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Abstract: Barrier islands are dynamic environments because of their position along the marine–
estuarine interface. Geomorphology influences habitat distribution on barrier islands by regulating
exposure to harsh abiotic conditions. Researchers have identified linkages between habitat and
landscape position, such as elevation and distance from shore, yet these linkages have not been fully
leveraged to develop predictive models. Our aim was to evaluate the performance of commonly
used machine learning algorithms, including K-nearest neighbor, support vector machine, and
random forest, for predicting barrier island habitats using landscape position for Dauphin Island,
Alabama, USA. Landscape position predictors were extracted from topobathymetric data. Models
were developed for three tidal zones: subtidal, intertidal, and supratidal/upland. We used a
contemporary habitat map to identify landscape position linkages for habitats, such as beach, dune,
woody vegetation, and marsh. Deterministic accuracy, fuzzy accuracy, and hindcasting were used for
validation. The random forest algorithm performed best for intertidal and supratidal/upland habitats,
while the K-nearest neighbor algorithm performed best for subtidal habitats. A posteriori application
of expert rules based on theoretical understanding of barrier island habitats enhanced model results.
For the contemporary model, deterministic overall accuracy was nearly 70%, and fuzzy overall
accuracy was over 80%. For the hindcast model, deterministic overall accuracy was nearly 80%, and
fuzzy overall accuracy was over 90%. We found machine learning algorithms were well-suited for
predicting barrier island habitats using landscape position. Our model framework could be coupled
with hydrodynamic geomorphologic models for forecasting habitats with accelerated sea-level rise,
simulated storms, and restoration actions.

Keywords: habitat modeling; machine learning; geocomputation; dune; wetlands; marsh; lidar;
uncertainty; restoration; monitoring

1. Introduction

Barrier islands are subaerial expressions consisting of wave-, wind-, and/or tide-deposited
sediments [1]. These islands are found along portions of every continent, except Antarctica [2],
and provide numerous important ecosystem services including storm surge reduction, wave attenuation,
erosion control to the mainland, habitat for fish and wildlife, carbon sequestration in marshes,
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water catchment and purification, recreation, and tourism [3–5]. Barrier islands tend to be dynamic
because of their location along the estuarine–marine interface. Collectively, these factors make barrier
island monitoring a critical need of natural resource managers for coastal management, such as
planning for coastal protection and restoration. As a result, natural resource managers often use habitat
maps developed by geographers and remote sensing scientists to gain insights into how these islands
are changing over time [6–10]. Besides gradual changes caused by constant forces, such as currents and
tides, barrier islands face numerous threats including hurricanes, accelerated sea-level rise, oil spills,
and anthropogenic impacts [11]. These threats are likely to influence the future of barrier islands in
the latter part of the 21st century, especially as climate-related threats to coastal areas are expected to
increase in the future [12,13]. Thus, to better inform both current and future management decisions,
resource managers often use scientific models that predict what barrier island systems may look like in
the future with regard to morphology [14,15] and habitat for fish and wildlife [16].

Geomorphology is a critical component of barrier island habitat configuration, as certain foundation
species [17] such as saltmeadow cordgrass (Spartina patens (Aiton) Muhl.), sea oats (Uniola paniculata L.),
and slash pine (Pinus elliottii) tend to thrive in specific topographic settings or disturbance regimes [18].
Geomorphology regulates many abiotic factors that influence the performance of foundation plant
species, including wave energy, salinity, inundation frequency, sea spray, Aeolian transport, and
nutrient availability [19]. Researchers have established linkages between barrier island habitats and
specific landscape position variables, such as distance from shoreline [19] and elevation [16,19–21].

Geocomputational models can incorporate landscape position information, including elevation
and relative topography, to predict barrier island geomorphic features and habitats. For example, Halls
et al. [21] developed a rule-based model that used landscape position to produce maps of geomorphic
features (e.g., intertidal, supratidal, dune, hummock, swale, and overwash) using information extracted
from a digital elevation model (DEM) for an area in North Carolina, USA. To predict geomorphic
features, their model used elevation relative to tidal datums, relative topography, shape, and general
location information (e.g., proximity). Similarly, Gutierrez et al. [14] developed a Bayesian network to
model barrier island morphologic characteristics, including dune crest height, beach presence–absence,
and beach width, using contemporary data such as a lidar-based DEM and orthophotography for
Assateague Island, off the coasts of Maryland and Virginia, USA. Their approach also used data
representing longer-term, larger-scale processes, including long-term shoreline change rates, barrier
island width, barrier island elevation, proximity to inlets, and anthropogenic modification. Researchers
often use data-driven, machine learning algorithms such as K-nearest neighbor (KNN) [22,23], support
vector machine (SVM) [24,25], and random forest (RF) [26,27] to develop geocomputational models to
make predictions from geospatial data. These algorithms could be effective tools for determining the
relationship between landscape position and barrier island habitats. For example, Foster et al. [16]
developed a naïve Bayes model to predict the overall habitat coverage based on elevation for Cape
Canaveral Florida, USA, under alternative sea-level rise scenarios. Despite these productive examples
and the demonstrated importance of landscape position, most researchers have not fully leveraged
landscape position–habitat linkages to develop predictive models.

Incorporation of elevation uncertainty for extracting elevation-dependent habitats and
post-processing model results using expert knowledge of barrier island habitats may enhance machine
learning-based habitat prediction for barrier islands. Habitats on barrier islands can be tied to tidal
regimes [28], which could allow for specific models to be developed for each tidal regime. Researchers
can extract these tidal regimes directly from DEMs by using information regarding locally relevant
tidal datums, such as extreme high water spring (EHWS), extreme low water spring (ELWS), and storm
water levels [21,28,29]. When using automated extraction of elevation-dependent habitats, researchers
are advised to address vertical uncertainty in DEMs [30–32]. This is critical for low-relief environments,
such as barrier islands, where centimeters can make a difference in the exposure to physically demanding
abiotic conditions (e.g., inundation, salt spray, wave energy) [19,20]. Enwright et al. [32] highlighted
the impact of the treatment of vertical uncertainty within intertidal areas. Relative topography can be
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helpful for extracting dune habitats [21,28,33], yet elevation relative to storm water levels can also be a
factor, as dunes can be eroded by high wave runup during storms [5]. Thus, elevation uncertainty
analyses could also be used to evaluate the likelihood of areas depicted by a DEM being above a
common extreme storm water level [28]. Data-driven, machine learning algorithms are powerful tools
for identifying patterns and relationships in data; however, one potential issue is that they require the
assumption that the data used to train the model is representative of the phenomena being modeled.
Because change can sometimes occur rapidly on a barrier island, post-processing could be used to
ensure that spatially explicit habitat predictions match our expectations based on expert theoretical
knowledge of the specific barrier island being modeled (e.g., for a high-energy barrier island we would
not expect marsh to be located on the ocean-facing shoreline [34]).

Here, we build upon recent barrier island habitat model efforts by Foster et al. [16], Halls et al. [21],
and Young et al. [19] to develop a habitat model for Dauphin Island, Alabama, USA. Our model
incorporates elevation uncertainty for elevation-dependent habitat extraction and yields spatially
explicit predictions of general barrier island habitats based on landscape position information such as
elevation, distance from shoreline, and relative topography (Figure 1). For our study, we explored
three research questions: (1) how well can machine learning algorithms, such as KNN, SVM, and RF,
predict contemporary barrier island habitats from landscape position information; (2) does the use
of post-processing routines, such as expert rules based on the theoretical understanding of a barrier
island (e.g., marsh should not be located along the high-energy shoreline of the island), enhance model
accuracy; and (3) how well does this model generalize to predict historical habitats (i.e., hindcast)?
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Figure 1. Hypothesized relationship between elevation and distance from ocean-facing shoreline for
general barrier island habitats based on literature [19,35].

