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Abstract: Multisource forest inventory methods were developed to improve the precision of national
forest inventory estimates. These methods rely on the combination of inventory data and auxiliary
information correlated with forest attributes of interest. As these methods have been predominantly
tested over coniferous forests, the present study used this approach for heterogeneous and complex
deciduous forests in the center of France. The auxiliary data considered included a forest type
map, Landsat 8 spectral bands and derived vegetation indexes, and 3D variables derived from
photogrammetric canopy height models. On a subset area, changes in canopy height estimated from
two successive photogrammetric models were also used. A model-assisted inference framework,
using a k nearest-neighbors approach, was used to predict 11 field inventory variables simultaneously.
The results showed that among the auxiliary variables tested, 3D metrics improved the precision of
dendrometric estimates more than other auxiliary variables. Relative efficiencies (RE) varying from
2.15 for volume to 1.04 for stand density were obtained using all auxiliary variables. Canopy height
changes also increased RE from 3% to 26%. Our results confirmed the importance of 3D metrics
as auxiliary variables and demonstrated the value of canopy change variables for increasing the
precision of estimates of forest structural attributes such as density and quadratic mean diameter.

Keywords: multisource forest inventory; national forest inventory; non-parametric models; statistical
inference; digital photogrammetry

1. Introduction

French forests, as with their European counterparts, undergo rapid changes, mainly due to the
abandonment of agricultural lands [1]. In France, forests are defined as land areas of at least 0.5 ha
with a minimum average width of 20 m, and a canopy cover of trees capable of reaching a height of
5 m in situ of more than 10% [2]. French forest area expanded by around 100,000 ha per year during
the last century, and the phenomenon is showing no signs of diminishing. Similarly, forest-growing
stock experienced the same trend with a time lag, and even doubled during the last 50 years [3].
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As the French National Forest Inventory (NFI) is continuous, with a new sample generated each
year, such an expansion is handled with a sample size adapted yearly to these new conditions [4].
Nevertheless, a large proportion of these new resources are located in areas where the intensity of forest
management practices has been historically limited. These new resources have different properties
compared to ancient forests [3], and remain largely unknown by local stakeholders. Support for action
by territorial decision-makers, forest industry, and local administrations, requires precise estimation of
forest resources at larger spatial scales for establishing forest management strategies under sustainable
development. As the number of NFI plots at those scales is usually limited, alternative solutions must
be developed.

Multisource national forest inventory (MSNFI) methods have been applied (e.g., [5–7]) to improve
the precision of forest resource estimates without increasing inventory costs or sampling intensities for
smaller areas than normally possible using NFI field data alone [8]. MSNFI relies on the combination
of field inventory data with wall-to-wall auxiliary variables derived from thematic maps and remotely
sensed data. The objective of MSNFI methods is to infer population parameters [6,9]. Design-based
estimators [10] are well adapted to NFI data because they rely on probability sampling designs as the
basis for inference and are nearly design-unbiased [11–14]. A model-based approach is an alternative
which assumes that the population under study is a random realization of a “super-population”,
but is subject to bias [15] and requires the use of a correctly specified model form [16,17]. Each
method has its advantages and drawbacks [11], and the appropriate inference approach should be
selected according to the objectives of interest because the respective estimators are based on different
underlying assumptions [18–20].

MSNFIs have been implemented using either parametric or non-parametric models [21–24],
including co-kriging, universal kriging, Bayesian regression model, geographically weighted regression,
and k nearest neighbors (k-NN) [8,25–28]. Among these methods k-NN approaches have gained
popularity in MSNFIs because of their multivariate properties [24,29], allowing simultaneous prediction
of multiple forest attributes with a single model, and the absence of assumptions regarding the
distributions of both response and auxiliary variables. A strong argument for k-NN relies on its ease of
use and the fact that predictions better preserve the covariances among the observed forest response
variable observations [24]. Overall, the performance of k-NN relies on the number of neighbors, k,
the distance metric, the weights used for individual neighbors, and the auxiliary variables to build
the model [30,31]. The optimal value of k is a trade-off between accuracy and variance. Single
nearest neighbor (k = 1) uses only a single sample plot value in the imputations [15,32,33], and avoids
extrapolation beyond bounds of reality [34], but at the cost of a reduced prediction accuracy [35].
A greater k value (>3 to 10 or much greater) selected based on an optimization criterion (e.g., prediction
error) using the leave-one-out technique generally improves predictive accuracy [20,36].

In terms of variables, the majority of MSNFIs rely on freely available medium (i.e., Landsat TM)
or coarse (i.e., MODIS) resolution optical images [8,37] due to their availability over large territories
and their frequent renewal [38]. However, the correlation between optical variables and major forest
attributes such as volume or biomass may be weak due to signal saturation problems [39]. Haapanen
and Tuominen [40] combined Landsat TM data with textural features extracted from aerial photographs
and reported that the combination of variables from both data sources provided the greatest predictive
accuracies. The development of three-dimensional remote sensing from both spaceborne and airborne
platforms provides information related to canopy height and structure that is well-correlated with
some of the major forest attributes measured in the field [19,31,41], and is expected to provide greater
accuracies for forest attribute estimates [42]. Studies have been conducted using Airborne Laser
Scanning (ALS) data [43,44], Digital Aerial Photography (DAP) [41,45,46], and even Interferometric
Synthetic Aperture Radar (InSAR) [47]. Estimates obtained using auxiliary variables derived from
image matching techniques were found to be in good agreement with estimates obtained using
ALS-derived variables [48,49]. The availability and affordability of aerial photographs at frequent
intervals make them a viable alternative for forest inventory applications for updating or retrospective
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analysis compared to ALS or InSAR data [45,50,51]. Furthermore, multi-temporal aerial photographs
also facilitate estimation of growth increment or canopy change detection that may improve the
precision of MSNFI estimates. Typically, studies have employed simple height-related metrics (e.g.,
mean height, percentiles, maximum height) for forest attribute estimation (e.g., [52]). Other studies
focus on more complex descriptors of canopy structure and heterogeneity at the plot-level [53–55].
The proliferation of auxiliary information poses the issue of the curse of dimensionality [56] and the
related noise introduced by variables unrelated to response attributes of interest. For k-NN, the value
of k can then be large when the relationship between field attributes and auxiliary variables is weak,
and the selection of nearest neighbors may become difficult [20].

