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Abstract: The ground Penetrating Radar (GPR) is a promising remote sensing modality for
Antipersonnel Mine (APM) detection. However, detection of the buried APMs are impaired by
strong clutter, especially the reflection caused by rough ground surfaces. In this paper, we propose
a novel clutter suppression method taking advantage of the low-rank and sparse structure in
multidimensional data, based on which an efficient target detection can be accomplished. We firstly
created a multidimensional image tensor using sub-band GPR images that are computed from the
band-pass filtered GPR signals, such that differences of the target response between sub-bands can be
captured. Then, exploiting the low-rank and sparse property of the image tensor, we use the recently
proposed Tensor Robust Principal Analysis to remove clutter by decomposing the image tensor into
three components: a low-rank component containing clutter, a sparse component capturing target
response, and noise. Finally, target detection is accomplished by applying thresholds to the extracted
target image. Numerical simulations and experiments with different GPR systems are conducted.
The results show that the proposed method effectively improves signal-to-clutter ratio by more than
20 dB and yields satisfactory results with high probability of detection and low false alarm rates.

Keywords: antipersonnel mine detection; clutter suppression; ground penetrating radar; tensor
robust principal analysis

1. Introduction

Being capable of sensing discontinuity of electromagnetic properties in the ground, Ground
Penetrating Radar (GPR) has been used as nondestructive remote sensing modality in many
applications, including tree root detection [1], frozen layer monitoring [2], structural assessment [3],
infrastructure inspection [4], and landmine detection [5–9]. However, GPR detection of Antipersonnel
Mines (APMs) is always challenging because of clutter contamination, such as antenna coupling,
ground reflection, and friendly objects (rocks, voids, etc.) [10,11]. As a major source of clutter,
the ground reflection is of large magnitude, and usually varies with position due to surface
roughness [11]. Since many APMs are of low-metal content and shallow burial, the responses of APMs
are often obscured by ground reflections, rendering target visualization and detection very difficult.

Many efforts have been devoted to developing clutter mitigation methods, and these methods
can be briefly categorized into three types: model-based methods, filtering, and subspace
projection [11–13].

In the model-base methods, clutter models are defined, and objects whose responses significantly
deviate from the clutter models are detected as potential targets. These methods vary depending on the
clutter model chosen to capture the characteristics of the clutter. In [14], a Wide-Sense Stationary (WSS)

Remote Sens. 2019, 11, 984; doi:10.3390/rs11080984 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-8299-646X
https://orcid.org/0000-0003-0152-6621
http://www.mdpi.com/2072-4292/11/8/984?type=check_update&version=1
http://dx.doi.org/10.3390/rs11080984
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2019, 11, 984 2 of 19

random process is adopted to describe the clutter whereas in [15], the background clutter is estimated
using the least squares technique. A linear prediction model with adaptive coefficients is proposed
to characterize the clutter in [5]. However, the model-based methods need “clean” clutter (received
signal that contains clutter only) to estimate model parameters which tends to be contaminated by
other factors. In addition, the performances of these methods depend strongly on the clutter models
and degrade when clutter models deviate from the real situations.

The filtering methods adopt filers in a certain domain to filter out clutter while preserving the
target response. An intuitive technique termed time-gating is to mute the received signal within
a time window [16]. The problem is how to set a proper time window that covers clutter without
compromising target reflections. In [13], the entropy-based criterion for time window selection is
proposed under the assumption that clutter has similar behavior for each trace. Another popular
method is mean subtraction, which can be viewed as a high-pass filter in the frequency domain,
but the calculation of average background clutter trace can be affected by the target responses [16].
A physically-based filtering method is presented in [11] which uses frequency-dependent linear
transfer functions to eliminate the strong ground clutter as well as the antenna coupling by subtraction
of a simulated Green function. To obtain the linear transfer functions, calibration under controlled
environments is required.

The subspace projection method assumes that the ground clutter and the target responses are in
different subspaces. Therefore, clutter and target responses can be separated by projecting the recorded
GPR data into clutter and target subspaces, respectively. The Principal Component Analysis (PCA)
is a representative subspace projection method [17,18]. Usually, the subspace spanned by the first
dominant eigencomponent is considered as a clutter subspace to be removed. In practice, the uneven
ground surface results in nonstationary clutter whose rank is greater than one and the PCA method
cannot remove the clutter completely. Moreover, the PCA method is so sensitive to strong noise that
even a single grossly corrupted observation can lead to error results [19]. As an improvement of
the traditional PCA, the Robust Principle Component Analysis (RPCA) is proposed for recovering a
low-rank subspace from noisy measurements [19]. For GPR data traces, the ground clutter as well as
antenna coupling are considered as low-rank, while the target responses are assumed to be contained
in the sparse component [20]. Hence, the clutter suppression problem is cast as a low-rank and sparse
representation problem and can be solved by the RPCA-based method [12,21]. The recently proposed
Tensor Robust Principal Component Analysis (TRPCA) [22,23] provides an alternative perspective
of solving the low-rank and sparse decomposition problem. Extended from the RPCA, the TRPCA
operates on tensors to seek a low-rank tensor embedded in sparsely corrupted multidimensional data.
Avoiding the information loss caused by restructuring high order tensor into matrix, TRPCA makes
full use of the abundant information contained in multidimensional data to guarantee flexibility as well
as accuracy in video processing [24], seismic data denoising [25], and infrared target detection [26].