2. Materials and Methods

2.1. Study Site

Dauphin Island is part of a 105 km-wide Mississippi–Alabama, wave-dominated barrier island
chain (Figure 2) [36,37]. The island is backed by the shallow (<4 m deep) Mississippi Sound [37] and is
flanked to the east by Mobile Bay. In 2015, the length of Dauphin Island was about 25 km, and the
subaerial portion of the island was estimated to be about 15.8 km2 [28]. Situated in the northern Gulf of
Mexico, Dauphin Island experiences diurnal tides with a mean tidal range of about 0.36 m (i.e., mean
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low water to mean high water), based on observations during the most recent North American Tidal
Datum Epoch (NTDE; 1983 to 2001) from a National Oceanic and Atmospheric Administration tide
gauge (station ID: 8735180) on the island. We developed the modeling domain for this study (dashed
outline in Figure 2) by buffering the maximum extent of Dauphin Island shorelines from 1940 to
2015 [38] by 2.5 km. We used Esri ArcMap 10.5.1 (Redlands, California, USA) for all spatial analyses.
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Figure 2. Modeling domain and the extent of baseline mapping data for habitat modeling effort on
Dauphin Island, Alabama, USA. The basemap source data is 0.3 m color-infrared orthophotography
acquired in December 2015 by Digital Aerial Solutions, LLC (Riverview, Florida, USA) and the U.S.
Geological Survey (USGS). The area that is outside the 2015 imagery acquisition zone is shown in black.

2.2. Barrier Island Habitat

We set our model targets to be generalized habitat classes from a geomorphology-based habitat
classification scheme that was recently used for a 2015 Dauphin Island habitat map [28] (Figure 3;
Table A1). The habitat generalizations we applied involved combining habitat classes that may occupy
the same geomorphic setting, yet are regulated by factors we did not include in our model, such as
disturbance. Specifically, these included combining meadow and unvegetated barrier flat habitats into
a single habitat class (i.e., barrier flat) and, likewise, combining forest and scrub/shrub into a single
habitat class (i.e., woody vegetation). Each habitat in the model classification scheme was linked to a
tidal zone (i.e., subtidal, intertidal, supratidal/upland; Figure 3). Our research questions were largely
focused on predicting habitats; therefore, we did not make any predictions of changes to developed
areas. These developed areas were extracted from the 2015 Dauphin Island habitat map and excluded
from the machine learning model input and output.
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Figure 3. Examples of the habitat classes for the barrier island habitat modeling effort on Dauphin
Island, Alabama, USA. The classes are linked to tidal regime (see legend in lower left corner of the
figure). The developed class was not shown since it was not explicitly modeled in this effort. Adapted
from Enwright et al. [28] with permission.

2.3. Remote Sensing Data and In Situ Data

We used topobathymetric DEMs (TBDEMs) as the primary data source for landscape position
information. The contemporary TBDEM was developed from a 1 m bare-earth DEM from lidar data
collected in January 2015 by Digital Aerial Solutions, LLC (DAS, Riverview, Florida, USA). The TBDEM
was produced by DAS and the U.S. Geological Survey (USGS). The contemporary bathymetric data for
much of the nearshore area were from a 20 m DEM developed from single-beam sonar surveys by
the USGS in 2015 [39]. Bathymetric data for the remainder of the study area were from the 3 m USGS
Coastal National Elevation Database (CoNED) TBDEM [40] for the northern Gulf of Mexico, which
included historical data from various periods between 1920 through 1988. We developed a seamless
10 m TBDEM by converting the rasters to points and using inverse distance-weighted interpolation to
combine the datasets. The rationale for selecting 10 m for the model resolution was to use a spatial
resolution that could be compatible with irregular grids from hydrodynamic numerical models that
are commonly used for forecasting geomorphology [15].

The CoNED TBDEM was used for the hindcast TBDEM. Topographic data for the subaerial
portion for most of the island in this dataset were from data collected via the USGS Experimental
Advanced Airborne Research Lidar [41] in 2007, although a small area along the northern portion of
eastern Dauphin Island and Little Dauphin Island (i.e., the narrow island on the northeastern end of
the study area that runs from northwest to the southeast, Figure 2) was from lidar data from 2002
collected by Mobile County, Alabama. We resampled the CoNED to 10 m using bilinear interpolation.

We used orthophotography as ancillary data for model validation via photointerpretation.
The contemporary orthophotography was ~0.3 m color-infrared aerial orthophotography acquired on
4 December 2015, by DAS and the USGS. The imagery was collected with a Leica ADS100 digital camera
(Wetzlar, Germany) when water levels were near or just below mean sea level (MSL). The hindcast
orthophotography was 0.5 m true color orthophotography collected with a Leica ADS40 digital
camera (Wetzlar, Germany) by the USGS on 1 February 2008 for all but the western tip of Dauphin
island. For this area, we used 1 m orthophotography captured with a Z/I digital mapping camera by
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Photo Science, Inc. (Norcross, Virginia, USA) in October 2008 because of the lack of coverage in the
February orthophotography.

We used tide data to identify the relationship between the North American Vertical Datum of 1988
(NAVD88), MSL, extreme spring tide levels, and extreme water levels. These data were obtained from
the NOAA tide gauge on the eastern end of Dauphin Island (Figure 2). All TBDEMs were transformed
from NAVD88 to MSL using relative height differences from the NOAA tide gauge during the current
NTDE. Habitat type and elevation data were collected during two and a half weeks in November and
December of 2015 at 67 different transects located across seven different sites on the eastern half of
Dauphin Island [42]. These data were collected using a high-precision real-time kinematic (RTK) global
positioning system (GPS) connected to a Global Navigation Satellite System (GNSS; Trimble R10 and
TSC3, Trimble, Sunnyvale, California, USA). We used these data to develop two separate relative error
assessments for the 2015 DEM [28,32]. The first assessment explored relative error for intertidal and
low-lying herbaceous areas [32], whereas the second assessment quantified relative error in dunes [28].
We assumed that the error and bias in the historical TBDEM were similar to the contemporary TBDEM.

2.4. Probability Surfaces

We used Monte Carlo simulations to develop probability surfaces that indicated the likelihood
that a pixel in the TBDEM was either in an intertidal geomorphic setting or above an extreme storm
water level. To do this, we simulated the propagation of error uncertainty using information from the
relative error assessments (i.e., error and bias). For subaerial areas, the Monte Carlo simulation to create
the probability surface related to intertidal areas used the assessment from intertidal and low-lying
herbaceous areas, whereas the Monte Carlo simulation for the likelihood of being above a storm water
level used the dune assessment. For submerged areas for both simulations, we used recommendations
from Byrnes et al. [43] for the root mean square error of bathymetry data for nearshore waters, and we
assumed bias was negligible. The lower and upper elevation thresholds for the intertidal probability
surface were the lowest astronomical tide and the highest astronomical tide observed during the NTDE
at Dauphin Island, respectively [44]. The elevation threshold for the extreme water probability surface
was set to be the extreme water level with a 10% annual exceedance probability from the NOAA’s
Extreme Water Analyses for Dauphin Island [45], which was updated for 2016 (1.13 m relative to
MSL) to account for the sea-level rise trend observed at the Dauphin Island tide gauge [46]. For more
information on the probability rasters and Monte Carlo simulations, see Enwright et al. [28,32].

2.5. Tidal Zone Determination

Because the habitat classes were linked to tidal zones (Figure 3), it was important to be able to
automate the extraction of tidal zones from the TBDEM. We used the intertidal probability surfaces
to separate the model domain by tidal zone. Subtidal areas were pixels with a probability of being
intertidal that were less than 0.5 and had an elevation less than MSL. Intertidal areas were areas with
a probability of being intertidal greater than or equal to 0.5. We used the connectivity of the raster
cells as defined by the queen’s move rule, which searches for interconnected cells in both cardinal and
diagonal directions, to remove isolated low-lying areas from the intertidal zone [47]. After subtidal
and intertidal areas were identified, the remaining areas, which included the isolated low-lying areas,
were classified as supratidal/upland.

