall observation are shown by Figure 5. The
solid black lines are contours of the backgrounds at analysis time and the shaded contours are the
analysis increments. Figure 5a,b shows the analysis increments of humidity at the starting and
ending time of the assimilation window. Figure 5c,d shows the analysis increments of zonal wind
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at the starting and ending time of the assimilation window. It is found that the increments at the
ending of the assimilation window are apparently larger than the starting of the assimilation window,
and the increments distribute roughly along the background contours showing the characteristic
of flow-dependence, this is because of the implicit evolution of the background error covariance
contributed by the dynamic and thermodynamic balance constraints of the adjoint model. The analysis
increments have a considerably larger spatial extension as they are based on climatological correlations
at the start of the assimilation window [56]. It is also found that the assimilation of rainfall has
indirect impacts on wind fields through multivariate correlations and the adjoint model. In addition,
the analysis increments look noisy, this may be because the single rainfall observation includes the
information of multi-variables such as humidity, temperature, and wind, which all have impact on
the final analysis increments through the spatial correlation of implicit-evolved background error
covariance and the dynamical equations in the adjoint model.
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Figure 6 shows the accumulation rainfall observation (Figure 6a) and analysis increments of
the rainfall (Figure 6b) within the 6 h assimilation window. It is apparent that, although the model
under-predicts rainfall amounts, it matches the distribution of observations located at the maximum
center of the rainfall area, indicating that the assimilation of rainfall data using this WRF 4DVar system
can produce direct impact on the rainfall expectations.
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Figure 6. (a) Six-hour-accumulated rainfall observation initialized at 0000 UTC 05 July 2013, (b) Rainfall
increments of the single rainfall observation test.

4.2. Real Observation Experiments

After the single rainfall observation test, the real observations experiments are conducted using
the CHMPA rainfall data. The sensitivity of forecast skill of assimilating the CHMPA rainfall data to
the parameters related to observation such as the rainfall observation error, the rainfall observation
thinning distance and the rainfall accumulation time within 6 h assimilation window is investigated
in those experiments, respectively. Then, the impact of simultaneous assimilation of CHMPA data
and conventional observations is studied based on the optimal configurations selected by those
sensitivity experiments. In this study, the rainfall scores are averaged over the forecasts from the
10 days cycling experiments.

To evaluate the impacts of those parameters, the rainfall forecast skill scores such as Threat Score
(TS) and Fractions Skill Score (FSS) against the observations are calculated in this study. The Threat
Score which is one of the most widely used point-to-point objective method, is given by

TS = a/(a + b + c) (2)

which means that TS = (hits)/(hits + false alarms + misses). Its range is 0 to 1, with a value of 1 indicating
a perfect forecast. The TS is relatively frequently used, with good reason. It takes both false alarms
and missed events into account, and is therefore, a more balanced score. Fractions Skill Score (FSS)
is one of the neighborhood verification approaches which is calculated to evaluate the precipitation
forecast skill [57]. The FSS is defined as

FSS = 1−

1
N
∑
N
[< P f >s − < po >s]

2

1
N [
∑
N
< P f >

2
s +
∑
N
< Po >2

s ]
(3)

where N is the number of neighborhoods; < P f >s is the proportion of grid boxes within a forecast
neighborhood where the prescribed threshold is exceeded (i.e., the proportion of grid boxes that have
forecast events); and< po >s is the proportion of grid boxes within an observed neighborhood where the
prescribed threshold is exceeded (i.e., the proportion of grid boxes that have observed events). In the
formula the denominator represents the worst possible forecast (i.e., with no overlap between forecast
and observed events). FSS ranges between 0 and 1, with 0 representing no overlap and 1 representing
complete overlap between forecast and observed events, respectively. The influence distance of the
neighborhood used in this study is 20 km which is the same with the data assimilation resolution.



Remote Sens. 2019, 11, 973 9 of 21

Besides the rainfall forecast skill scores, additional variable fields are analyzed to show how the
assimilation of CHMPA rainfall data influences the eventual rainfall forecasts.