Based on TRPCA, this paper presents a GPR APM detection method utilizing the low-rank and
sparse properties of multidimensional data for the separation of target response and background
clutter. To solve the clutter suppression and target detection problem under tensor algebra framework,
we first propose a tensor formation scheme using a sub-band technique. Inspired by the observation
that targets give distinct responses at different frequency bands [5,27,28], we exploit sub-band images
to characterize the frequency dependent features of APMs. Specifically, the whole frequency band of
the recorded GPR signal is divided into several sub-bands to compute individual GPR image for each
sub-band and then an image tensor can be formed with these sub-band images inserted as frontal slices
(definition in Table 1). By this means, the spatial-spectral information is incorporated in the images
tensor, which can be simultaneously handled by a tensor based method to facilitate the detection.
Then, TRPCA is used to decompose the obtained image tensor into low-rank component and sparse
component to separate the target response (sparse) from the clutter (low-rank). Since most unwanted
factors are eliminated, the final detection result can be acquired by applying thresholds on the target
image. The proposed method is an extension of the RPCA-based clutter suppression method [21] and
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the contributions are threefold: (1) a tensor formation scheme is proposed to enable the spatial-spectral
processing with TRPCA, and as far as we know, the application of TRPCA in GPR APM detection
has not yet been reported; (2) TRPCA is adapted to the APM detection scenario and the problem is
solved by a tractable optimization—the Alternating Direction Method of Multiplier (ADMM); (3) our
proposed method achieves high Probability of Detection (PD) while effectively reducing the False
Alarm Rate (FAR). Numerical simulations and laboratory experiments with impulse GPR and Stepped
Frequency Continuous Wave (SFCW) GPR were conducted to validate our proposed method. Both of
low-metal APMs and nonmetallic APMs were used as targets and were successfully detected in the
experiments. It is noteworthy that the goal of detection is to flag areas that may contain anomalies [29].
Therefore, the subsurface (and surface) anomalies, including APMs and friendly objects, are considered
as suspected targets, and the clutter refers to antenna coupling and ground reflection in this paper.
The rejection of friendly objects is to be done by a classifier, which is topic of our future work.

The paper is organized as follows. Section 2 introduces the notations and briefly reviews the
TRPCA method. The mathematical formulation and the proposed TRPCA-based clutter suppression
and target detection method are illustrated in Section 3. Section 4 presents the experiment results as
well as discussions of the results to demonstrate the effectiveness of our proposed method. Conclusions
is drawn in Section 5.

2. Notations and Preliminaries

2.1. Notations

The notations used in this paper are listed in the Table 1. Below are some necessary definitions.

Table 1. Metamathematical notations.

Notations Definition

A, A, a, a tensor, matrix, vector, scalar
R,C real numbers and complex numbers
Ai,j,k or ai,j,k the (i, j, k)th entry of A
A(i, j, :) the tube of A
A(i, :, :),A(:, i, :) the ith horizontal or lateral slice of A
A(:, :, i) or A(i) the ith frontal slice of A
Ā = fft (A, [ ], 3) Fast Fourier Transformation (FFT) on A along the third dimension
A = ifft

(
Ā, [ ], 3

)
Inverse FFT on A along the third dimension

‖A‖1 `1 norm of A, which is computed as ∑ i,j,k|ai,j,k|
‖A‖∞ infinity norm of A, which is defined as max|ai,j,k|
‖A‖F Frobenius norm of A, which is computed as

√
∑ i,j,k|ai,j,k|2

‖A‖∗ nuclear norm of A, which is computed as sum of singular values
‖A‖2 spectral norm of A, which is defined as the largest singular value

For a tensor A ∈ Rn1×n2×n3 , we define a block diagonal matrix Ā ∈ Rn1n3×n2n3 whose ith block
on diagonal is the ith frontal slice Ā(i) of Ā

Ā =


Ā(1)

Ā(2)

. . .
Ā(n3)

. (1)

A block circular matrix lbcirc (A) of size n1n3 × n2n3 is denoted as
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bcirc(A) =


A(1) A(2) . . . A(n3)

A(2) A(1) . . . A(n3)

...
...

. . .
...

A(n3) A(n3−1) . . . A(1)

. (2)

Two operators, unfold and fold are respectively defined as

unfold(A) =


A(1)

A(2)

...
A(n3)

 (3)

fold(unfold(A)) = A. (4)

Then, we have a new tensor-tensor production termed as t-product.