According to [57], more than 35% of studies involving k-NN approaches focused on boreal
coniferous forests, and most of the studies on temperate continental and temperate mountain forests
were for the USA. Despite the multivariate capabilities of k-NN, many researchers focused on a single
response variable [20,58,59]. In this context, the objective of this paper was to test the performance
of MSNFI based on multivariate k-NN imputations for improving the precision of estimates beyond
what could be obtained by NFI field data alone in a broadleaved-dominated forest, which is complex
in terms of composition, structure, and fragmentation. The secondary objectives were: 1) to assess the
influence of auxiliary data (Landsat images, 3D models from aerial images and forest type map) on the
precision of the MSNFI estimates, and 2) to further evaluate the potential of diachronic 3D data from
two successive aerial data coverages on the precision of MSNFI estimates. The performance of MSNFI
was evaluated in a multivariate context with 11 forest attributes as response variables: growing stock
volume, production volume, basal area, density, quadratic mean diameter, and the volume respectively
of broadleaved, conifers, oak, Scots pine, other broadleaved, and other conifers.

2. Materials and Methods

2.1. Study Site

The study site is located in Central France (48◦6′ N to 48◦5′ N and 1◦50′ E to 1◦30′ E) and covers
the Sologne and Orléans forests, an area of 7335 km2, of which 48% consists of forests (3600 km2)
(Figure 1). The area is representative of western oak-dominated broadleaved French forests with
respect to landscape heterogeneity, forest habitats, and diversity in forest management practices [60].
The area is influenced by a degraded oceanic climate and is marked by a greater temperature range
compared with the littoral area. Mean annual temperature and precipitation are 10.9 ◦C and 731 mm,
respectively. The slowly undulating relief ranges from 70 to 180 m elevations, and bears hydromorphic
(58%), brown (23%), and podzolized (17%) soils made of sand and clay, and resulting from the erosion
of the Massif Central. The forests are dominated by broadleaved (75.3%) mainly oaks (i.e., Quercus robur
L. and Quercus petraea Mill.). Coniferous stands represent 15.5% of the forest area and are dominated
by maritime (Pinus pinaster Ait.) and Scots pines (Pinus sylvestris L.). The remaining area of the forests
is covered by mixed stands consisting mostly of oak and Scots pine. The forests are characterized by
different management strategies related to forest ownership. While the southern part of the area is
dominated by private forests (90%) with various intensities of management, the northern part is more
intensely managed and includes the largest state forest of France, which covers around 34,600 ha.

2.2. National Forest Inventory Data

The French NFI is a continuous countrywide inventory [1,61]. The two-phase sampling plan is
based on a permanent systematic 1-kilometer-square unit grid. The first-phase annual sample is drawn
randomly for one-tenth of the grid (10 km2). For each 1-kilometer square grid cell one to four points
may be drawn, thus constructing an annual sample of ~80,000 points. The first phase points are photo
interpreted on 0.5 m resolution infrared aerial photographs for land cover and land use, and produce
results for land cover. The second phase is a subsample of the first taken in different proportions. For
forests, the standard second phase sample is obtained by taking one point out of two (~6500 points)
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that are visited in the field. Field observations are obtained from concentric plots of 6, 9, 15, and
25 m radius. The stand description in terms of land cover and use, as well as composition, structure,
age, etc. is assessed for the 25 m plot. Trees are measured on the three smallest concentric plots,
according to their circumference at a height of 1.3 m: trees in the 23.5–70.5 cm circumference range are
measured on the 6 m radius plot, trees in the 70.5–117.5 cm circumference range are measured on the
9 m radius plots, and the trees with a circumference of at least 117.5 m are measured on the 15 m radius
plot. Dendrometric measurements include species, diameter at 0.1 and 1.3 m, total height, as well
as diameter increment during the last five years. Additional measurements including timber height,
mid-diameter and mid-timber diameter are taken on a subsample of plots to fit volume models [1].

For the purpose of this research, data from 775 plots measured during the 5-year period 2010–2014
were used. This period has been selected to match the acquisition date of the remotely sensed data
whose reference year was 2014. A total of 11 forest attributes were considered as response variables:
growing stock volume, basal area, density, and quadratic mean diameter, production volume (estimated
based on measurements of the last 5 growth rings), volumes of broadleaved, conifers, oak, Scots pine,
other broadleaved and other conifers. Summary statistics for the plot variables are provided in Table 1.
Two photogrammetric elevation models (2008 and 2014) are available for a subset (~44%) of the study
area (N = 346 plots, Table 1), and were used to assess the effect of canopy height changes on the
precision of estimates.
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Figure 1. Localization of the study area (a), showing (b) the forest mask and the 775 national forest 
inventory plots in the main and the subset (southwestern part below dotted line) areas; 1 km2 tiles of 
(c) the forest type map; (d) a 30 m resolution Landsat color composition (bands 4,3,2); and (e) a 1 m 
resolution photogrammetric canopy height model. The position of the tile used to illustrate is shown 
as a black rectangle in (b). 

Table 1. Mean and variance of field plot attributes for the whole area and the subset area. 

Response variable 
Main area (N = 775) Subset area (N = 346) 
Mean Variance Mean Variance 

1: Total volume (m3/ha) 152.14 13.03 143.64  28.27 
2: Stand basal area (m2/ha) 20.14  0.15 19.49   0.34 

3: Stand density (n/ha)  686.19  402.37 687.23  952.03 
4: Quadratic mean diameter (cm) 23.50   0.18 22.82   0.35 

Figure 1. Localization of the study area (a), showing (b) the forest mask and the 775 national forest
inventory plots in the main and the subset (southwestern part below dotted line) areas; 1 km2 tiles of
(c) the forest type map; (d) a 30 m resolution Landsat color composition (bands 4,3,2); and (e) a 1 m
resolution photogrammetric canopy height model. The position of the tile used to illustrate is shown as
a black rectangle in (b).
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Table 1. Mean and variance of field plot attributes for the whole area and the subset area.