2.6. Predictor Variable Processing

We used the TBDEM to develop numerous landscape position predictor variables based
on literature-derived linkages of landscape position to barrier island ecology and habitat
distribution [16,19–21]. The predictor variables were related to elevation or X, Y coordinates
(i.e., proximity and direction; Figure 4). We determined the value of these predictor variables
for each 10 m pixel in the TBDEM. We used the topographic position index [48] as a measure of relative
topography. This was calculated by subtracting the elevation for a single pixel to that of a neighborhood.
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Halls et al. [21] used the topographic position index to extract dune habitat. The elevation to the
south variables were calculated by taking the median of the maximum elevation for three 22-degree
wedge-shaped kernels radiating to the south with radii of 1 km and 8 km. The distance from the
Mobile-Tensaw River Delta was a cost distance, which restricted the distance calculation to subtidal
areas identified from the TBDEMs. To do this, we created a cost surface that only included subtidal
areas (i.e., intertidal, supratidal, and upland areas were set to “NoData”). For the Euclidean direction
from the center variable (Figure 4), we determined Euclidean direction from centroids of 5 m cross-shore
transects. We recoded this variable to 1 for directions between 90 degrees and 270 degrees, otherwise
the value was set to 0.
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Figure 4. Landscape position predictor variables for the barrier island habitat modeling effort on
Dauphin Island, Alabama, USA. The imagery source data is 0.3 m color-infrared orthophotography
acquired in December 2015, and the elevation data source data is a 1 m digital elevation model from
January 2015. Both of these data were collected by Digital Aerial Solutions, LLC (Riverview, Florida,
USA) and the U.S. Geological Survey.

2.7. Habitat Modeling

The first step in the modeling process was to develop a habitat model for each tidal zone from
contemporary data (Figure 5). We used the 2015 habitat map [28] (solid outline in Figure 2) to develop
training and validation datasets. These data were stratified among tidal zones and by habitat types
within tidal zones to be proportional to the habitat strata from the 2015 habitat map [28]. With a
minimum of 42 training points, we ensured that we had at least 30 training points for each class for
training datasets made from 70% random permutations. To limit spatial autocorrelation issues with
training data, we created random points per class through an iterative process aimed at maximizing
the minimum distance between points. We used a similar approach to control the minimum sample
distance per habitat class for all random samples developed in this effort (i.e., training and validation
data for the contemporary and hindcast outputs). While our approach included model assessment,
via data division of training data through both cross-validation and permutation, we also developed a
separate validation dataset. This dataset included 1000 points per tidal zone stratified by the areal
coverage of habitat classes predicted per tidal zone, and data did not include any data division.
Areas within 10 m of the training samples were excluded from the validation set. Furthermore, to avoid
the influence from anthropogenic development, we buffered developed areas from the 2015 habitat
map by 10 m and excluded these areas from the validation sampling frame. Mapping intertidal areas
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from aerial orthophotography can be difficult since the imagery just shows water levels from a single
snapshot. Thus, we excluded intertidal areas that were below MSL in the contemporary TBDEM from
the contemporary validation assessment. Following guidelines from Congalton and Green [49] for
accuracy assessment, we attempted to include at least 50 points per class, but we were only able to
include around 30 points in woody wetland and water-fresh habitats because of the limited areal
coverage of these habitats and the constraint of the minimum distance criterion.
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Figure 5. Workflow for the barrier island habitat model development for Dauphin Island, Alabama,
USA. (a) Overview of process for developing and validating the contemporary model for predicting
barrier island habitats using a habitat map and a topobathymetric (TBDEM) from 2015; (b) Overview of
the process for predicting barrier island habitats using historical data from the USGS Coastal National
Elevation Dataset (CoNED) TBDEM using the model fitted with contemporary data (i.e., hindcast).

We used MathWorks® MATLAB 2016b (Natick, Massachusetts, USA) for model fitting and
prediction. We used the MATLAB Classification Learner application in the Statistics and Machine
Learning Toolbox to fit and assess KNN, SVM, and RF models for several MATLAB model presets,
such as various neighborhood sizes, weights, and distance metrics for KNN models, and kernel scale
and kernel function for SVM models (Tables A2–A4). We opted to use standard MATLAB model
presets to avoid overfitting our model since our model was developed from a single snapshot of
barrier island habitat data, and barrier islands are dynamic ecosystems that can change gradually
from coastal processes including currents and tides or rapidly from episodic events such as storms.
Based on five permutations of the training data, we selected the best performing KNN and SVM
models using five-fold cross-validation for each tidal zone (Tables A2–A4; Figure A1). These models
were combined with the RF models for further validation. For KNN and SVM models, we followed
general recommendations to standardize the predictor variables to scale the feature space distance
for these models [50]. Table 1 lists the variables used per model with rationale. As previously
mentioned, the selection of these specific predictor variables was based on literature and our theoretical
understanding of barrier island habitats. Figure A2 shows the unbiased relative importance from a
random forest ensemble model with 100 learners. To illustrate how landscape position can influence
barrier island habitats, we used the MATLAB Distribution Fitting application in the Statistics and
Machine Learning Toolbox to plot univariate probability density functions for elevation and distance
from the ocean-facing shoreline for the supratidal/upland habitats. For the probability density plots,
we used non-parametric curves with bandwidths that best fit the data based on visual inspection.
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Table 1. Response variables (i.e., habitat classes) and predictor variables per tidal zone for the habitat
model for Dauphin Island, Alabama, USA.

Tidal Zone Habitat (Number of
Training Points) Predictor Variables and Source Source

Subtidal Water-estuarine (1000)
Water-marine (1000)

(1) Distance from Mobile-Tensaw River Delta
(2) Direction from center (1–2) [44]

Intertidal
Intertidal flat (252)

Intertidal beach (50)
Intertidal marsh (121)

(1) Elevation
(2) Elevation to the south (8 km)

(3) Distance from ocean-facing shoreline
(4) Distance from back-barrier shoreline

(1) [16,19,20,44]
(2) [18]

(3–4) [19]

Supratidal/
upland

Barrier flat (484)
Beach (99)
Dune (184)

Water-fresh (43)
Woody vegetation (327)

Woody wetland (43)

(1) Elevation
(2) Elevation to the south (1 km)

(3) Topographic position index (30 m)
(4) Topographic position index (100 m)

(5) Distance from ocean-facing shoreline
(6) Distance from back-barrier shoreline

(1) [16,19,20,44]
(2) [18]

(3–4) [21,28,33]
(5–6) [19]

To avoid overfitting a single model, we trained 100 models per tidal zone from 70% of the training
set selected by random permutations. For each cell, the majority habitat class of the 100 predictions
was chosen as the final prediction. The intertidal zone and the supratidal/upland zone models were
applied to each cell in the 10 m raster; however, to increase efficiency of the subtidal zone models,
we made predictions for a 100 m raster and then converted these data to a 10 m raster using inverse
distance-weighted interpolation.

We used the validation points to assess the overall, the producer’s, and the user’s accuracies for
each class. For each assessment, we calculated a deterministic and fuzzy estimate for all accuracy
statistics following guidelines by Congalton and Green [49] and Woodcock and Gopal [51]. The fuzzy
accuracy estimate allows classification of: (1) exact match (e.g., woody vegetation in model results
and orthophotography); (2) acceptable match related to landscape position and geomorphic setting
(e.g., calling a location intertidal beach or water-marine along ocean-facing shoreline); and (3)
unacceptable/error (e.g., intertidal marsh located on the high-energy, ocean-facing shoreline). Fuzzy
accuracy is well-suited for assessing barrier island habitats because of dynamic transitions like open
water classes and intertidal classes, which are dependent on water level.