Definition 1 (t-product [22]). Let A ∈ Rn1×n2×n3 and B ∈ Rn2×n4×n3 . Then the t-product C = A ∗ B is a
tensor of size n1 × n4 × n3 defined as

C = A ∗ B = fold (bcirc (A) · unfold (B)) . (5)

Using the t-product, a tensor factorization technique named tensor-SVD (t-SVD) can be defined.

Definition 2 (t-SVD [30]). For A ∈ Rn1×n2×n3 , the t-SVD of A is given by

A = U ∗ S ∗ VT (6)

where U ∈ Rn1×n1×n3 and V ∈ Rn2×n2×n3 are orthogonal tensors, and S is a f -diagonal tensor,
T denotes the transpose of a tensor. The detail descriptions of orthogonal tensor, f -diagonal tensor, and
tensor transpose are given in [22,30].

Based on t-SVD, the tensor tubal rank as well as the Tensor Nuclear Norm (TNN) is defined.

Definition 3 (tensor tubal rank [22]). The tensor tubal rank of A ∈ Rn1×n2×n3 , denoted as rankt (A) is
defined as the number of nonzero singular tubes of S , where S is from the t-SVD of A = U ∗ S ∗ VT

rankt (A) = #{i : S(i, i, :) 6= 0}. (7)

Definition 4 (TNN [23]). The tensor nuclear norm of tensor A ∈ Rn1×n2×n3 , denoted as ‖A‖∗, is defined as
the average of the nuclear norm of all the frontal slices of Ā

‖A‖∗ =
1
n3

n3

∑
i=1
‖Ā(i)‖∗. (8)

We can further define the tensor spectral norm as

Definition 5 (tensor spectral norm [23]). The tensor spectral norm of tensor A ∈ Rn1×n2×n3 , denoted as
‖A‖2, is defined as the spectral norm of the block diagonal matrix Ā

‖A‖2 = ‖Ā‖2. (9)
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2.2. Principle of the TRPCA

Extended from the matrix RPCA, TRPCA considers a similar problem that is to recover a low-rank
component corrupted by sparse errors. Different from the RPCA, which handles with matrices,
TRPCA manipulates tensor data to take the advantage of abundant information contained in the
multidimensional data structure [23]. More specifically, TRPCA aims to separate the low tubal rank
tensor L and the sparse component S from the observation X

X = L+ S . (10)

Based on t-SVD, the above mentioned problem can be addressed by solving the following convex
optimization, where the tensor tubal rank is replaced by the TNN [23]

min
L,S
‖L‖∗ + λ‖S‖1, s.t. X = L+ S . (11)

However, the solution adopted in [23] is aiming at the exactly recovery of tensor. TRPCA need
to be adapted to the GPR APM detection application and take the ubiquitous noise in practical
measurements into consideration.

Note that when the tensor reduces to matrix, i.e., the third dimension is one, the t-product reduces
to standard matrix product and the tensor nuclear norm reduces to matrix nuclear norm. Therefore,
RPCA is a special case of TRPCA[23]. The consistency between TRPCA and RPCA helps a lot in our
GPR APM detection application, which is to be shown in the later sections.

3. Proposed Method

The proposed ground clutter suppression and target detection method includes three procedures:
tensor construction, clutter suppression, and target detection. To begin with, the mathematical
formulation of GPR APM detection problem under the tensor framework will be introduced.

3.1. Problem Formulation and Tensor Construction

The scenario of GPR detection is depicted in Figure 1. Emitting and receiving signals at each
location, the down-looking GPR scans along a line over the ground surface. The recorded data traces
are collected as columns to form a two dimensional matrix (B-scan), ldenoted by X

X = X1 + X2 + X3 (12)

where X1, X2, and X3 are the clutter, the target response, and noise, respectively. As mentioned
above, the clutter that consist of ground reflection and antenna corss-talk is considered as low-rank
component in the B-scan, whereas the target response are contained in sparse component [12,21,31].
Therefore, the low-rank and sparse property of GPR image data is utilized to discriminate the clutter
X1 and the target response X2 by RPCA decomposition.

To further improve the performance of GPR APM detection, we consider incorporating more
information contained in the spectrum by constructing an image tensor with multiple sub-band
images. As reported in [5,27,28], the sub-band processing takes the distinct features of APMs
at different frequency bands into account, thereby increasing detection accuracy. To capture the
frequency-dependent characteristics of target responses, sub-band images are formed. Specifically,
as shown in Figure 2, the recorded GPR data X is first filtered by two band-pass filters, which divide
the whole frequency band into the Low-Frequency (LF) band and the High-Frequency (HF) band
while permitting overlap. Two sub-band GPR images, i.e., XLF and XHF, are formed by focusing the
LF and the HF GPR data, respectively. Then, we stack the sub-band images as frontal slices, that
is, X (:, :, 1) = XLF and X (:, :, 2) = XHF, to create an image tensor resembling a hyperspectral image
cube [32], where the spatial characteristics lies in the first two dimensions and the spectral information
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is contained in the third dimension. According to the low-rank and sparse prior of GPR data [12,21],
the obtained GPR image tensor X can be represented as

X = X1 +X2 +X3 (13)

where the X1, X2, and X3 represent the low-rank clutter tensor, the sparse target image tensor, and
noise, respectively. Therefore, the clutter suppression and target detection is cast as a TRPCA problem
to separate the sparse target from the low-rank background clutter.