4.2.1. Impacts of Rainfall Observation Error

When dealing with a new type of observation in data assimilation system, it is important
to estimate the observations error [58]. Since the CHMPA rainfall data has not been assimilated
before, it is necessary to firstly investigate its appropriate error. Many previous studies have assigned
the observed rainfall error empirically based on the source of the observation, the length of the
precipitation accumulation period and methods of data preprocessing. For example, Zupanski and
Mesinger (1995) used an observed precipitation error of only 0.001 mm for 24 h accumulated precipitation
which is derived from simulated observation [26]. Zou and Kuo (1996) using 0.045 mm for 3 h
accumulated precipitation [17]. Guo et al. (2000) used the error of 3 mm for 1 h accumulated
precipitation [28]. In WRF 4DVar, observation errors are assumed as uncorrelated in both space and
time, the observational error covariance matrices are simple diagonal with rainfall observation error as
elements. This observation error is considered as constant in space and time. Accurate estimation of
rainfall error is complex because of its high spatial and temporal variability. Thus, a fixed observation
error is used here at all the grid points. Since the information about the observation error on the
CHMPA rainfall data is not available, the sensitivity of the rainfall forecast to the choice of observed
rainfall error in assimilation experiments is tested in this sub-section. We assigned a series of the rainfall
observation error by the value of 1, 2, 3, 4, 5 mm for 6 h accumulated precipitation.

Figure 7a,b shows the TS and FSS, respectively, for 24 h accumulated precipitation forecast using the
different precipitation error in data assimilation experiments. The results show that, the two verification
methods generate similar results although these two methods are calculated in different ways. It is found
that when the rainfall observation error is set to 2 mm, the precipitation forecast skill score performs
better than the others. It is also showed that different observation error configurations have similar
results when the threshold is smaller than 40 mm, except that the configuration of 1 mm observation
error gets the worst result. However, the advantage of 2 mm observation error began to appear when
the threshold is larger than 40 mm. When the precipitation data assimilation experiment uses 2 mm
observation error, the rainfall forecast skill almost gets the highest scores, although the FSS looks lower
than the 3 mm configuration at the 100 mm threshold.

Figure 7c,d show the TS and FSS, respectively, at multiple leading time. The precipitation scores
are calculated at the threshold of 12 mm for every 6 h which can also represent the threshold for heavy
rainfall. It is found that the TS of configuration of 1mm rainfall observation error generates the worst
result for 6 h and 12 h forecasts but got comparable results with 2 mm error for 18 h forecast and
24 h forecast. It is concluded that the 1 mm error is apparently not suitable for short-range rainfall
forecast. In general, the 2 mm observation error configuration performs the best. It is noted that
Kumar et al, 2014 and Ban et al. 2016 also used a 2 mm rainfall observation error [30,31]. Therefore,
2 mm precipitation error is used in the subsequent experiments. It is noted that a fixed observation
error is used at all the grid points for all rainfall thresholds in this study, although rainfall data have
large spatial and temporal variability. If actual rainfall error is more (or less) than fixed observation
error, the data assimilation system gives erroneously more (or less) weight to rainfall observation.
Thus, the use of constant rainfall observation error in 4DVar represents a shortcoming that should be
addressed in future studies [30].
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4.2.2. Impacts of Rainfall Observation Thinning Distance

Although the CHMPA rainfall data has a higher resolution in space, the assimilation of all the
available rainfall data may significantly increase the computational cost brought about by the ADM
and TLM in 4DVar systems. Furthermore, the error correlation between the dense rainfall observations
may also cause a suboptimal data assimilation result. Thinning observations is one of the most
widely used method to avoid those mentioned problems. In this study, to investigate the impact of
the thinning distance on the assimilation of CHMPA rainfall data, five experiments are conducted
in this subsection. The experiments include no thinning (i.e., the resolution of the full observations),
15 km thinning distance, 20 km thinning distance (i.e., the resolution of the model), 25 km thinning
distance, and 30 km thinning distance. The procedure of thinning rainfall data includes (1) setting up
thinning grid box (in the format of longitude and latitude) according to configuration, (2) mapping the
observations to the thinning grid. Experiments results are presented in Figure 8. The threshold series
of the TS and FSS for 24 h accumulated precipitation for the experiments of different thinning distance
are shown in Figure 8a,b, respectively. It can be seen that the results of experiments using 15 and
20 km thinning distance perform comparable and generated the best forecast skill at the higher scores
(thresholds >50 mm for FSS and thresholds >20 mm for TS) compared with the other experiments.
It is presented that the 30 km thinning distance generated the worst results, this may be due to the lack
of enough rainfall observation information to match the model resolution. The experiments which
assimilated the no-thinning CHMPA rainfall data also generated a unsatisfactory result, this may be
caused by the error correlations between the dense rainfall observations which have a much higher
resolution than the model configuration. The Figure 8c,d shows the precipitation score with a threshold
of 12.5 mm for multiple leading time, the 15 km and 20 km thinning distance still have the best results.
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Although their results are similar, we select the 20 km thinning distance in the following experiments
because of its much lower computational cost.Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 21 
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4.2.3. Impacts of Rainfall Accumulation Time