To determine the best model per tidal zone (i.e., from the subset of models, which included the
RF models and the top-performing KNN and SVM models), we used the tidal zone delineations
from the contemporary 10 m TBDEM to extract the validation points that fell within the tidal zone.
However, because the validation data were from the 1 m 2015 habitat map, there may have been some
discrepancies between the reference labels within a tidal zone because of temporal lag and spatial
resolution differences. Thus, we omitted validation points that had a reference label other than what
would be expected in the tidal zone being assessed (e.g., we omitted points that had a reference label
of intertidal beach from the supratidal/upland zone). Similar to Foody [52], we used McNemar’s test
to assess whether there was a significant difference in model performance between the top-performing
models per tidal zone (Table A5).

Next, we combined the best model per tidal zone and tested whether the application of a suite of
post-processing routines enhanced model results. These included the application of a majority filter
to reduce noise along with several user-defined constraints based on the theoretical understanding
of barrier island habitats from the literature regarding elevation and X, Y coordinates [19,35,44].
For example, on non-fetch-limited barrier islands, emergent marsh vegetation typically occurs where
wave energy is lower, whereas unvegetated intertidal mudflats or intertidal beach habitats are more
common where wave energy is higher [34]. Therefore, intertidal marsh habitats found along the
ocean-facing shore were changed to intertidal beach habitats. An additional example is that dunes
are not expected to be sustainable at low-lying elevations, such as those below a common extreme
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storm water level [5]. Therefore, dune habitats that had a probability less than 0.5 for being above the
extreme storm water level were recoded to barrier flats [28]. These rules were applied in a step-wise
fashion (Table A6). Some of the thresholds used were directly related to tidal datums (e.g., EHWS),
whereas others, such as sink depth, were determined by trial-and-error with the final value being
selected by visual inspection. We also explored whether the use of a four-pixel minimum mapping unit
(MMU) impacted model performance. We selected four pixels as the maximum MMU based on visual
inspection of results (i.e., small habitat areas can be lost if the MMU is too high). We used McNemar’s
test to assess whether there was a significant difference in model performance based on the level of
model post-processing (Table A5).

Lastly, we applied the final model to hindcast habitats based on the predictor variables developed
from the CoNED TBDEM (Figure 5). To validate the hindcast results, we developed a hindcast
validation dataset with about 300 points per zone (n = 1029). These data consisted of stratified random
points within each habitat model class. We assigned reference labels to the hindcast validation points
through photointerpretation of the orthophotography and inspection of the TBDEM and probability
surfaces, and we assessed deterministic and fuzzy map accuracies.

3. Results

Similar to Young et al. [19], we found that habitats on Dauphin Island were related to landscape
position (Figure 6). For example, these plots showed that beach habitat tended to be located near
the ocean-facing shore and had a mode for elevation of around 1 m relative to MSL, whereas woody
vegetation had a mode for elevation of just under 2 m relative to MSL and was further away from
the ocean-facing shoreline. Collectively, these plots confirmed that landscape position variables were
important predictors for supratidal/upland habitats on Dauphin Island.

The top-performing models for the subtidal zone using five-fold cross validation were coarse
KNN, fine gaussian SVM, and RF (Table A2). For the intertidal zone, the top performing models
using five-fold cross validation were weighted KNN, cubic SVM, and RF (Table A3). Lastly, the top
performing models for the supratidal/upland zone using five-fold cross validation were weighted
KNN, quadratic SVM, and RF (Table A4). With more robust model development (i.e., using 100 random
permutations of the training data) and assessment using the validation data from the 2015 habitat map,
the performances of all of the models were similar for the subtidal zone (Figure A1); however, the
coarse KNN model was selected for the subtidal zone based on visual inspection of the results. We did
not run McNemar’s test for the subtidal zone because each model had the same performance for the
validation dataset. We found that RF performed the best for the intertidal and supratidal/upland zones
(Figure A1). For the intertidal zone, we found that the RF model had a higher accuracy compared to
either the KNN or SVM model (deterministic accuracy: p < 0.001; fuzzy accuracy: p < 0.001; Table A5).
For the supratidal/upland zone, we found that the RF model had a higher accuracy compared to
the KNN model (deterministic accuracy: p < 0.05; fuzzy accuracy: p < 0.001), but the results were
not significantly different from the SVM model (deterministic accuracy: p = 0.617; fuzzy accuracy:
p = 0.126; Table A5).

As previously mentioned, these models were combined to create the contemporary model
results. The combined contemporary model had a deterministic overall accuracy of 66.9% and a fuzzy
overall accuracy of 80.3% (Figure 7a,b; Table A7). The application of post-processing yielded a slight
enhancement to the deterministic and fuzzy overall accuracies (Figure 7c,d; Table 2). We selected the
model with post-processing and a four-pixel MMU as the final model. This model had a deterministic
overall accuracy of 67.5% and a fuzzy overall accuracy of 82.1% (Figure 7e,f; Table 2). However, we
did not find that the application of the MMU led to a negative impact on the results (Figure 7c–f).
We found that the results of various levels of post-processing were not significantly different for the
deterministic accuracy results; however, the fuzzy accuracies of both the models with post-processing
(i.e., with and without the minimum mapping unit) were higher than the model results that did not
include post-processing (p < 0.001; Table A5).
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Figure 6. Probability density functions developed from the training data for the supratidal/upland
zone from the contemporary (i.e., 2015) habitat model for Dauphin Island, Alabama, USA. (a) Distance
(m) from the ocean-facing shoreline up to 1000 m; (b) Elevation (m) up to 5 m; and (c) a bivariate plot
for these two variables.

While overall accuracy is a helpful measure, it is also important to assess class-specific performance
reported by the producer’s accuracy and user’s accuracy. For the final contemporary model, the top
three classes with regard to deterministic producer’s accuracy were woody wetland (83.9%), water-fresh
(82.1%), and woody vegetation (71.5%). The three classes with the highest fuzzy producer’s accuracies
were water-marine (97.1%), intertidal beach (94.6%), and woody wetland (83.9%). The classes with the
lowest deterministic and fuzzy producer’s accuracies were intertidal flat (60.0%) and dune (66.9%),
respectively. The three classes with the highest deterministic user’s accuracies were water-estuarine
(98.3%), woody vegetation (86.7%), and water-marine (81.4%). The three classes with the highest fuzzy
user’s accuracies were water-estuarine (98.3%), woody vegetation (90.4%), and intertidal beach (85.8%).
The classes with the lowest deterministic and fuzzy user’s accuracies were intertidal beach (10.2%) and
water-fresh (63.9%), respectively.