Antennasx

d ε0Airz

ε, σ

Landmine

Ground

h2h1

r2
r1

ε2
ε1

Figure 1. Measurement Geometry.

  

1. Tensor Construction 2. TRPCA 3. Target Detection

  

1 2 3

 

 

 

 
 :,:,1  2 :,:,1

GPR data Image Tensor Target 
Image Tensor

Detection 
Result

 

Figure 2. Flow chart of the TRPCA-based clutter suppression and target detection method.

3.2. Clutter Suppression via TRPCA

In this section, clutter is removed by solving the aforementioned TRPCA problem Equation (13)
via a convex optimization program. Mathematically,

min
X1,X2,X3

‖X1‖1 + λ2‖X2‖∗ + λ3‖X3‖2
F

s.t. X = X1 +X2 +X3.
(14)

The constrained problem Equation (14) can be addressed by the augmented Lagrangian
function [33]

L(X1,X2,X3,U ; ρ, λ2, λ3)

=
N

∑
i=1

ψi(Xi) +
ρ

2
‖X −

N

∑
i=1
Xi + U‖2

F
(15)
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where i = 1, . . . , N, N = 3, ρ > 0, and functions ψi, i = 1, . . . , 3 are defined as

ψ1(X ) = ‖X ‖∗ (16a)

ψ2(X ) = λ2‖X ‖1 (16b)

ψ3(X ) = λ3‖X ‖2
F (16c)

where λ2 > 0 and λ3 > 0 are tuning parameters.
We use the ADMM [33] to solve the problem Equation (15) by alternately solving the

(X1,X2,X3,U )
X k+1

i = argminXi

(
ψi(Xi) +

ρ

2
‖Xi −Dk

i ‖2
F

)
(17)

U k+1 = U k + X̃ k+1 − 1
N
X (18)

where i = 1, . . . , N, N = 3, the average of tensors X̃ k = (1/N)∑N
i=1 X k

i , and Dk
i is defined as

Dk
i = X k

i − X̃ k +
1
N
X − U k. (19)

To update the X k+1
1 , we use the tensor Singular Value Thresholding (t-SVT) [34]

X k+1
1 = F 1

ρ
(Dk

1) (20)

where the t-SVT operator F1/ρ is defined as follows: Let X = U ∗ S ∗ VT be the t-SVD of
X ∈ Rn1×n2×n3 . For each 1/ρ > 0, the t-SVT on X is

F 1
ρ
(X ) = U ∗ S 1

ρ
∗ VT (21)

where

S 1
ρ
= ifft

(
(S̄ − 1

ρ
)+, [ ], 3

)
. (22)

The subscript (x)+ denotes the positive part of x.
The X k+1

2 is updated using the elementwise soft-shrinkage operator [33]

X k+1
2 = shrink

(
Dk

2,
λ2

ρ

)
(23)

where the shrink(x, λ2/ρ) is

shrink
(

x,
λ2

ρ

)
=



x− λ2

ρ
x >

λ2

ρ

0 |x| ≤ λ2

ρ

x +
λ2

ρ
x < −λ2

ρ
.

(24)

For X k+1
3 , we have the closed form solution as [33]

X k+1
3 =

1
1 + λ3/ρ

Dk
3. (25)

Finally, the solving procedures are described in Algorithm 1.
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Algorithm 1 The ADMM for TRPCA

Input:
Image tensor X

Output:
Target image tensor X2

Initialize:
X 0

1 = X 0
2 = X 0

3 = 0,U 0 = 0, ρ = 1, ε = 1e−6, m = 200, λ2 = 0.15 ∗ ‖X ‖2, λ3 = 0.15 ∗ ‖X ‖∞

1: while not converged do
2: X k+1

1 ← F1/ρ(Dk
1)

3: X k+1
2 ← shrink

(
Dk

2, λ2/ρ
)

4: X k+1
3 ← Dk

3/(1 + λ3/ρ)