WRFDA 4DVar has the capabilities to assimilate hourly, 3-hourly and 6-hourly accumulated
precipitation data. To the author’s knowledge, the comparison between those different accumulation
time has rarely been studied. Therefore, in order to explore the rainfall forecast performance with
respect to the rainfall accumulation time within 6 h assimilation window in this study, the rainfall
forecast skill against observed rainfall in the experiments with 1 h, 3 h and 6 h rainfall accumulation
time are compared. The assimilation of 1 h accumulated rainfall observations needs that the rainfall
observations are provided at each hour within the 6 h assimilation window, so the numbers of the
rainfall observations is 6 time of the 6 h accumulated rainfall observation and two times of the 3 h
accumulated rainfall data. In this study, the rainfall observation errors for the 1 h, 3 h and 6 h
accumulated rainfall are fixed at 0.333 mm, 1 mm and 2 mm, respectively.

Figure 9 displays the rainfall forecast score (TS and FSS) for different configurations of rainfall
accumulation time. It is found that the 6 h accumulation rainfall performs best in assimilation
experiments. Its scores show apparent advantage at almost all the thresholds (Figure 9a,b) except the
threshold between 30-50 mm. It is displayed in Figure 9c,d that the assimilation of 6 h accumulated
rainfall observations generates much better rainfall forecasts especially for 6 h and 12 h leading
time. The scores get close with other configurations for 18 h and 24 h leading time but still show its
advantage. In this study, the 6 h accumulated rainfall assimilation within 6 h assimilation window
got the best results, this may be because it is more fit to the linear assumption for 4DVar. In addition,
the assimilation of 1 h and 3 h accumulated rainfall significantly increases the computational cost
because of the increased observation number. Therefore, the configuration of 6 h rainfall accumulation
time is used in the following experiments.
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Figure 9. This is similar to Figure 7 but for sensitivity of rainfall forecast skill score to rainfall
accumulated time within 6 h assimilation window.

4.2.4. Impacts of simultaneous assimilation of rainfall and conventional observations

The sensitivities of forecast skill of assimilating the CHMPA rainfall data to the rainfall observation
error, the rainfall observation thinning distance, the rainfall accumulated time within 6 h assimilation
window have been investigated in the above experiments. The potential optimal parameters related to
rainfall observation have been selected. In this subsection, we mainly study the impact of assimilating
CHMPA rainfall data on the rainfall forecast skill using WRFDA 4DVar compared with assimilating
conventional observations only. Three experiments are designed in this sub-section. In the first
experiment, only conventional observations are assimilated (conv4dvar). In the second experiment,
only CHMPA rainfall data is assimilated (pcp4dvar), and in the third experiment the CHMPA rainfall
and conventional observations are simultaneously assimilated (convpcp4dvar).

Figure 10a,b shows the threshold series of the TS and FSS for 24 h accumulated precipitation for
the experiments conv4dvar, pcp4dvar and convpcp4dvar, respectively. It is apparent that the scores of
these three experiments decreased with thresholds. It is also found that CHMPA rainfall observations
are successfully assimilated in 4DVar because the rainfall forecast skill for experiments pcp4dvar and
convpcp4dvar which assimilated the CHMPA rainfall data are systematically increased compared to
the conv4dvar which did not assimilate the CHMPA rainfall data, except at the thresholds between
30 mm and 40 mm. For lower thresholds (<30 mm), the FSS and TS in pcp4dvar is larger than the
conpcp4dvar. However, for higher thresholds (>50 mm), the FSS and TS in conpcp4dvar is much better
than the other two experiments. The precipitation scores as a function of leading time are shown in
Figure 10c,d. The pcp4dvar and convpcp4dvar show apparent advantage over the conv4dvar at 6 h and
12 h leading time. It demonstrates that the assimilation of CHMPA rainfall data can clearly improve the
spin-up problem in short-range rainfall forecasts. For 18 h and 24 h forecasts, however, the advantage
of assimilating CHMPA rainfall data begin to decrease. The TS of the experiment pcp4dvar is even
small than the conv4dvar, this may be caused by the imbalance introduced by assimilating the rainfall
data only. In general, the convpcp4dvar performs better than the pcp4dvar except at the early leading



Remote Sens. 2019, 11, 973 13 of 21

time. This indicates that the assimilation of CHMPA rainfall data does benefit the short-range rainfall
forecast, and the assimilation of conventional observations can provide constraints for the assimilation
of rainfall data.
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Figure 10. This is similar to Figure 7 but for sensitivity of rainfall forecast skill score to assimilated observations.