Response Variable Main Area (N = 775) Subset Area (N = 346)

Mean Variance Mean Variance

1: Total volume (m3/ha) 152.14 13.03 143.64 28.27
2: Stand basal area (m2/ha) 20.14 0.15 19.49 0.34

3: Stand density (n/ha) 686.19 402.37 687.23 952.03
4: Quadratic mean diameter (cm) 23.50 0.18 22.82 0.35
5: Production volume (m3/ha/yr) 5.45 0.016 5.41 0.04

6: Conifers volume (m3/ha) 46.06 10.13 50.22 28.40
7: Broadleaved volume (m3/ha) 106.08 11.09 93.41 18.88

8: Oak volume (m3/ha) 72.15 8.81 61.69 14.79
9: Other broadleaved volume (m3/ha) 33.93 4.07 31.72 7.48

10: Scots pine volume (m3/ha) 22.22 5.91 23.61 15.81
11: Other conifers volume (m3/ha) 23.85 5.58 26.62 16.24

2.3. Auxiliary Data

Three sources of auxiliary data available at no cost were considered: a forest type (FT) map (BD
Forêt® v2) constructed by the French National Institute of Geographic and Forest Information (IGN),
DAP models of the forest canopy surface, and Landsat images. All auxiliary variables were processed
at a 30 m spatial resolution corresponding to the Landsat image pixel size and to the field plot area
used for dendrometric measurements.

The FT map product BD Forêt® is a vector layer constructed by photo-interpretation of
near-infrared aerial photographs. The map includes a total of 32 classes and a minimum polygon size
of 0.5 ha. The nomenclature includes a description of the vegetation type with the dominant species,
according to tree cover classes. The map corresponding to the study region has been constructed using
aerial images acquired in 2008. The forest contours were used to construct a forest mask. The mask
was further intersected with the 30 m grid, and only the grid cells completely in the forest mask
were considered for the analysis [10]. The FT map attributes were summarized for each grid cell and
aggregated into three classes corresponding to pure broadleaved, pure conifers and mixed stands.

The DAP Digital Surface Models (DSM) were normalized using a co-occurring ALS Digital Terrain
Model (DTM) to generate Canopy Height Models (CHM). ALS data were not considered as auxiliary
data for describing the forest structure as their availability and cost prevent regular updates. The ALS
data were acquired by IGN between January 17 and March 30, 2014, as part of the land survey with
a point density of 2 pts.m−2 and a flight line overlap of 50%. The point cloud was processed using
the iterative TIN algorithm of the Terrascan software (Terrasolid, https://www.terrasolid.com, last
consulted October 25, 2018), followed by visual inspection and manual correction whenever necessary.
The algorithm was run using a terrain angle of 88◦, iteration angle of 6◦, and an iteration distance of
1.4 m. The point data were delivered by 1 km x 1 km tiles, and were buffered using a 30 m threshold.
Ground classified points were used to construct a digital terrain model with a 1 m resolution using
inverse distance weighted interpolation. The DAP DSMs were constructed using aerial images acquired
in 2013 (eastern part of the area, from July 06 to 12), 2014 (western part of the area, from May 18 to
July 16), and 2008 (western part of the area only). The 2013–2014 images were acquired using an
IGN camera (sensor V28T, 14,650 x 10,700 pixels of 6.8 µm each) mounted with a Zeiss lens having a
125 mm focal length. The images were acquired at 6,400 m above ground level, leading to a 35 cm
resolution at the ground level. The 2008 images were acquired on August 30 using a DMC camera
(sensor of 13,824 x 7680 pixels of 9 µm each) and a Zeiss 90 mm focal length lens. The acquisition
was done at an altitude of 5,500 m, leading to a 54 cm resolution at the ground level. For all flights,
the image overlap was 60% along and 25% across tracks. The image orientation was done by IGN
as part of the production process. The dense image matching was done using MicMac open source
photogrammetric software [62]. MicMac is based on a multi-resolution-optimization approach and
used a coarse to fine matching strategy based on image pyramids to improve the processing time and

https://www.terrasolid.com
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control the similarity of matches between levels. The dense matching was performed using a Per
Images Matching approach (PIMs mode) in image geometry and rely on tie points generated using the
‘Scale-Invariant-Feature Transform’ (SIFT) detector [63]. The matching approach produces a depth
map for each image pair. The depth maps are then merged together and converted into a dense point
cloud. The resulting point clouds were converted into a 1 m DSM using the maximum height per
pixels. Empty pixels were not interpolated. The DSM was further converted into a canopy height
model (CHM) by subtracting the ALS DTM. Two categories of metrics were derived from the CHM to
serve as auxiliary variables for each cell of the 30 m grid: distribution metrics above a height threshold
fixed at 5 m to match with the definition of forest and structure metrics [53]. The distributional metrics
included the percentiles 0 to 100 by steps of 10 (p0 to p100), as well as upper percentiles 95 and 99 (p95,
p99), the mean (hmean), standard deviation (hstd), variance (hvar), and the mean absolute deviation
(hmad) of heights. The structure metrics (Table A1), included the gap area ratio (Ga), the mean inner
canopy volume (Vi), the mean outer canopy volume (Vo), the mean inner canopy volume above a
given threshold value (Th) fixed here at 5 m (Vci), the mean outer canopy volume above Th (Vco),
defined as the complement of the canopy volume to the maximum height, the mean inner canopy
volume within gaps (Vgi) and its outer complement (Vgo), the standard rumple area (Ra) [55], or
the ones defined with respect to Vi (Ra1) and Vci (Ra2), as well as the number of empty pixels (NA).
Over the subset area, various difference metrics were computed, including changes in gap area (dGa),
in volume differences (e.g., dVi, dVo), mean, minimum and maximum heights (dhmean, dp0, dp100),
as well as in the upper percentiles (dp95, dp99).

Four Landsat 8 images acquired on September 8, 2014 were downloaded from the Theia
platform (https://theia-landsat.cnes.fr) with the processing level 2A, including orthorectification,
atmospheric correction and cloud detection [64]. The reflectance images were used to compute
various indices (Table A2): the simple ratio (SR), the normalized difference vegetation index (NDVI),
the Specific Leaf Area Vegetation Index (SLAVI), the Soil Adjusted Vegetation Index (SAVI), the
Modified Soil Adjusted Vegetation Index (MSAVI), the enhance vegetation index (EVI) the green NDVI
(GNDVI), the Normalized Difference Moisture Index (NDMI), Normalized Difference Water Index
(NDWI) [65,66], as well as brightness (Br), greenness (Gr), and wetness (We) derived from Tasseled
Cap transformation [67]. In addition to computed spectral reflectance indices, we also included the
seven reflectance bands of Landsat 8: Ultra Blue (UB), Blue (B), Green (G), Red (R), Near Infrared (NIR),
Shortwave Infrared (SWIR) 1, and Shortwave Infrared (SWIR) 2. The Landsat metrics were assigned to
the grid cells by intersecting the grid with the coordinate of the center of the Landsat pixels.