5: U k+1 ← U k +X̃ k+1 −X/N

6: c1 ← ‖X k+1
2 −X k

2 ‖∞

c2 ← ‖X k+1
3 −X k

3 ‖∞

c3 ← ‖U k+1 −U k‖∞

7: if max(c1, c2, c3) < ε or k > m then
8: Break
9: else

10: k← k + 1
11: end if
12: end while

3.3. Target Detection

After the TRPCA decomposition, a clear target image tensor with most of the clutter removed is
obtained, yet, there is residual clutter that may raise false alarms. To facilitate the detection, we sum
up the frontal slices of the target image tensor to obtain a target image, that is, X2 = ∑2

i=1 X2(:, :, i).
With a clear target image, detection can be accomplished as follows. First, an energy detector is

applied to the target image. Top α1 percent of pixels are retained. Then, remove isolated detections
whose areas are smaller than α2 (pixels). At last, cluster the detections and recalculate the center of
mass. Those closely spaced detections with distances between each other that are smaller than α3

(centimeters) are clustered.
As shown in Figure 2, the procedures of our method can be summarized as follows:

1. Tensor construction: Equally divide the bandwidth into two sub-bands and form a sub-band GPR
image on each sub-band data using the Layered Range Migration (LRM) method [35]. Create the
three-dimensional image tensor by inserting the sub-band images as frontal slices.

2. TRPCA: Decompose the formed image tensor to separate the low-rank component X1 and the
sparse component X2. The target response is contained in the sparse component X2.

3. Target detection: Calculate the target image X2 by summing up the frontal slices of X2. Remove
clutter residue with thresholds and finally locate the target. The center coordinates of the
remaining nonzero regions in the target image are output as the detection results.

4. Results and Discussion

To coroborate the proposed clutter suppression and target detection method, both numerical
simulations and experiments using different GPR systems were carried out. The simulation data were
synthesized using the gprMax [36]. In the experiments, two datasets were collected and tested: one
was acquired with an impulse GPR developed by our research group; the other was collected by a
SFCW GPR and published by the Georgia Technology Institute [37,38].
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4.1. Metrics and Baselines

The Signal to Clutter Ratio (SCR) is adopted to assess the effectiveness of clutter suppression
processing. The SCR is calculated as

SCR =
Nc

Nt
∑

p∈Rt

|I(p)|2
/

∑
p∈Rc

|I(p)|2 (26)

where I(p) is the p-th pixel in image. Nt and Nc denotes the number of pixels in the target region Rt

and the number of pixels in the clutter region Rc, respectively. The target region is indicated by a box
(or boxes in a scenario with multiple targets) enclosing the location of target. The size of the box is
manually set to cover the target image. The entire image excluding the target region is defined as the
clutter region.

The metrics of evaluating detection performance are PD Pd and FAR Fa, which are defined as

Pd =
number of correct detections

number of actual targets
(27)

Fa =
number of false alarms

total length of the surveyed scenario
(28)

Note that Fa is calculated on a meter basis. For example, a 1% FAR means that, on average, there
is one false alarm per 100 m.

For comparison purposes, two representative clutter suppression and target detection
methods, the PCA-CFAR method and the RPCA-based method, are adopted as baseline methods.
The PCA-CFAR method utilizes the PCA [17] to remove clutter from a GPR image by discarding the
largest principal component, and then detects target by Cell Averaging Constant FAR (CA-CFAR)
technique [39]. The RPCA-based detection method [40] first extracts a target image from clutter using
the Go-Decomposition (GoDec) [41] and then applies thresholds to reveal the target location. Same
thresholds α1, α2, and α3 are used here.

4.2. Numerical Simulations

Shown as Figure 1, point source and receiver spaced 2 cm apart were 15 cm distant from the
ground and scanned with 1 cm step length. A Ricker waveform with 2 GHz center frequency and
1.6 GHz bandwidth were adopted. The time window is set to 3.11 ns and the sampling interval is
2.59 ps. The soil is considered homogeneous, and the relative permittivity and conductivity of soil
are ε = 5 and σ = 0.01 S/m, respectively. As shown in Figure 1, the APM was modeled as a hollow
cylinder containing another cylinder inside. The outer cylinder was of radius r1 = 3.5 cm and height
h1 = 4.5 cm, while the inner cylinder was of r2 = 2.5 cm radius and h2 = 3 cm height. The relative
permittivity of the outer and the inner cylinders were ε1 = 2.9 and ε2 = 3.6, respectively.

One thousand B-scans were synthesized with the parameters listed above. Each B-scan is of the
same size with 60 columns and 1198 rows, that is, it covers a length of 60 cm. The rough ground
surfaces in these simulations were randomly generated using the fractal correlated noise model [42].
The fractal dimension was set to 1.5 and variation in height was 6 cm. In addition, Gaussian noise was
added to the data and thus the Signal to Noise Ratio (SNR) was reduced to 0 dB.