Figure 7a–f highlights the change in accuracy as a result from the use of fuzzy accuracy. For the
final model, the use of fuzzy accuracy led to a median increase of producer’s accuracy of 9.5% with
an interquartile range of 15.2% (Figure 7e,f), while the user’s accuracy was more variable with a
median increase of user’s accuracy of 3.9% with an interquartile range of 40.3%. In addition to the
use of fuzzy accuracy, we found that the model results were often enhanced when post-processing
routines were applied (Figure 7; Table A5). Compared to the original model results, the three highest
magnitude changes in deterministic producer’s accuracy as a result of the user-defined rules were
water-fresh (−14.3%), intertidal beach (+10.8%), and dune (−5.7%). As a result of the user-defined
rules, the three highest magnitude changes in deterministic user’s accuracy were water-fresh (+11.0%),
woody wetland (+6.9%), and dune (+6.4%). Figure 8 shows additional evidence to support the use of



Remote Sens. 2019, 11, 976 12 of 24

post-processing by contrasting the western tip of Dauphin Island without post-processing (Figure 8a)
and with post-processing (Figure 8b). Besides the reduction in dune habitat, a few notable differences
included the reduction of intertidal beach areas that were found behind beach habitat, introduction
of estuarine ponds within intertidal marsh, and the reduction in the salt-and-pepper effect. When
comparing the areal coverage per supratidal/upland habitat, we saw the overall comparison of percent
difference per habitat class more closely matched the 2015 habitat map [28]. Figure 9a shows the final
contemporary model prediction map.Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 25 
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Figure 7. Producer’s and user’s accuracy results for the barrier island habitat model effort for Dauphin
Island, Alabama, USA. (a) Class-specific deterministic accuracies for the final contemporary model
without post-processing. (b) Class-specific fuzzy accuracies for the final contemporary model without
post-processing. (c) Class-specific deterministic accuracies for the final contemporary model with
post-processing, but no minimum mapping unit (MMU). (d) Class-specific fuzzy accuracies for the final
contemporary model with post-processing, but no minimum mapping unit (MMU). (e) Class-specific
deterministic accuracies for the final contemporary model with post-processing and a four-pixel
MMU. (f) Class-specific fuzzy accuracies for the final contemporary model with post-processing and a
four-pixel MMU. (g) Class-specific deterministic accuracies for the hindcast model with post-processing
and a four-pixel MMU. (h) class-specific fuzzy accuracies for the hindcast model with post-processing
and a four-pixel MMU. OA is the overall accuracy of the model results.
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Table 2. Error matrix with deterministic and fuzzy accuracies for the final contemporary model results
(i.e., with post-processing and a four-pixel minimum mapping unit) for Dauphin Island, Alabama,
USA. For the off-diagonal cells, the first value indicates deterministic count, and the second value
indicates the fuzzy count. BF: Barrier flat; B: Beach; CT: Column total; D: Dune; DPA: Deterministic
producer’s accuracy; DOA: Deterministic overall accuracy; DUA: Deterministic user’s accuracy; FOA:
Fuzzy overall accuracy; FPA: Fuzzy producer’s accuracy; FUA: Fuzzy user’s accuracy; IB: Intertidal
beach; IF: Intertidal flat; IM: Intertidal marsh; RT: Row total; WE: Water-estuarine; WF: Water-fresh;
WM: Water-marine; WV: Woody vegetation; and WW: Woody wetland.

Class
Reference Data DUA

(%)
FUA
(%)BF B D IB IF IM WE WF WM WV WW RT

Model
data

BF 307 4;2 43;2 0;0 14;7 23;2 13;0 4;0 1;1 36;16 0;0 495 62.0 72.1
B 9;9 61 1;1 1;15 1;4 4;0 1;0 0;0 7;28 0;1 0;0 143 42.7 83.2
D 27;1 0;1 90 0;0 0;2 0;0 0;0 0;0 0;0 3;1 0;0 125 72.0 74.4
IB 0;7 17;1 0;0 20 0;11 5;0 2;38 0;0 4;92 0;0 0;0 197 10.2 85.8
IF 9;6 0;0 1;0 0;0 90 35;35 62;118 0;0 0;0 3;1 0;0 360 25.0 69.4
IM 14;9 2;0 1;0 0;0 16;4 327 53;3 0;0 1;0 0;1 0;0 431 75.9 79.8
WE 4;0 0;0 0;0 0;0 1;0 6;0 616 0;0 0;0 0;0 0;0 627 98.3 98.3
WF 5;0 0;0 0;0 0;0 0;0 0;0 6;0 23 0;0 2;0 0;0 36 63.9 63.9
WM 0;0 2;0 0;0 1;0 0;0 0;0 69;1 0;0 319 0;0 0;0 392 81.4 81.6
WV 14;9 0;0 0;0 0;0 0;0 3;0 0;0 1;0 0;0 208 5;0 240 86.7 90.4
WW 0;0 0;0 0;0 0;0 0;0 0;0 0;0 0;0 0;0 16;3 26 45 57.8 64.4
CT 430 90 139 37 150 460 982 28 453 291 31 3091

DPA (%) 71.4 67.8 64.8 54.1 60.0 71.4 62.7 82.1 70.4 71.5 83.9
FPA (%) 80.9 72.2 66.9 94.6 77.3 83.5 79.0 82.1 97.1 79.4 83.9
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Figure 8. Barrier island habitat contemporary (i.e., 2015) habitat model outputs and percent difference
comparison for supratidal/upland habitat compared to the 2015 habitat map Enwright et al. [28],
Dauphin Island, Alabama, USA. (a) Contemporary model without post-processing. (b) Contemporary
model with post-processing and four-pixel minimum mapping unit.

Overall, the model did generalize well for the hindcast with a deterministic overall accuracy
of 77.8% and a fuzzy overall accuracy of 92.4% (Figure 7g,h; Figure 9b; Table 3). With regard to
deterministic producer’s accuracy, the top three classes were water-marine (97.8%), water-fresh (97.4%),
and intertidal beach (97.0%). The three classes with the highest fuzzy producer’s accuracies were
water-estuarine (99.5%), intertidal beach (98.5%), and water-marine (97.8%). The classes with the lowest
deterministic and fuzzy producer’s accuracies were intertidal flat (35.9%) and woody vegetation (79.3%),
respectively. The three classes with the highest deterministic user’s accuracies were water-estuarine
(98.4%), beach (95.9%), and dune (94.0%). The three classes with the highest fuzzy user’s accuracies
were water-estuarine (98.4%), water-marine (98.4%), and beach (95.9%). The classes with the lowest
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deterministic and fuzzy user’s accuracies were woody wetland/intertidal marsh (38.8%) and woody
wetland (61.2%), respectively.
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Figure 9. Final habitat model prediction maps for the barrier island for Dauphin Island, Alabama, USA.
(a) Final contemporary model (i.e., 2015). (b) Final hindcast model (i.e., 2007 for most of the island and
2002 to for the northeast portion of the island).

Table 3. Error matrix with deterministic and fuzzy accuracies for the hindcast model results (i.e., with
post-processing and a four-pixel minimum mapping unit) for Dauphin Island, Alabama, USA. For the
off-diagonal cells, the first value indicates deterministic count and the second value indicates the
fuzzy count. BF: Barrier flat; B: Beach; CT: Column total; D: Dune; DPA: Deterministic producer’s
accuracy; DOA: Deterministic overall accuracy; DUA: Deterministic user’s accuracy; FOA: Fuzzy
overall accuracy; FPA: Fuzzy producer’s accuracy; FUA: Fuzzy user’s accuracy; IB: Intertidal beach;
IF: Intertidal flat; IM: Intertidal marsh; RT: Row total; WE: Water-estuarine; WF: Water-fresh; WM:
Water-marine; WV: Woody vegetation; and WW: Woody wetland.