It is noted that the rainfall scores were averaged over the forecasts from the 10 days cycling
experiments in this study because of the limitation of computing cost. To give robustness to the results,
more experiments including various rainfall cases caused by different weather systems like Typhoon
should be conducted in future work.

4.2.5. Case study

To better understand how the assimilation of CHMPA rainfall data using WRF 4DVar impacts
the precipitation simulation, besides accumulated precipitation fields, additional variables such as
precipitable water, vapor flux divergence, and vertical wind initialized at 0600 UTC 05 July 2013 are
also diagnosed and analyzed in this sub-section.

Figure 11a shows the 24 h accumulated precipitation from CHMPA rainfall data (observed
precipitation). It is presented that the observed heavy rainfall is distributed roughly from southwest to
the northeast across the pattern. Figure 11b–d shows the simulated 24 h accumulated precipitation
of conv4dvar, pcp4dvar, and convpcp4dvar initialized at 0600 UTC, respectively. It is found that
the conv4dvar fails to simulate the precipitation amount in the black box area compared with the
observation, missing the intensity and coverage of observed precipitation areas. The pcp4dvar has
a little improvement in coverage but still underestimates the precipitation amount over the observed
area. In comparison, the convpcp4dvar which simultaneous assimilated the rainfall and conventional
observations shows much better intensity and coverage in the black box area. However, it is also
found that the forecast for heavy rainfall of each configuration is not satisfactory. This indicates
that the assimilation of CHMPA rainfall data needs further improved, especially for flow-dependent
background error covariance and more accurate rainfall observation error.
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Figure 11. Twenty four-hour-accumulated rainfall of (a) observations, (b) conv4dvar, (c) pcp4dvar, and
(d) convpcp4dvar initialized at 0600 UTC 05 July 2013.

Precipitable water plays a critical role in the maintenance of a lasting heavy rainfall. The precipitable
water of the analysis at 0600 UTC 05 July 2013 and its subsequent 6 h and 12 h forecasts are presented in
Figure 12. It is found that the coverage and intensity of the maximum precipitable water in conv4dvar
is weaker than pcp4dvar and convpcp4dvar. This indicates that the assimilation of CHMPA tends to
ameliorate the spin-up problem, especially for the analysis and 6 h forecast which is important for
the extreme weather events. This also explains why the rainfall of the experiment convpcp4dvar has
the best results which has been presented in the black box area in Figure 11. For the 12 h forecast,
the convpcp4dvar produces more precipitable water than the other experiments over Jianghuai area,
explaining why the experiment convpcp4dvar significantly overestimates the rainfall over this area.
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Figure 12. Precipitable water (mm) of analyses (a,d,g), 6 h forecasts (b,e,h) and 12 h forecasts (c,f,i) for
conv4dvar (a–c), pcp4dvar (d–f), and convpcp4dvar (g–i) initialized at 0600 UTC 05 July 2013.

Besides, the water vapor flux divergence at 850 hPa of analyses, 6 h forecasts, and 12 h forecasts
for each configuration (conv4dvar, pcp4dvar, and convpcp4dvar) initialized at 0600 UTC 05 July 2013
is presented in Figure 13. Water vapor flux represents the direction and magnitude of the water vapor
transport. It is important to investigate water vapor transport since it also plays a critical role for
a persistent heavy rainfall. It is shown that the vapor flux divergence for convpcp4dvar is more
widespread or stronger than that for conv4dvar and pcp4dvar over the Jianghuai area (the black
box areas) where the heavy rainfall occurred, especially for 6 h and 12 h forecasts. The divergence
over Hubei province of convpcp4dvar is the strongest, which is similar with the precipitable water in
Figure 12, so that it can supply sufficient moisture conditions for this area. This also explains why the
simulated rainfall of the experiment convpcp4dvar over this area is the largest and also the best.
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convpcp4dvar especially in the middle and lower levels, which may eventually lead to weaker 
model-simulated precipitation near this area. The convpcp4dvar significantly strengthen the uplift 
vertical velocity, contributing to the improvement of precipitation simulation. For the 12 h forecast, 
the conv4dvar generates apparent downdraft in the lower level. This may have negative impact on 
the formation of rainfall. The convpcp4dvar has a stronger updraft than the pcp4dvar and conv4dvar 
throughout almost all levels. This is probably caused by the effect of dynamic constraint from the 
conventional observations. 

Figure 13. Water vapor flux divergence at 850 hPa of analyses (a,d,g) 6 h forecasts (b,e,h) and 12 h
forecasts (c,f,i) for conv4dvar (a–c), pcp4dvar (d–f), and convpcp4dvar (g–i) initialized at 0600 UTC 05
July 2013. The shades present the magnitude of divergence and the vectors present the direction of the
water vapor flux.