Figure 3a displays one of the simulated noise-free B-scans where an APM is flush buried.
Therefore, a part of ground reflections coincides with the target responses in time domain and results
in waveform distortion. After noise is added, the target responses in Figure 3b are overwhelmed
and hardly any hyperbola signature of the target are extracted. Using the LRM to focus the GPR
data yields a full band imaging result (Figure 3c), where the target size and location are indicated
by a dash-dotted box. Due to obscuration of the dominant ground clutter, the target image cannot
be observed. Similar to [27], we equally divide the frequency bandwidth into two sub-bands while
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allowing 50% overlap: the LF band of 0.1–3.8 GHz and the HF band of 1.9–5.6 GHz. The optimal
selection of the overlapping range will be discussed at the end of this section. As shown Figure 3d,e,
two sub-band images, i.e., the LF image and the HF image are computed using these sub-band GPR
data. Note that the uneven surface has similar shapes in these images, whereas the obscuration caused
by the ground clutter renders target detection difficult. Then, we create an image tensor with these
sub-band images and decompose the image tensor with TRPCA to obtain the target image tensor.
In order to display the decomposition results, frontal slices of the obtained target image tensor are
summed up to form a two-dimensional image, as shown in Figure 3f. The target image in Figure 3f is
clear enough to recognize the APM. As listed in Table 2, the SCR of Figure 3f is improved by 24 dB
compared with the full band image shown in Figure 3c. Since the major part of the clutter is removed,
we can use thresholds to remove clutter residues and get the final detection result. As shown in
Figure 3g, the target is indicated by a point.
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Figure 3. Results of the first simulation where a target is shallowly buried. (a,b) show the synthesized
data without and with noise, respectively. (c) Full band imaging result. (d) LF imaging result. (e) HF
imaging result. (f) Extracted target image. (g) Detection result. (h) Result of PCA-CFAR. (i) Result of
RPCA-based method.

The reasons why TRPCA performs well in the environment with heavy clutter are due to two
aspects: (1) the low-rank and sparse properties of the GPR images, and (2) the frequency dependency
of target response. Since the model and theory of TRPCA are consistent with RPCA [23], the low-rank
and sparse structure of GPR image can be utilized by the TRPCA for the separation of target image
and clutter in each sub-band image (frontal slice), which is similar to the RPCA-based methods [12,21].
The proposed method uses imaging to enhance the sparsity and intensity of a target response, which
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generally leads to a better decomposition [19]. Moreover, our method takes it one step further than
the RPCA-based method by making use of the spectral information of target response lies in the third
dimension. Though the differences caused by frequency dependency of target response are hard to
discern by naked eyes in the sub-band images (Figure 3d,e), they can be captured and revealed by the
TRPCA, which is intended for extraction of the variations in frontal slices [22].

A different situation is shown in Figure 4a where an APM is buried deeper (7 cm beneath the
ground) due to the raised surface. The ground clutter and target responses are separated in time,
but two pits in the ground at x = 14 cm and x = 42 cm causes strong reflections with hyperbolic
curve signatures. After imaging, the target images can be found in the centers of sub-band images
(Figure 4d,e). However, the clutter, especially images of the pits are of large magnitude that can raise
false alarms. To remove the ground clutter and avoid false alarms, our proposed method is applied to
improve SCR of the target image in Figure 4f by 24.8 dB, compared to the full band image Figure 4c.
The target location is marked by a point in Figure 4g after the threshold-based detection procedure.
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Figure 4. Results of the second simulation where a target is deep buried. (a,b) show the synthesized
data without and with noise, respectively. (c) Full band imaging result. (d) LF imaging result. (e) HF
imaging result. (f) Extracted target image. (g) Detection result. (h) Result of PCA-CFAR. (i) Result of
RPCA-based method.

Processing all of the one thousand simulated B-scans with our proposed method, the detection
performance in the low SNR (0 dB) environment is of 99.5% PD and 10% FAR, as shown in Table 3.

The PCA-CFAR method and the recently proposed RPCA-based method were tested on the same
synthesized dataset. The full band images (Figures 3c and 4c) were used as the inputs for these two
methods. Figure 3h shows the detection result of the PCA-CFAR method in the shallow-burying
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scenario, where the target and false alarms are indicated with point and triangles, respectively. Due to
the uneven ground surface, the rank of clutter is bigger than one and thus cannot be fully removed
because only the first principal component is removed. In addition, the traditional PCA is so sensitive
to strong noise that the processed image is contaminated by remaining noise. Therefore, together with
the target marked by point, there is residual clutter and noise which degrades SCR and causes false
alarms. This is similar to the case with deeply buried targets; there is clutter and noise residue in
Figure 4h due to the deficiencies of PCA-CFAR. The improvements of SCR of the PCA-CFAR method
in these two scenarios are listed in Table 2, which are 6.8 dB and 4.7 dB, respectively. The detection
performance on the whole dataset is low PD (87.0%) with a high FAR of 67.0%. It shows that the
PCA-CFAR method cannot handle the clutter caused by an uneven ground surface very well and its
performance degrades severely under low SNR.