Class
Reference Data

RT DUA
(%)

FUA
(%)BF B D IB IF IM WE WF WM WV WW

Model
data

BF 121 5;2 5;3 0;0 0;0 0;0 1;0 1;0 0;0 1;5 0;0 144 84.0 91.0
B 1;0 47 1;0 0;0 0;0 0;0 0;0 0;0 0;0 0;0 0;0 49 95.9 95.9
D 2;0 0;0 47 0;0 0;0 0;0 0;0 0;0 0;0 1;0 0;0 50 94.0 94.0
IB 0;0 0;0 0;0 65 1;7 0;0 0;0 0;0 0;0 0;0 0;0 73 89.0 98.6
IF 0;0 0;0 0;0 0;1 57 5;3 0;0 0;0 0;0 0;0 0;0 66 86.4 92.4
IM 3;1 0;0 0;0 1;0 7;85 62 0;0 0;0 0;0 1;0 0;0 160 38.8 92.5
WE 0;0 0;0 0;0 0;0 1;0 0;0 183 0;0 2;0 0;0 0;0 186 98.4 98.4
WF 6;2 0;0 0;0 0;0 0;0 0;0 0;1 37 0;0 2;2 0;0 50 74.0 84.0
WM 0;0 1;0 0;0 0;0 1;0 0;0 0;25 0;0 89 0;0 0;0 116 76.7 98.4
WV 5;1 0;0 2;0 0;0 0;0 2;0 0;0 0;0 0;0 74 1;1 86 86.1 88.4
WW 0;0 0;0 0;0 0;0 0;0 0;0 0;0 0;0 0;0 19;11 19 49 38.8 61.2
CT 142 55 58 67 159 72 210 38 91 116 21 1029

DPA (%) 85.2 85.5 81.0 97.0 35.9 86.1 87.1 97.4 97.8 63.8 90.5
FPA (%) 88.0 89.1 86.2 98.5 93.7 90.3 99.5 97.4 97.8 79.3 95.2

DOA (%): 77.8; FOA (%): 92.4

4. Discussion

This effort builds on the work of Foster et al. [16], Halls et al. [21], and Young et al. [19] by using
machine learning algorithms to develop spatially explicit predictions of barrier island habitat based on
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landscape position information. We found that the flexibility of machine learning algorithms makes
them well-suited to predict barrier island habitats. In some cases, the individual parameters followed
Gaussian distributions for particular habitats (Figure 6a,b); however, the distributions can become
complex in the n-dimensional space (Figure 6c). Furthermore, machine learning algorithms are not
concerned with multicollinearity from the predictor variables that could be problematic for traditional
models, such as multinomial logistic regression, but instead the main concern with machine learning
is how well the model can generalize to new data [50,53]. The deterministic overall accuracy for the
contemporary model was just under 70%, and the fuzzy overall accuracy was just over 80%, whereas
the hindcast deterministic overall accuracy was just under 80%, and the fuzzy overall accuracy was
over 90%.

One challenge with the use of data-driven machine learning algorithms is that the algorithm
can only learn relationships that are present in the training dataset. This can be problematic for
dynamic environments, such as barrier islands, where habitat transition zones can change rapidly
from the impact of an episodic event, such as a storm. The data-driven nature of machine learning
algorithms underscores the need for a theoretical basis in the selection of predictor variables, as done
with this study. Similarly, the results of a model can be assessed to ensure they comply with our
theoretical understanding of barrier island habitats through post-processing routines similar to the
ones we utilized. While the post-processing routines we used reduced the accuracies of some classes,
the reduction was often associated with a minor increase in omission error. This tradeoff was justified
by the overall positive increase in performance (Figure 7; Table A5) and overall comparison with habitat
coverage (i.e., supratidal/upland) in the 2015 habitat map (Figure 8). In order to reduce issues associated
with the data-driven approach, future efforts could aim to augment time for space by developing
additional training data from historical habitat maps paired with landscape position information.
Additionally, details regarding precedent conditions relating to storminess could be added to such
a training dataset using an approach similar to Mickey et al. [54] to characterize storminess for a
period. While we used standard presets, a more robust training dataset would allow for model preset
optimization. Additionally, variables that pertain to longer-term, larger-scale variables similar to the
ones used by Gutierrez et al. [14], such as island width and historical shoreline erosion rates, could
also provide valuable information to improve barrier island habitat models.

In addition to utilizing post-processing to refine the models results, the use of fuzzy accuracy
also helped better evaluate the performance of a model because of the flexibility to note uncertainties
regarding the vegetative state of areas for a given time. For example, some areas were predicted to be
intertidal marsh based on landscape position in the hindcast results, yet these areas only had sparse
vegetation in the orthophotography used for validation and, at that time, may be more appropriately
predicted as intertidal flat instead of intertidal marsh. In other words, an area could be predicted
to be intertidal marsh based on landscape position, yet it may not be intertidal marsh at the time of
assessment because it often takes time for habitat succession necessary for a marsh to develop [55].
Additionally, because of the data availability there can be a temporal lag between the acquisitions of
lidar data used for model development and orthophotography used for model validation. Similarly,
moving from a detailed habitat map [28] to a general model based on landscape position information
required some generalizations for habitat classes. For instance, the barrier flat habitat model class
(Figure 3; Table A1) includes a wide spectrum of vegetation levels, from densely vegetated meadow
habitat to sparsely vegetated barrier flat [28]. The reason for this type of generalization was because of
the difficulty of predicting vegetation succession from a model with landscape position alone, as the
vegetation state is largely controlled by exposure to abiotic factors such as inundation and overwash
from storm surges. Future research is needed to explore how landscape position and temporal lag
from disturbances impact the probability of an area being vegetated.

While there are developed areas on Dauphin Island, we did not incorporate urban growth
into our model. We assumed development was constant and excluded these areas from validation.
Alternatively, this model framework could be used to predict potential habitat for developed areas
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based on landscape position. If a researcher is interested in integrating urban growth into this type
of model framework, utilizing or calibrating an existing urban growth model, such as the SLEUTH
model (Slope, Land cover, Exclusion, Urbanization, Transportation, and Hillshade) similar to Terando
et al. [56], may be desirable.

While our model predictor variables were developed from high-resolution lidar DEMs (i.e., 1 m
to 3 m spatial resolution), we opted to use 10 m as the spatial resolution to show how a model could be
applied to forecast applications, which can have variable cross-shore and alongshore resolutions [15].
We expect that using a higher resolution model grid would increase the prediction performance for
the dune class based on the increased ability to resolve relative topography from higher resolution
data. If we were not focused on forecasting, the model framework outlined in this effort could be
calibrated with high-resolution data. Similarly, while our effort focused on developing a model to
predict habitats from a DEM alone, the landscape position information used in this study could be
applied to machine learning algorithms for producing contemporary or historical barrier island habitat
maps with remotely sensed imagery and lidar data.

The model framework presented here can be calibrated and extended to other islands. While our
effort developed a single global model for Dauphin Island, future efforts may explore the utility of
developing local models based on wave energy settings and habitat composition. For instance, the
orientation of an island could be used as an indicator of the need for a separate model. Dauphin Island
is generally parallel to the mainland (i.e., generally east to west), whereas portions of the island run
from the northwest to the southeast (Figure 2). Likewise, topographic state metrics could be used to
develop meaningful model zones [18] using methods similar to that of Monge and Stallins [57].

The advantage of developing a model largely based on information that could be extracted from a
TBDEM is that such a model can be calibrated and used with numerical models for forecasting alternative
future states of an island with accelerated sea-level rise and simulated storms. Landscape position-based
habitat models can be coupled with hydrodynamic geomorphology models [15] that incorporate coastal
morphodynamics and dune evolution. Collectively, these types of models can provide natural resource
managers with tools for predicting the potential future states of these ecosystems with and without
management actions (e.g., beach nourishment, dune creation or restoration, and marsh creation or
restoration).

5. Conclusions

Our first research question explored whether machine learning algorithms could be used to
predict habitat on barrier islands based on landscape position information. We found that commonly
used algorithms can predict barrier island habitats with acceptable accuracy and efficiency. The model
performances among the KNN, SVM, and RF models were similar for the subtidal zone, but we opted
for the KNN model based on a smoother transition from water-estuarine to water-marine. We found
that RF was the best model for the intertidal and supratidal/upland zones. The deterministic overall
accuracy for the contemporary model was just under 70%, and the fuzzy overall accuracy was just
over 80%. For our next research question, we tested whether model performance was enhanced using
post-processing routines. While this process introduced some omission error in certain classes, such as
water-fresh and dune classes, the post-processing routines, collectively, tended to enhance the model
results via increases in accuracy and overall comparison with habitat coverage from the source map
used for training data development. For our last question, we explored how well the model would
generalize to new data through a hindcast. The hindcast deterministic overall accuracy was just under
80%, and the fuzzy overall accuracy was over 90%. This model framework could be coupled with
hydrodynamic geomorphology models that could incorporate coastal morphodynamics and dune
evolution for forecasting alternative states of barrier islands with and without various management
actions. It could also be used for producing contemporary or historical detailed barrier island habitat
maps using remotely sensed imagery and lidar.
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Appendix A

Table A1. Descriptions of the habitat classes included in the habitat model for Dauphin Island,
Alabama, USA.