2.4. Optimization of the k-NN Model

MSNFI performance depends on: (1) the modeling framework, and (2) the correlation between
the surveyed forest attributes and the auxiliary information.

As indicated above, a non-parametric multivariate k-NN approach was adopted to construct
wall-to-wall predictions of forest attributes. The k-NN parameters include the number of neighbors
(k), the distance metric used to search the variable space, and a weighting function to compute
predictions [57]. In k-NN, the population units for which both response and auxiliary variables are
available are termed the reference set and the units for which predictions of response variables are
sought are termed the target set. The auxiliary variables are also termed feature variables and the
space defined by them is termed the feature space.

Based on a literature survey [57,68] and preliminary results, two distance metrics were compared:
Euclidean and Canonical Correlation Analysis (CCA) [69]. The Euclidean distance is computed in a
normalized space of auxiliary variables. The CCA distance is defined by Equation (1):

d =
√

Γ ∧2 ΓT (1)

https://theia-landsat.cnes.fr
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where Γ is the matrix of canonical vectors corresponding to the X’s found by canonical correlation
analysis between X and Y, ΓT the transposed matrix, and ∧ is the canonical correlation matrix.

Values of k in the range of 1 to 20 were tested to optimize model performance. The weight of the
neighbors used to compute the imputed values for the continuous variables according to Equation (2):

wj = 1/(1 + dij) (2)

where dij is the distance between target pixel i and reference pixel j in the feature space.
k-NN models were generated using six different combinations of auxiliary variables: (1) Landsat

variables alone, (2) Landsat variables and FT from the forest map, 3() 3D metrics from DAP CHMs,
(4) 3D metrics from DAP CHMs with FT from the forest map, (5) Landsat variables and 3D metrics from
DAP CHMs, and (6) all auxiliary variables. On the subset area, the introduction of change detection
variables was also tested. Only two combinations of auxiliary variables were considered: all former
auxiliary variables used alone, or with the change detection variables.

Note that preliminary analyses revealed estimation accuracy issues due to auxiliary variables
having weak correlations with the response variables, which has also been reported in [30,31]. The
problem was solved by filtering out auxiliary variables that have maximum correlation values less
than 0.2 with the response variable considered. A total of four auxiliary variables were discarded from
analysis, including three Landsat bands (UB, B, R), and one volume metric (Vco).

The performance of the k-NN models was evaluated using a leave-one-out cross-validation
approach (LOOCV). Model accuracy was evaluated using the Root Mean Squared Difference (RMSD)
between observed and imputed values [70]. For comparing imputation models across multiple
response variables with different measurement units, RMSD value was standardized by dividing
RMSD by the standard deviation of the observations of the response variable (i.e., Scaled RMSD =

RMSD/Standard deviation of the response variable) [71]. Optimal k values were selected as those for
which mean RMSD across multiple response variables did not differ more than 5% from the minimal
mean RMSD value [20].

k-NN optimization was conducted using R open source software with the yaImpute package [71].

2.5. Statistical Inference

Using field data only, the design-based, simple expansion (Exp) estimators of the population
mean and variance were defined by Equations (3) and (4).

µ̂Exp =
1
n

n∑
i=1

yi (3)

Vâr
(
µ̂Exp

)
=

1
n · (n− 1)

n∑
i=1

(yi−µ̂Exp)
2 (4)

where n is the number of sample plots, and yi is the observed value of plot i.
The inference of population parameters from the k-NN predictions across the study area was

assessed using model-assisted generalized regression (GREG) estimators of means and variances [72].
Despite using the term regression in the label characterizing GREG estimators, multiple prediction
techniques other than regression models, and particularly other than linear regression models, have
been used with the GREG estimators [73–75]. The GREG estimator of the mean is the difference
between the mean of the k-NN predictions across population units and the estimated bias, as shown in
Equation (5):

µ̂GREG =
1
N

N∑
i=1

ŷi −
1
n

n∑
i=1

εi (5)
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where εi = (ŷi − yi) is the difference between k-NN prediction and the observed response variable
(estimate of bias), N is the number of population units or pixels, and n is the number of field sample
plots. The associated variance estimator is computed using Equation (6):

Vâr
(
µ̂GREG

)
=

1
n · (n− 1)

·

n∑
i=1

(εi−ε)
2 (6)

where ε =
(

1
n

)
·
∑n

i=1 εi.
The performance of k-NN was evaluated through a measure of relative efficiency (RE =

Vâr
(
µ̂Exp

)
/Vâr

(
µ̂GREG

)
. RE provides an estimate of the gain in precision resulting from the use

of the auxiliary information that is incorporated into the model-assisted estimators in comparison
with pure field-based estimates. RE values greater than 1 indicate increased precision. The primary
advantage of the GREG estimators is that they take advantage of the relationship between the
probability based sample plot data and their corresponding predictions to reduce the variance of the
estimated population mean [20] and thereby increase RE. For each combination of auxiliary variables:
µ̂GREG,Vâr

(
µ̂GREG

)
, and RE were calculated for all 11 response variables.

2.6. External Validation

Internal models are recognized to underestimate variance [12,13]. To account for this issue, a
complementary analysis was conducted. Both the main and subset areas were divided into three
sub-areas having approximately the same number of field plots (i.e., 258 (~775/3) and 115 (~346/3)
plots for the main and the subset areas, respectively). Each sub-area was used to build a k-NN model
following the methods presented in Sections 2.4 and 2.5. The models were then applied to the two
other sub-areas as external models. The mean REs obtained with both approaches were compared to
assess the underestimation associated with the internal model.