Thanks to the low-rank and sparse signal model, the RPCA-based method outperforms the
PCA-CFAR method in the simulation by yielding higher SCRs (20.3 dB in Figure 3i, 21 dB in Figure 4i)
and better detection performance (93.6% PD and 27.7% FAR). However, the variation of surface
height results in nonstationary ground clutter whose low-rank property is degraded and thus, the
RPCA-based method performs inadequately. This is the reason why both bulge and cavity in the
ground cause false alarms in detection results Figures 3i and 4i. Thus, in the numerical simulation,
the detection performance of RPCA-based method is inferior to that of the proposed TRPCA-based
method.

The time consumptions of these three methods are listed in Table 4. The solving programs of these
methods are running on a same computer with 2.4 GHz CPU and 8 GB memory. It takes 0.24 s for the
proposed method to complete the detection on a single B-scan, whereas the PCA-CFAR method takes
3.7 s. By using a accelerated solution program [41], time consumption of the RPCA-based method is
0.14 s. Note that the aforementioned optimization program ADMM can be further improved by some
techniques [32,43,44]. However, these discussions are out of the scope of this paper.

Table 2. SCR of different clutter suppression methods.

Imaing The Proposed Method PCA-CFAR RPCA-Based Method

Simulated data 1 5.6 29.7 12.4 20.3
Simulated data 2 6.7 31.5 11.4 21.0

Impulse GPR data 1 −4.0 22.3 0.1 –
Impulse GPR data 2 −0.5 30.0 12.6 19.8

SFCW GPR data −10.6 26.8 0.4 17.3

Table 3. Comparison of detection performance (PD/FAR).

The Proposed Method PCA-CFAR RPCA-Based Method

Simulated dataset 99.5%/10.0% 87.0%/67.0% 93.6%/27.7%
Impulse GPR dataset 100%/12.3% 89.4%/54.5% 93.3%/10.8%
SFCW GPR dataset 100%/7% 84.6%/19.2% 100%/8.4%

Table 4. Time consumption of different methods.

The Proposed Method PCA-CFAR RPCA-Based Method

Time consumption (s) 0.24 3.8 0.14

4.3. Laboratory Experiments

Laboratory experiments using different GPR systems were conducted to demonstrate the
effectiveness of our proposed method on real data.
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In the first experiment, an impulse GPR of 1.6 GHz center frequency and 1.2 GHz bandwidth was
used to scan a sand pit. The horn antennas were 15 cm above the surface. To deal successfully with the
strong ground reflections, a dynamic range of over 69 dB is expected [45]. The space sampling step
length was 5 mm and the time sampling interval was 9.77 ps. As Figure 5 shows, the pit was filled
with dry sand, whose relative permittivity was 4. The surface of sand was flat. Seventy-two B-scans
containing 90 APMs were collected. Each B-scan covered a length of 0.9 m, where only one APM or
at most two APMs were buried. Both of metal APMs and nonmetallic APMs were used as targets
in the experiment. We take two B-scans out from the dataset as examples to show the feasibility of
our method.

Figure 5. Photograph of measurement setup in the impulse GPR experiment.

As shown in Figure 6a, one of the B-scans contains a plastic APM buried 5 cm under the ground.
Indicated by a dash-dotted box, the APM is of 4 cm height and 3.5 cm radius. We can hardly notice the
subtle target responses around 2.0 ns because the direct waves and ground reflections (overlapped
between 0.2 ns and 1.8 ns) are dominant in the B-scan (Figure 6a). The imaging result of the B-scan
is displayed in Figure 6b where an ambiguous dot appears at 15 cm location. Though focused
and enhanced by the imaging processing, the images of target in sub-band images Figure 6c,d are
still obscured by the clutter. Processing the sub-band images with our method yields much more
clearer target image (Figure 6e) that are brighter and larger than the remaining clutter. Comparing
Figure 6e and Figure 6b, the SCR is improved by 26.3 dB. After applying thresholds, clutter residues
are eliminated and the target is detected, as shown in Figure 6f. The results of competitive methods
are shown in Figure 6g,h. Since the target is small and contains no metal, the responses are too weak to
be detected by the PCA-CFAR method and the RPCA-based method. In addition, clutter residues in
Figure 6g cause multiple false alarm in the detection results.