Habitat Description Source

Barrier flat
Barrier flat includes flat or gently sloping supratidal/upland areas that are located on the

backslope of dunes, unvegetated washover fans, and areas along estuarine shorelines.
Barrier flat habitat can be unvegetated or vegetated (i.e., meadow).

[9,35]

Beach
Beach includes bare or sparsely vegetated supratidal areas that are located upslope of the
intertidal beach and marine-water habitats. These habitats are located along shorelines

with high wave energy.
[44]

Developed 1 Developed includes areas dominated by constructed materials (i.e., transportation
infrastructure, residential, and commercial areas). [58]

Dune Dunes are supratidal features developed via Aeolian processes with a well-defined
relative elevation. Dune habitat can be vegetated or unvegetated. [59]

Intertidal beach Intertidal beach includes bare or sparsely vegetated intertidal wetlands located along the
ocean-facing side of the island that are adjacent to high-energy shorelines. [44]

Intertidal flat Intertidal flat includes bare or sparsely vegetated intertidal wetlands that are adjacent to
estuarine-water and along low-energy shorelines. [44]

Intertidal marsh Intertidal marsh includes all intertidal wetlands with 30 percent or greater areal cover by
erect, rooted, herbaceous hydrophytes. [44]

Water-estuarine
Water-estuarine includes all areas of subtidal water and ponds on the back-barrier side of

the island. These areas rarely have salinity greater than 30 parts per thousand and
generally have less than 30 percent cover of vegetation.

[44]

Water-fresh Water-fresh includes all areas of supratidal/upland water that generally have less than
30 percent cover of vegetation. [44]

Water-marine

Water-marine includes all areas of subtidal water found offshore of the ocean-facing side
of the island. These areas are found along high-energy coastlines and/or are areas that

occasionally experience salinity levels greater than or equal to 30 parts per thousand and
generally have less than 30 percent cover of vegetation.

[44]

Woody
vegetation

Woody vegetation includes supratidal/upland scrub/shrub and forested areas where
woody vegetation height is greater than about 0.5 m. Woody vegetation coverage should

generally be greater than 30 percent.
[44,58]

Woody wetland
Woody wetland includes all supratidal/upland wetlands dominated by woody vegetation

with a vegetation height greater than about 0.5 m. Woody vegetation coverage should
generally be greater than 30 percent.

[44]

1 Developed was not modeled in this effort. We assumed there were no changes in developed areas from the 2015
habitat map.

https://doi.org/10.5066/P90MACYS
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Table A2. Model presets and overall accuracy results using five-fold cross validation by algorithm
(i.e., K-nearest neighbor, support vector machine, and random forest models) for the subtidal zone
for the contemporary habitat model development for Dauphin Island, Alabama, USA. D: Distance;
K = Number of neighbors; KT: Kernel type; KS: Kernel scale; SD: Standard deviation; and W: Weight.

Algorithm Name Configuration
Overall Accuracy

Mean SD

K-nearest
neighbor (KNN)

Fine KNN K = 1; D = Euclidean 94.60 0.15
Medium KNN K = 10; D = Euclidean 96.16 0.16
Coarse KNN K = 100; D = Euclidean 96.54 0.05
Cosine KNN K = 10; D = cosine 96.20 0.14
Cubic KNN K = 10; D = cubic 96.16 0.16

Weighted KNN K = 10; D = Euclidean; W = inverse squared 94.82 0.10

Support vector
machine (SVM)

Linear SVM KT = linear; KS = automatic 96.48 0.04
Quadratic SVM KT = quadratic; KS = automatic 96.50 0.00

Cubic SVM KT = cubic; KS = automatic 92.62 4.50
Fine Gaussian SVM KT = Gaussian; KS = 0.56 96.52 0.04

Medium Gaussian SVM KT = Gaussian; KS = 2.2 96.50 0.06
Coarse Gaussian SVM KT = Gaussian; KS = 8.9 93.30 0.00

Random forest (RF) Random forest 30 trees 94.64 0.20

Table A3. Model presets and overall accuracy results using five-fold cross validation by algorithm
(i.e., K-nearest neighbor, support vector machine, and random forest models) for the intertidal zone
for the contemporary habitat model development for Dauphin Island, Alabama, USA. D: Distance;
K = Number of neighbors; KT: Kernel type; KS: Kernel scale; SD: Standard deviation; and W: Weight.

Algorithm Name Configuration
Overall Accuracy

Mean SD

K-nearest
neighbor (KNN)

Fine KNN K = 1; D = Euclidean 82.54 0.82
Medium KNN K = 10; D = Euclidean 82.46 1.15
Coarse KNN K = 100; D = Euclidean 72.66 0.23
Cosine KNN K = 10; D = cosine 81.22 0.84
Cubic KNN K = 10; D = cubic 81.22 1.65

Weighted KNN K = 10; D = Euclidean; W = inverse squared 84.68 1.63

Support vector
machine (SVM)

Linear SVM KT = linear; KS = automatic 80.74 0.53
Quadratic SVM KT = quadratic; KS = automatic 84.22 0.48

Cubic SVM KT = cubic; KS = automatic 85.54 1.00
Fine Gaussian SVM KT = Gaussian; KS = 0.56 84.34 0.55

Medium Gaussian SVM KT = Gaussian; KS = 2.2 81.60 0.60
Coarse Gaussian SVM KT = Gaussian; KS = 8.9 71.58 0.48

Random forest (RF) Random forest 30 trees 88.78 0.63

Table A4. Model presets and overall accuracy results using five-fold cross validation by algorithm
(i.e., K-nearest neighbor, support vector machine, and random forest models) for the supratidal/upland
zone for the contemporary habitat model development for Dauphin Island, Alabama, USA. D: Distance;
K = Number of neighbors; KT: Kernel type; KS: Kernel scale; SD: Standard deviation; and W: Weight.

Algorithm Name Configuration
Overall Accuracy

Mean SD

K-nearest
neighbor (KNN)

Fine KNN K = 1; D = Euclidean 71.26 0.35
Medium KNN K = 10; D = Euclidean 74.02 0.51
Coarse KNN K = 100; D = Euclidean 66.22 0.19
Cosine KNN K = 10; D = cosine 72.64 0.42
Cubic KNN K = 10; D = cubic 73.56 0.67

Weighted KNN K = 10; D = Euclidean; W = inverse squared 75.74 0.87

Support vector
machine (SVM)

Linear SVM KT = linear; KS = automatic 72.74 0.22
Quadratic SVM KT = quadratic; KS = automatic 76.36 0.34

Cubic SVM KT = cubic; KS = automatic 75.62 0.65
Fine Gaussian SVM KT = Gaussian; KS = 0.56 70.74 0.52

Medium Gaussian SVM KT = Gaussian; KS = 2.2 74.08 0.43
Coarse Gaussian SVM KT = Gaussian; KS = 8.9 64.62 0.12

Random forest (RF) Random forest 30 trees 78.02 0.64
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vector machine model; RF: Random forest model; QSVM: Quadratic support vector machine model; 
and WKNN: Weighted K-nearest neighbor model. 