3. Results

3.1. k-NN Optimization

Table 2 shows the mean RMSD values for the various combinations of auxiliary variables and
distance metrics. The smaller the RMSD, the greater the similarity between the reference and the
imputed observations. Using Euclidean distance, mean RMSD values ranged from 1.00 for the Landsat
metrics alone to 0.84 for the overall metrics. The k values selected were relatively stable, ranging
from 4 to 8. Interestingly, the combination of 3D metrics with the FT map performed well with a
mean RMSD of 0.85, which was only 0.01 greater than for the combination having smaller RMSD
with a 37.5% decrease in the number of auxiliary variables. By comparison, the combination of 3D
metrics with Landsat metrics (39 variables) performed slightly less well with mean RMSD of 0.86, and
a greater range of individual RMSD values. Slightly smaller RMSD values were obtained using CCA
distance, with mean RMSD values ranging from 0.99 for the Landsat metrics alone to 0.84 with the full
set of metrics. The optimal k value was also rather stable, ranging from 5 to 6. With both distance
metrics, the introduction of canopy change auxiliary variables contributed to greater mean RMSD
values. The improvement was more pronounced using the Euclidean distance metric, with a gain in
mean RMSD of 0.02.
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Table 2. Cross-validated Root Mean Squared Differences (RMSD) of the imputation, for the optimal
k-NN models. Numbers in parenthesis are minimum and maximum values of the 11 forest attributes.

Euclidean CCA

Auxiliary Variable
Combination Domain No. of Variables k RMSD k RMSD

Landsat Main 15 6 1.00
(0.84;1.08) 6 0.99

(0.83;1.07)

Landsat & Forest types Main 16 6 0.98
(0.73;1.09) 6 0.97

(0.71;1.07)

3D metrics Main 24 6 0.91
(0.72;1.04) 6 0.91

(0.71;1.03)

3D metrics and Forest types Main 25 5 0.85
(0.69;0.98) 5 0.84

(0.67,1.00)

3D metrics and Landsat Main 39 8 0.86
(0.68;1.00) 5 0.86

(0.71;0.99)

All Main 40 5 0.84
(0.67;1.00) 5 0.84

(0.64;0.97)

All Subset 41 4 0.87
(0.66;1.02) 5 0.86

(0.66;1.01)

All and change Subset 45 5 0.85
(0.65;1.00) 6 0.85

(0.64;1.01)

3.2. Statistical Inference

Tables 3 and 4 show the estimated means and corresponding REs for the 11 field response attributes
for the whole area computed using Euclidean and CCA distances, respectively. Using Euclidean
distance (Table 3), the greatest RE was obtained for total volume, with a value of 2.18. The smallest
RE was obtained for the volume of other broadleaved, with a value of 1.03. For nine out of the
11 forest attributes, the greatest RE was achieved with all auxiliary variables combined. The stand
density was most accurately estimated using the 3D metrics alone (RE = 1.21). For the volume of other
broadleaved, the most accurate auxiliary variable combination included the 3D metrics and the forest
types, and produced RE of 1.03. With CCA distance (Table 4), the greatest RE was obtained for the
volume of other conifers with a value of 2.37. As for Euclidean distance, the least accurate results were
obtained for the volume of other broadleaved, reaching a RE of 1.06. The greatest REs were achieved
using all auxiliary variables combined for only six of the 11 forest attributes. The greatest REs for
total volume (2.04), stand basal area (1.44), broadleaved volume (2.15), and oak volume (1.65) were
obtained using as the 3D metrics and the FT. For stand density, the greatest RE was obtained with
the 3D metrics only (1.14). On average, Euclidean distance was more accurate for six of the 11 forest
attributes. But CCA distance tended to be more accurate for those field attributes showing the smallest
REs, namely the production volume, the Scots pine volume and the volume of other conifers.

Table 3. Mean, standard error (SE), and relative efficiencies (RE) computed on the main area for the
different combination of auxiliary variables using Euclidean distance. The greatest RE for each forest
attributes appears in bold.

Landsat Landsat and Forest Types 3D Metrics

Forest Attributes 1 Mean SE RE Mean SE RE Mean SE RE

1 155.02 3.63 0.99 154.82 3.59 1.01 153.83 2.62 1.90
2 20.47 0.13 0.98 20.42 0.39 1.00 20.10 0.33 1.39
3 692.67 21.27 0.89 690.32 21.48 0.87 686.65 18.27 1.21
4 23.55 0.46 0.85 23.55 0.46 0.84 23.59 0.38 1.23
5 5.57 0.13 0.96 5.57 0.13 0.98 5.45 0.12 1.09
6 48.92 2.68 1.41 49.61 2.35 1.83 45.74 3.13 1.04
7 106.09 3.15 1.12 105.22 3.07 1.18 108.09 2.70 1.52
8 72.04 2.84 1.09 71.07 2.83 1.10 72.65 2.55 1.35
9 34.06 2.14 0.89 34.15 2.13 0.90 35.43 2.04 0.97

10 23.52 2.39 1.04 25.08 2.27 1.14 21.84 2.49 0.95
11 25.40 2.38 0.98 24.52 2.33 1.03 24.21 2.46 0.93
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Table 3. Cont.

3D Metrics and Forest Types Landsat and 3D Metrics All

Forest Attributes 1 Mean SE RE Mean SE RE Mean SE RE

1 155.28 2.55 2.00 153.60 2.48 2.12 153.24 2.44 2.18
2 20.33 0.32 1.43 20.00 0.31 1.54 19.98 0.31 1.56
3 691.73 18.37 1.19 673.84 19.07 1.11 678.00 19.17 1.10
4 23.54 0.39 1.20 23.64 0.38 1.22 23.48 0.38 1.23
5 5.49 0.12 1.16 5.45 0.12 1.18 5.47 0.12 1.19
6 47.66 2.19 2.10 48.69 2.44 1.70 47.91 2.18 2.13
7 107.62 2.31 2.07 104.91 2.39 1.93 105.33 2.29 2.11
8 72.12 2.41 1.52 72.20 2.33 1.63 72.29 2.28 1.69
9 35.50 1.99 1.03 32.71 2.02 0.99 33.05 2.02 1.00

10 22.72 2.15 1.28 24.40 2.27 1.14 23.68 2.15 1.28
11 24.94 2.32 1.04 24.28 2.36 1.01 24.23 2.27 1.08

1: forest attributes: 1: total volume (m3/ha); 2: stand basal area (m2/ha); 3: stand density (stem/ha); 4: quadratic
mean diameter (cm); 5: production volume (m3/ha/yr), 6: conifers volume (m3/ha); 7: broadleaved volume (m3/ha);
8: Oak volume (m3/ha), 9: other broadleaved volume (m3/ha); 10: Scots pine volume (m3/ha); 11: other conifers
volume (m3/ha).