In the other B-scan, there are two shallowly buried (3 cm) APMs containing both metal and
nonmetal. These APMs are identical and their heights and radiuses are 5.4 cm and 6 cm, respectively.
The size and location of the APMs are indicated by dash-dotted boxes. The reflections from metal
are strong enough to be observed in Figure 7a. However, the target image in Figure 7b is overlapped
with strong ground clutter and the SCR is insufficient to confirm the target. Similar are the sub-band
images shown in Figure 7c,d, where the target images are of small magnitude compared with the
ground reflections. Note that more details of the target can be found in the HF image Figure 7d than in
LF image Figure 7c, which demonstrates the frequency dependency of target responses in different
sub-bands. Applying our method to this GPR data, we obtain the prominent target image with a much
higher SCR (30 dB) in Figure 7e. Then, the targets’ locations are successfully detected and marked by
points in Figure 7f. Figure 7g,h display the results of the PCA-CFAR method and the RPCA-based
method, and the SCR of these images are 12.6 dB and 19.8 dB, respectively.
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Figure 6. Results of the first impulse GPR experiment. A plastic APM is buried in the scenario. (a) GPR
data. (b) Full band imaging result. (c) LF imaging result. (d) HF imaging result. (e) Extracted target
image. (f) Detection result. (g) Result of PCA-CFAR. (h) Result of RPCA-based method.
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Figure 7. Cont.
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Figure 7. Results of the second impulse GPR experiment. Two APMs containing both metal and
nonmetal are buried in the scenario. (a) GPR data. (b) Full band imaging result. (c) LF imaging
result. (d) HF imaging result. (e) Extracted target image. (f) Detection result. (g) Result of PCA-CFAR.
(h) Result of RPCA-based method.
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Figure 8. Results of the SFCW GPR experiment. Four mines of different sizes are buried in the
scenario. (a) Burial map (axis in cm) [37]. (b) Full band imaging result. (c) LF imaging result. (d) HF
imaging result. (e) Extracted target image. (f) Detection result. (g) Result of PCA-CFAR. (h) Result of
RPCA-based method.

As listed in Table 3, the performance of our method on this dataset outperforms the PCA-CFAR
with more accurate detection (100% PD) and less false alarms (12.3% FAR), whereas the PCA-CFAR
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method yields a higher FAR (54.5%) to achieve 89.4% PD. The performance of RPCA-based method is
of 93.3% PD and 10.8% FAR.

The second experiment was conducted on the dataset published by the Georgia Technology
Institute. Seven types of mines were buried in a 1.8 m × 1.8 m region. The test site was different from
the actual minefield because the targets were close to each other, but this dataset can still be used
to demonstrate the applicability of our method to the SFCW GPR data. The experimental setup is
detailed in [37,38]. Fifty B-scans acquired along the x axis were selected to test our method. As shown
in the burial map Figure 8a, the coverage area of these B-scans is enclosed by a rectangle, and a dash
line across the center indicates location of the example B-scan. The locations and sizes of these four
target are indicated by four dash-dotted boxes. As we can see in the imaging result (Figure 8b), the
horizontal stripe-like clutter is overlapped with the images of targets. Two deep buried targets can be
found due to their big sizes and strong reflections while the other two small targets buried shallowly
near the center are hidden in the clutter. In the LF image Figure 8c, two targets of the bigger sizes can
be noticed, while the smallest simulant mine is prominent in the HF image Figure 8d. Removing clutter
using our method, the result is shown in Figure 8e, where the SCR is increased to 26.8 dB. Finally, all
of the four targets are correctly detected and indicated with points in Figure 8f after the thresholds are
applied. After processing the data with the PCA-CFAR method and the RPCA-based method, SCRs
are improved by 11 dB and 27.9 dB, respectively. Also, the targets are detected by these two methods,
as shown in Figure 8g,h. However, there is a false alarm indicated by a triangle in Figure 8h, which
may be caused by the residual ground clutter.

After processing this dataset, our proposed method detects all of the targets shown in Figure 8a
with an FAR of 7.0%, while the PCA-CFAR miss two small targets and the FAR is 19.2%. The
RPCA-based method achieves 100% PD and 8.4% FAR. The performances are summarized in Table 3.

4.4. Discussion

1. Reconstruction of the target image. As a part of our proposed method, GPR data is migrated
using the LRM algorithm. The resolution of the signal is not enough for an accurate shape
reconstruction of our mine-like targets but improves the SCR of the image, making the targets
look like points with high energy.

2. Overlap of sub-band. The idea of improving performance by allowing some overlap comes
form [27]. According to our investigation on the synthesized dataset, the best performance is
obtained with an overlap close to 50–60% (see Figure 9).
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Figure 9. PD/FAR vs overlap.

5. Conclusions

In this paper, we propose a novel TRPCA-based method for clutter suppression and target
detection. A tensor formation scheme capturing the target sub-band features is firstly presented. Then,
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taking advantage of the low-rank and sparse property of the multidimensional tensor, our method
formulates the clutter removal and target detection as a TRPCA problem and then solves the problem
by decomposing the obtained tensor with a tractable method—ADMM. The feasibility and effectiveness
of our proposed method for APM detection applications are verified by both numerical simulations
and laboratory experiments with different GPR systems. Our proposed method is distinguished from
traditional ones by the advantage of multidimensional data structure, which enables exploiting of the
information contained in different sub-bands. Since the sub-band technique is a rough description of
the frequency-dependent features, our future works will focus on designing a precise characterization
of target features to guide the tensor construction and applying classification to discard false positives.
Considering the conditions of laboratory experiments are different from those of the actual minefields,
the analysis should be extended to field experiments under realistic clutter conditions.
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