Table A5. McNemar’s test results (p-values) for determining whether there is a significant difference 
between model performance for (a) top-performing intertidal zone models; (b) top-performing 
supratidal zone models; and (c) contemporary model with various levels of post-processing. CSVM: 
Cubic support vector machine model; NPP: Combined model with no post-processing; RF: Random 
forest model; QSVM: Quadratic support vector machine model; WKNN: Weighted K-nearest 
neighbor model; WPP: Combined model with post-processing, but no minimum mapping unit; 
WPP+MMU: Combined model with post-processing and minimum mapping unit; *: Significant at the 
p < 0.05 level; and **: Significant at the p < 0.001 level. 

(a)  Deterministic Fuzzy 
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 WKNN NA ** NA ** 
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 WPP NA 0.230 NA 0.264 

Figure A1. Deterministic accuracy (black bar) and fuzzy overall accuracy (gray bar) by zone for the
top three models for the contemporary habitat model development for Dauphin Island, Alabama,
USA. (a) Subtidal zone; (b) Intertidal zone; and (c) Supratidal/upland zone. CKNN: Coarse K-nearest
neighbor model; CSVM: Cubic support vector machine model; FGSVM: Fine-scaled Gaussian support
vector machine model; RF: Random forest model; QSVM: Quadratic support vector machine model;
and WKNN: Weighted K-nearest neighbor model.

Table A5. McNemar’s test results (p-values) for determining whether there is a significant difference
between model performance for (a) top-performing intertidal zone models; (b) top-performing
supratidal zone models; and (c) contemporary model with various levels of post-processing. CSVM:
Cubic support vector machine model; NPP: Combined model with no post-processing; RF: Random
forest model; QSVM: Quadratic support vector machine model; WKNN: Weighted K-nearest neighbor
model; WPP: Combined model with post-processing, but no minimum mapping unit; WPP+MMU:
Combined model with post-processing and minimum mapping unit; *: Significant at the p < 0.05 level;
and **: Significant at the p < 0.001 level.

(a) Deterministic Fuzzy

WKNN CSVM WKNN CSVM

RF ** ** ** **
WKNN NA ** NA **

(b) Deterministic Fuzzy

RF QSVM RF QSVM

RF * 0.617 ** 0.126
WKNN NA * NA *

(c) Deterministic Fuzzy

WPP WPP+MMU WPP WPP+MMU

NPP 0.267 0.108 ** **
WPP NA 0.230 NA 0.264
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Figure A2. Unbiased predictor importance estimates by model zone for the contemporary habitat model
fitting Dauphin Island, Alabama, USA. (a) Subtidal zone; (b) intertidal zone; and (c) supratidal/upland
zone. DBBS: Distance from back-barrier shoreline; DGFS: Distance from ocean-facing shoreline; DMTD:
Distance from Mobile-Tensaw River Delta; DRCL: Direction from center; Elevation; ELEV: Elevation;
ES1K: Elevation to the south (1 km); ES8K: Elevation to the south (8 km); TPI30: Topographic position
index (30 m); TPI100: Topographic position index (100 m).

Table A6. The type, condition, and order for user-defined rules applied to model results via post-processing
by habitat class for the habitat model for Dauphin Island, Alabama, USA.

Type of Correction Habitat Condition Order

Elevation Dune Dune areas that had a probability less than 0.5 for being above the
extreme storm water level were changed to barrier flat. 2

Elevation -
depressional

habitats

Barrier flat Barrier flat areas that had a sink depth greater than or equal to
0.5 m were changed to water-fresh. 11

Intertidal beach
Intertidal beach areas that had a sink depth greater than or equal

to 0.01 m should be commonly inundated with standing water
and were changed to water-marine.

7

Intertidal flat
Intertidal flat areas that had a sink depth greater than or equal to
0.01 m should be commonly inundated with standing water and

were changed to water-estuarine.
8

Water-fresh Water-fresh areas that did not have a sink depth greater than or
equal to 0.5 m were changed to barrier flat. 10

Woody wetland Woody wetland areas that did not have a sink depth greater than
or equal to 0.1 m were recoded to be woody vegetation. 1
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Table A6. Cont.

Type of Correction Habitat Condition Order

X,Y coordinates

Intertidal beach
Intertidal beach areas that were found to be closer to the

back-barrier shoreline than the ocean-facing shoreline were
changed to intertidal flat.

3

Barrier flat
Barrier flat areas that had intertidal beach within a 5-by-5 pixel

neighborhood were changed to beach due to the proximity to the
ocean-facing shoreline.

9

Intertidal beach
Intertidal beach areas that were located behind supratidal areas
with an elevation to the south for 1 km greater than or equal to

0.6 m were changed to intertidal flat.
5

Intertidal flat Intertidal flat areas that were closer to water-marine than
water-estuarine were changed to intertidal flat. 6

Intertidal marsh/
Intertidal flat

Intertidal marsh areas should be sheltered from high-energy areas
(Roland & Douglass, 2005). These areas that did not have an

elevation to the south for 8 km greater than or equal to 0.448 m
(i.e., EHWS) were changed to intertidal beach. This rule was also

applied to intertidal flat.

4

Table A7. Error matrix with deterministic and fuzzy accuracies for the initial contemporary model
results (i.e., without post-processing and a four-pixel minimum mapping unit) for Dauphin Island,
Alabama, USA. For the off-diagonal cells, the first value indicates deterministic count and the second
value indicates the fuzzy count. BF: Barrier flat; B: Beach; CT: Column total; D: Dune; DPA: Deterministic
producer’s accuracy; DOA: Deterministic overall accuracy; DUA: Deterministic user’s accuracy; FOA:
Fuzzy overall accuracy; FPA: Fuzzy producer’s accuracy; FUA: Fuzzy user’s accuracy; IB: Intertidal
beach; IF: Intertidal flat; IM: Intertidal marsh; RT: Row total; WE: Water-estuarine; WF: Water-fresh;
WM: Water-marine; WV: Woody vegetation; and WW: Woody wetland.

Class
Reference Data

RT DUA
(%)

FUA
(%)BF B D IB IF IM WE WF WM WV WW

Model
data

BF 305 4;2 36;1 1;0 15;8 47;23 13;0 0;0 0;0 31;15 0;0 501 60.9 70.7
B 4;7 62 0;1 2;14 0;3 3;0 1;0 0;0 7;25 0;1 0;0 130 47.7 86.9
D 38;1 0;1 99 0;0 0;0 0;0 0;0 0;0 3;1 5;1 0;0 149 66.4 69.1
IB 1;0 13;1 0;0 17 0;2 1;0 0;10 0;0 2;88 0;0 0;0 135 12.6 87.4
IF 17;5 4;0 0;0 3;0 95 39;34 73;144 0;0 11;0 2;1 0;0 428 22.2 65.2
IM 13;6 2;0 2;0 0;0 23;4 307 54;3 0;0 1;0 1;1 0;0 417 73.6 77.0
WE 1;0 0;0 0;0 0;0 0;0 0;0 607 0;0 0;0 0;0 0;0 608 99.8 99.8
WF 9;0 0;0 0;0 0;0 0;0 0;0 9;0 27 1;0 4;1 0;0 51 52.9 54.9
WM 0;0 1;0 0;0 0;0 0;0 0;0 68;0 0;0 314 0;0 0;0 383 82.0 82.0
WV 13;8 0;0 0;0 0;0 0;0 6;0 0;0 0;0 0;0 205 2;0 234 87.6 91.0
WW 2;0 0;0 0;0 0;0 0;0 0;0 0;0 1;0 0;0 20;3 29 55 52.7 58.2
CT 430 90 139 37 150 460 982 28 453 291 31 3091

DPA (%) 70.9 68.9 71.2 46.0 63.3 66.7 61.8 96.4 69.3 70.5 93.6
FPA (%) 77.2 73.3 72.7 83.8 74.7 79.1 77.8 96.4 94.5 78.4 93.6

DOA (%): 66.9; FOA (%): 80.3
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