Table 4. Mean, standard error (SE) and relative efficiencies (RE) computed on the main area for the
different combinations of auxiliary variables using Canonical Correlation Analysis distance. The greatest
RE for each forest attribute appears in bold.

Landsat Landsat and Forest Types 3D Metrics

Forest Attributes 1 Mean SE RE Mean SE RE Mean SE RE

1 152.67 3.65 0.97 153.85 3.56 1.02 154.83 2.58 1.96
2 20.23 0.39 0.97 20.32 0.39 1.00 20.23 0.33 1.38
3 701.32 21.31 0.88 697.03 21.65 0.86 683.02 18.77 1.14
4 23.19 0.45 0.87 23.49 0.45 0.88 23.73 0.38 1.21
5 5.53 0.13 1.00 5.55 0.13 1.01 5.44 0.13 1.05
6 47.27 2.67 1.42 48.73 2.26 1.97 49.10 3.08 1.06
7 105.40 3.22 1.07 105.11 3.07 1.17 105.73 2.68 1.54
8 72.04 2.84 1.08 72.04 2.82 1.11 72.02 2.48 1.42
9 33.35 2.15 0.88 33.07 2.13 0.90 34.70 2.03 0.99

10 22.23 2.31 1.11 23.18 2.24 1.18 24.11 2.51 0.94
11 25.04 2.38 0.99 25.55 2.22 1.13 24.98 2.38 0.98

3D Metrics and Forest Types Landsat and 3D Metrics All

Forest Attributes 1 Mean SE RE Mean SE RE Mean SE RE

1 154.79 2.53 2.04 153.43 2.56 1.98 154.95 2.53 2.03
2 20.21 0.32 1.44 20.03 0.33 1.41 20.24 0.32 1.43
3 679.82 18.91 1.12 676.87 19.50 1.05 685.17 19.43 1.07
4 23.74 0.40 1.15 23.76 0.38 1.21 23.77 0.38 1.21
5 5.44 0.12 1.12 5.43 0.12 1.16 5.44 0.11 1.21
6 48.95 2.14 2.21 50.34 2.38 1.78 50.04 2.07 2.37
7 105.84 2.27 2.15 103.10 2.50 1.78 104.90 3.39 1.95
8 71.25 2.31 1.65 68.77 2.41 1.52 70.61 2.38 1.56
9 35.59 2.01 1.00 34.33 1.99 1.01 34.30 1.95 1.06
10 23.78 2.13 1.31 25.43 2.15 1.27 24.92 2.10 1.34
11 25.17 2.19 1.16 24.90 2.21 1.14 25.13 2.19 1.16

1: forest attributes: 1: total volume (m3/ha); 2: stand basal area (m2/ha); 3: stand density (stem/ha); 4: quadratic
mean diameter (cm); 5: production volume (m3/ha/yr), 6: conifers volume (m3/ha); 7: broadleaved volume (m3/ha);
8: Oak volume (m3/ha), 9: other broadleaved volume (m3/ha); 10: Scots pine volume (m3/ha); 11: other conifers
volume (m3/ha).

Table 5 shows the RE achieved on the subset area after including 3D change detection metrics.
Using Euclidean distance, REs increased for nine of the 11 field attributes, with an average RE difference
of 0.05. The greatest increase was obtained for the production volume with a RE increase of 0.17. RE
was most degraded for the volume of other conifers, with a difference of −0.06. Using CCA distance,
the mean RE difference was 0.04. However, the introduction of 3D change detection metrics contributed
to increased RE for six forest attributes only. The greatest increases were achieved for conifer volume
and production volume, with RE differences of 0.17 and 0.15, respectively. On the contrary, RE values
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were degraded for the volume of other conifers (−0.06), the broadleaved volume (−0.03), and the stand
basal area (−0.02). Overall the greatest RE values were obtained using a CCA distance for seven out of
the 11 field attributes.

Table 5. Effect of the inclusion of diachronic variables on the mean, standard error (SE), and relative
efficiencies (RE) over the subset area, for both distance metrics. The greatest RE for each forest attribute
and distance metric appears in bold.

Euclidean CCA

All All and Change All All and Change

Forest
Attributes 1 Mean SE RE Mean SE RE Mean SE RE Mean SE RE

1 142.60 3.62 2.15 144.0 3.57 2.21 146.15 3.78 1.97 146.27 3.79 1.97
2 19.23 0.48 1.50 19.36 0.47 1.57 19.63 0.49 1.41 19.59 0.50 1.39
3 682.13 30.63 1.01 680.01 29.47 1.10 693.18 31.19 0.98 683.96 31.22 0.98
4 22.80 0.56 1.11 22.88 0.55 1.16 22.89 0.56 1.12 22.74 0.54 1.21
5 5.33 0.20 1.07 5.43 0.18 1.24 5.52 0.19 1.09 5.52 0.18 1.24
6 51.52 3.55 2.25 54.27 3.49 2.33 54.37 3.57 2.23 54.81 3.44 2.40
7 91.07 3.27 1.77 89.72 3.24 1.80 91.78 3.12 1.94 91.46 3.14 1.91
8 59.65 3.18 1.46 60.18 3.10 1.54 60.89 3.12 1.52 60.87 3.05 1.59
9 31.42 2.80 0.95 29.54 2.76 0.98 30.90 2.72 1.01 30.59 268 1.04
10 26.18 3.74 1.13 28.20 3.73 1.13 26.53 3.74 1.13 25.52 3.69 1.16
11 25.34 3.82 1.11 26.08 3.92 1.05 27.84 3.39 1.42 29.29 3.45 1.36

1: forest attributes: 1: total volume (m3/ha); 2: stand basal area (m2/ha); 3: stand density (stem/ha); 4: quadratic
mean diameter (cm); 5: production volume (m3/ha/yr), 6: conifers volume (m3/ha); 7: broadleaved volume (m3/ha);
8: Oak volume (m3/ha), 9: other broadleaved volume (m3/ha); 10: Scots pine volume (m3/ha); 11: other conifers
volume (m3/ha).