In addition, the cross sections of vertical wind along 113◦E of the 6 h and 12 h forecasts initialized
at 0600 UTC 05 July 2013 are shown in Figure 14. The 113◦E crosses the rainfall area around the 30.5◦N.
It is found that the vertical velocity of 6 h forecasts of conv4dvar and pcp4dvar are much weaker
than convpcp4dvar especially in the middle and lower levels, which may eventually lead to weaker
model-simulated precipitation near this area. The convpcp4dvar significantly strengthen the uplift
vertical velocity, contributing to the improvement of precipitation simulation. For the 12 h forecast, the
conv4dvar generates apparent downdraft in the lower level. This may have negative impact on the
formation of rainfall. The convpcp4dvar has a stronger updraft than the pcp4dvar and conv4dvar
throughout almost all levels. This is probably caused by the effect of dynamic constraint from the
conventional observations.
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Figure 14. Cross-sections along 113◦E of 6 h forecasts (a,c,e) and 12 h forecasts (b,d,f) for conv4dvar
(a,b), pcp4dvar (c,d), and convpcp4dvar (e,f) initialized at 0600 UTC 05 July 2013 for vertical velocity
(shaded; 10−1 m/s).



Remote Sens. 2019, 11, 973 18 of 21

5. Conclusions and Discussion

In this study, the impact of assimilating China Merged Precipitation Analysis (CHMPA) data
on the rainfall forecast over Jianghuai area in eastern China is investigated. The CHMPA rainfall
data is derived at China Meteorological Administration (CMA) by merging the CMORPH satellite
precipitation product with rain gauge data. The WRF-4DVAR is employed in this study. A series of
experiments including single rainfall observation test and real observation experiments were conducted
to show how the assimilation of CHMPA data impact the rainfall forecasts.

The single observation test which assimilated a single rainfall observation shows that the increments
of wind, humidity and rainfall show the characteristics of flow-dependence and multi-variable
correlations because of the effect of adjoint model and background error covariance. The results of
assimilating real observations show that the precipitation forecast skill of assimilating the CHMPA
rainfall data using 4DVar is sensitive to the rainfall observation error, the rainfall observation thinning
distance, and the rainfall accumulation time within 6 h assimilation window. The 2 mm observation
error configuration in assimilation of CHMPA rainfall data using WRFDA 4DVar performs better
than the other configurations in this study. The 15 km and 20 km thinning distance in this study
have similar results, but the latter one needs much lower computational cost. In this study, the 6 h
accumulated rainfall assimilation within the assimilation window generates better results and takes
much lower computational cost than 1 h and 3 h configurations. Forecasts from the experiments
which simultaneously assimilated conventional and CHMPA rainfall data produced the best rainfall
scores compared with the experiments assimilating precipitation or conventional data, respectively.
The result of the experiment which only assimilated precipitation is slightly worse than that which
assimilated both the conventional and CHMPA rainfall data, but better than the experiment which only
assimilated the conventional observations. It indicates that conventional data and precipitation data in
assimilation complements each other in improving the precipitation forecasts skill. Precipitation data
assimilation in the WRFDA 4DVar shows the capability of modifying the initial conditions, generating
more realistic moisture and dynamic fields which is crucial for the precipitation forecasts. Short-range
precipitation forecast was better produced by the assimilation of CHMPA rainfall data. It is also
indicated that rainfall data assimilation produces more realistic moisture divergence, precipitable
water field and the vertical wind field in the initial conditions, which finally succeeded in bringing the
model precipitation closer to the observations through changes in moisture and wind.

This paper represents the first study to assimilate the China Merged Precipitation Analysis
data merging with remote sensing product. The results of this study can provide references for the
assimilation of CHMPA data into the WRF model using 4DVar, which is valuable for limited-area
numerical weather prediction and hydrological applications. Since the CHMPA data are still improving
in terms of accuracy, resolution, and the radar-retrieved rainfall data has been combined together with
satellite-retrieved data as well as the surface rainfall observations, more studies should be conducted
in the future. The sensitivity experiments are simply conducted by changing different parameters.
The adjoint sensitivity analysis suggested by Zou et al. (1993) [59] is a more efficient and objective
method. Furthermore, the hourly cycling assimilation of CHMPA may further help improve the forecast
skill for the rapidly developing weather system at convective scale. The ensemble information can also
ameliorate the problem caused by the static background error covariance at the start of the assimilation
window of 4DVar [60–62]. These will be explored in our subsequent works.
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