3.3. External Validation

The results of the external validation are presented in Figure 2. Over the main area, the mean RE
obtained with the Euclidean distance was 1.45 for the internal model and 1.38 for the external model.
REs obtained with the CCA distance were of the same magnitude, with an internal RE of 1.41 and an
external one slightly greater with a value of 1.42. The results obtained over the subset area showed
the limitation of CCA distance associated with respect to the number of field sample units. Using the
Euclidean distance, the greatest REs were obtained using the change detection metrics, with values of
1.41 and 1.35 for the internal and external models, respectively. This is 0.04 and 0.05 greater than the
RE achieved without considering change metrics. By comparison, the greatest RE output with the
CCA distance were almost similar to the two sets of metrics, reaching 1.27 with the internal models
and 1.16 and 1.15 with the external models with and without change metrics, respectively.

Figure 2 also highlights the differences between forest attributes. Volume attributes were estimated
with the greatest RE, provided these attributes were well represented within the field sampling plots,
and were not rare events. Indeed, the total volume, total volume of conifers and of broadleaved
were estimated with RE above 1.5. Those volumes with smaller frequencies like the volume of other
broadleaved than oaks and the volume of other conifers than scot pines were estimated with RE
around 1. The introduction of change detection metrics with the Euclidean distance mostly benefits
estimation of production volume, a flux variable, and stand density to a lesser extent. RE for the
former increased by 0.13 from 1.08 to 1.21 for the internal model, and by 0.2 (i.e., from 1.01 to 1.21)
for the external model. The latter showed a gain in RE of 0.09 and 0.08 for the internal and external
models, respectively.
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4. Discussion

4.1. k-NN Optimization

Our results demonstrated that 3D metrics extracted from DAP CHMSs were the most efficient
auxiliary variables for estimating the 11 forests attributes considered (Table 2). Similar results were
obtained in boreal countries [76]. However, the limited efficiency of Landsat metrics was expected in
the structurally complex broadleaved-dominated forests, with only small correlations between Landsat
indices and the forest attributes considered. Such small correlations could be explained by the well
documented saturation effect of Landsat spectral indices in average biomass levels [77], thus providing
limited capabilities to differentiate subtle variations in forest attributes. That said, the combination of 3D
auxiliary variables with information about vegetation composition and related structural characteristics
summarized by vegetation indices, significantly improved the RMSD, illustrating the complementarity
of information sources to estimate field measured forest attributes [78]. Interestingly, the combination
of 3D metrics with either Landsat metrics or the FT map provided similar results (Table 2). Despite a
limited spatial resolution, the FT information serves as a proxy for the dominant species, which is an
important variable associated with numerous forest attributes. Such information is rare and expensive
to produce, as it remains largely based on semi-automated approaches and requires substantial manual
photo-interpretation. Furthermore, the FT map used in this study was constructed using images
acquired in 2008 and could thus be considered as outdated in some locations where changes due to
management or natural events such as storms have occurred, contributing to errors in population mean
estimates. A study described in Reference [79] introduced a stratified k-NN method by auxiliary data
in multisource forest inventories for reducing the effect of inaccurate map data on the forest-resource
estimates in a model-based framework. Those methods for design-based, model-assisted approaches
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should be investigated. However, considering the importance of the auxiliary variable, there is an
interest for NFIs to automate construction/updating of those maps to account for variations in forest
surfaces and types in a k-NN framework.

The introduction of variables based on 3D changes contributed to the reduction of RMSD,
demonstrating the importance of this kind of metric for increasing the precision of estimates and for
developing monitoring systems. This result further points out the potential of time-series of optical
imageries to improve neighbor selection within the k-NN method and to contribute to improved
estimations [80]. Long-term times-series including decades of observations might provide insights into
forest management [78], especially clear and partial cuts, and could be used to update forest maps [7].
Short-term time-series, built using images collected over a year, might also provide information about
phenology and further improve neighbor selection [33]. Apart from time-series data, texture metrics
extracted from aerial images or very high-resolution satellites data need to be further considered,
as they were found to provide information about forest structure and composition [81,82] and did not
appear to saturate with increases in biomass levels [82].

In terms of k-NN setup, the optimal number of neighbors, defined according to [20] was relatively
constant, despite a large variation in the number of auxiliary variables. Our results are in agreement
with the literature, with optimal k values ranging between 1 and 10, with five as a most often selected
value [57]. CCA distance, despite using both auxiliary and field data in the k-NN construction only
marginally improved the mean RMSD with respect to Euclidean Distance. This makes Euclidean
distance appealing since additional field attributes could be estimated without a requirement to
re-compute a new k-NN model. This is particularly attractive for NFIs that collect hundreds of
variables and could also compute additional information from those field measured attributes.

4.2. Statistical Inference

The estimated means and REs confirmed the trends observed with the RMSD values.
The combination of field and Landsat data provided limited precision gain, and even generated
greater variance than the one obtained using field data alone for a majority of field attributes. All but
one of the REs were greater than 1.0 when the auxiliary variable set included the 3D metrics and either
Landsat metrics or FT map. The greatest REs were obtained for volume-related field attributes, to the
degree that the attributes were not rare events and were well-represented by the field data. Such a
result was expected, since volume is a function of the canopy height and is thus well correlated with
the auxiliary variables describing canopy surface height and structure [53]. The degraded precision of
volume attributes having small frequencies in our field sample such as the volume of other broadleaved
trees, or the volume of other conifers showing a limited precision gain, which has also been reported
by others [68]. Indeed, forest attributes with few observations from rare populations are expected to
contribute to large standard errors [83]. Other structural metrics were estimated with RE ranging from
1.14 (stand density) to 1.58 (basal area). Those results are of the same magnitude as reported by [29] for
a forest area in north central Minnesota in the USA, with values ranging from 1.23 to 1.35 for six forest
attributes including volume. The moderate precision gain achieved here for stand density and to some
extent to production volume and the QMD could be explained by the smaller correlations of those
field attributes with both 3D and 2D metrics [84]. Even though some studies did not report the same
trends [29,85] the smaller precision gains reported here for density and QMD could be attributed to
the complexity of the forest, characterized by two dominant forest structures made of regular stands
(~55%) and of coppice-with-standards (~40%).

An important result was the performance gains achieved with the introduction of variables
associated with 3D changes (Table 5). RE increased on average by 0.06 and 0.04 using the Euclidean
and CCA distance, respectively. Using both distance metrics, the most substantial precision gain
was obtained for the production volume (0.17 and 0.15, respectively), which is a flux variable and
thus benefited from the inclusion of 3D variables related to canopy dynamics. Other field attributes
benefiting from the inclusion of change detection variables with both distance metrics were the conifer
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and oak volumes. While the QMD also showed a substantial precision gain with CCA distance (0.09),
the stand density (0.09), the stand basal area (0.07), and the total volume (0.06) exhibit among the
largest gain in RE based on Euclidean distance. This indicated that changes in canopy height and
structure provide additional and pertinent information about traditional field measurements of forest
structure that are difficult to estimate from remote sensing means [86]. The differences achieved in the
k-NN setup have been reported by others [68,86]. The study described in Reference [86] reported that
MSN was sensitive the choice of the response variables.

4.3. External Validation

The external validation showed limited RE differences between internal and external models,
indicating that the results achieved over the whole area with internal models are not as overly
optimistic as reported in other studies [13]. That said, the study highlights a limitation of the CCA
distance metric when an internal model is used. As CCA uses both X and Y variables to set-up the
k-NN, it tends to generate a reduced variance as compared to Euclidean distance. However, in an
external validation context, CCA-based predictions appear to have more limited capabilities to predict
attributes outside the geographical domain used to train the k-NN model [87]. Furthermore, the study
conducted in Reference [68] reported that CCA distance tended to have decreased accuracy compared
to other distance metrics when no variable selection is performed, probably highlighting a curse of
dimensionality issue while both X and Y variables are considered in the feature space [56]. Furthermore,
the study described in Reference [29] strongly advised using variable selection approach for the CCA
distance metric despite its capability to weight auxiliary variables according to their explanatory power,
because multicollinearity degrades the predictive power and the estimation of canonical weights
rapidly becomes more complex leading to instability figure [88]. This result therefore indicates that
model-assisted inference without variable selection should avoid using CCA distance metric, at the
benefit of a distance metric independent of the response variables, such as the Euclidean one.

5. Conclusions

Five principal conclusions could be drawn from this research: (1) provided a sufficient number
of sample plots, design-based model-assisted inference performs well with large dimension data, as
far as the data sources are related to the forest attributes considered. In such situation, the diversity
and complementary of the auxiliary data are expected to improve precision (produce larger REs) and
reduce RMSD; (2) a substantial increase in precision of the forest attribute estimates was brought by
3D metrics and the addition of canopy change metrics. The latter contributed to improve markedly
the estimations in production volumes; (3) the optimal k value was stable with respect to the k-NN
configuration tested; (4) the CCA distance metric involving both feature and response variables could
be affected by dimensionality problems. Euclidean distance should be preferred when no variable
selection is performed; and (5) the k-NN technique in conjunction with model-assisted estimators
produced a significant improvement in precision of inventory parameter estimates.

This work demonstrated the potential of MSNFI approaches in complex broadleaved dominated
forests such as those found in France. This opens up the possibilities of more forest attribute estimation
for smaller spatial domains. Future work will focus on a downscaling approach involving both
model-assisted and model-based approaches.
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Appendix A

Table A1. Structure metrics derived from the photogrammetric canopy height model. N is the total
number of pixels, P is a given pixel, and PS is the pixel size.

Metric Name Acronym Equation

Gap area Ga
∑n

i CHMi<thPS2

Mean inner canopy volume Vi 1
n
∑n

i CHMi>thPS2

Mean outer canopy volume Vo 1
n
∑n

i (PixelCHMi>th ∗Max(CHM) ∗ PS2) −Vi
Mean inner gap canopy volume Vgi 1

n
∑n

i CHMi<thPS2

Mean outer gap canopy volume Vgo 1
n
∑n

i (PCHMi<th ∗Max(CHM) ∗ PS2) −Vgi

Rumple area Ra ∑
CHM>th ||

−−−−−−−→
Pl,cPl+1,c ∧

−−−−−−−→
Pl,cPl,c+1)

2 +
−−−−−−−→

Pl+1,c+1Pl,c+1∧
−−−−−−−→

Pl+1,c+1+Pl,c+1)

2 ∗ PS2
||/

∑
CHM>th PS2

No data NA
∑n

i PCHMi=NA

Table A2. Landsat spectral indices. Acronyms B, R, NIR stand for blue, red, and near infra-red bands,
respectively. SWIR stands for the shortwave Infrared bands. Ls and Lc are sol brightness correction
factor and canopy background value, respectively. Ls is by default equal to 0.5 (Ls = 0 means NDVI =

SAVI), and Lc is equal to 1.

Indice Name Acronym Equation

Simple Ratio SR NIR/R
Normalized Difference vegetation index NDVI (NIR − R)/(NIR + R)

Specific Leaf Area Vegetation Index SLAVI NIR/(R + SWIR1)
Soil Adjusted Vegetation Index SAVI ((NIR − R)/(NIR + R+Ls)) * (1+Ls)

Modified Soil Adjusted Vegetation Index MSAVI (2 * NIR + 1 −
√
(2 ∗ NIR + 1)2

− 8 ∗ (NIR − R))/2
Enhance Vegetation Index EVI 2.5 * ((NIR − R)/(NIR + 6 * R − 7.5 * B + Lc))

Normalized Difference Moisture Index NDMI (R − NIR)/(R + NIR)
Normalized Difference Water Index NDWI (NIR − SWIR1)/(NIR + SWIR1)

Green NDVI GNDVI (NIR − G)/(NIR + G)

Brightness Br 0.3029 B + 0.2786 G + 0.4733 R + 0.5599 NIR +
0.508 SWIR1 + 0.1872 SWIR2

Greenness Gr −0.2941 B − 0.243 G − 0.5424 R + 0.7276 NIR −
0.0713 SWIR1 − 0.1608 SWIR2

Wetness We 0.1511 B + 0.1973 G + 0.3283 R + 0.3707 NIR −
0.7117 SWIR1 − 0.4559 SWIR2
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