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Abstract: Separating point clouds into ground and non-ground points is a preliminary and essential
step in various applications of airborne light detection and ranging (LiDAR) data, and many filtering
algorithms have been proposed to automatically filter ground points. Among them, the progressive
triangulated irregular network (TIN) densification filtering (PTDF) algorithm is widely employed
due to its robustness and effectiveness. However, the performance of this algorithm usually depends
on the detailed initial terrain and the cautious tuning of parameters to cope with various terrains.
Consequently, many approaches have been proposed to provide as much detailed initial terrain as
possible. However, most of them require many user-defined parameters. Moreover, these parameters
are difficult to determine for users. Recently, the cloth simulation filtering (CSF) algorithm has
gradually drawn attention because its parameters are few and easy-to-set. CSF can obtain a fine
initial terrain, which simultaneously provides a good foundation for parameter threshold estimation
of progressive TIN densification (PTD). However, it easily causes misclassification when further
refining the initial terrain. To achieve the complementary advantages of CSF and PTDF, a novel
filtering algorithm that combines cloth simulation (CS) and PTD is proposed in this study. In the
proposed algorithm, a high-quality initial provisional digital terrain model (DTM) is obtained by
CS, and the parameter thresholds of PTD are estimated from the initial provisional DTM based on
statistical analysis theory. Finally, PTD with adaptive parameter thresholds is used to refine the initial
provisional DTM. These contributions of the implementation details achieve accuracy enhancement
and resilience to parameter tuning. The experimental results indicate that the proposed algorithm
improves performance over their direct predecessors. Furthermore, compared with the publicized
improved PTDF algorithms, our algorithm is not only superior in accuracy but also practicality.
The fact that the proposed algorithm is of high accuracy and easy-to-use is desirable for users.
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1. Introduction

During previous decades, airborne light detection and ranging (LiDAR) technology, which is
an efficient and rapid remote sensing technology for collecting three-dimensional (3D) point clouds
over a large area, has been widely employed in various fields, such as digital terrain model (DTM)
generation [1–5], forest ecosystem investigation [6–12], and 3D building modeling [13–16]. In most
applications, a filtering operation for separating point clouds into ground and non-ground points
is a preliminary and essential step. Many filtering algorithms have been proposed to automatically
filter ground points, and these algorithms can be mainly grouped into three categories, namely,
slope-based methods [17–21], mathematical morphology-based methods [22–27], and surface-based
methods [28–44]. An experimental comparison of eight filtering algorithms was performed by
Sithole and Vosselman [2]. They concluded that the surface-based methods generally performed
better than other filtering methods because they used more context information. The basic principle
of surface-based methods is to gradually approximate the bare earth using a parametric surface,
such as triangulated irregular network (TIN) model, weighted linear least-squares interpolation
model, active shape model, thin plate spline (TPS), and cloth simulation model. For this type of
method, the ground seed points are obtained and then densified iteratively to create a provisional
DTM that gradually refines the ground surface based on certain criteria (e.g., elevation). Among the
surface-based methods, progressive TIN densification filtering (PTDF) is one of the typical methods
that construct the initial TIN-based DTM (i.e., the initial provisional DTM) from ground seed points,
which are the lowest points in each grid cell of an entire region dataset. The grid cell size (c) is usually
larger than the size of the maximum non-ground object to minimize the influence of non-ground
points [33,36]. Then, remaining ground points are progressively detected from the unfiltered points
to update the initial provisional DTM based on elevation and angle criteria [40,41]. The filter has
been widely used in the scientific community and the engineering field because of its promising
performance [37,38,42,45]. Moreover, it has been integrated into multiple software packages, such as
Terrasolid, Lastools, and ALDPAT [37,45,46].

However, the performance of PTDF usually depends on the detailed initial terrain and the cautious
tuning of parameters to cope with various terrains [22,37–43]. Specifically, when the initial terrain is not
detailed enough, this algorithm usually degrades rugged terrain characteristics (e.g., mountain peaks)
for mountainous areas, which is the classical cut-off problem [47]. An example of this “over filtering”
can be observed in Figure 1. The heavy bias towards type I error (the percentage of ground points
incorrectly classified as non-ground points) may result in sparse ground points, failing to describe
terrain morphology. Therefore, in the application of PTDF, one of the key factors for satisfactory
results is to acquire more and evenly distributed ground seed points to generate a detailed initial
terrain. Improvements have been proposed to enhance the effectiveness and robustness of PTDF.
Zhang and Lin [37,38] used smoothness-constrained segmentation to expand the set of ground seed
points. This improvement can effectively reduce type I error. However, it needs several suitable
parameters to achieve satisfactory results. Chen et al. [39] employed two specific characteristics of
triangles (i.e., length and slope changes of the triangle) to detect additional seeds at the ridge and
used confidence interval estimation theory to eliminate erroneous ground seed points. This algorithm
effectively improves filtering accuracy at sharp ridges, whereas its performance, which was only
confirmed on a point cloud obtained from aerial digital photogrammetry, remains uncertain for airborne
LiDAR point cloud. Zhao et al. [40] detected ground seed points using the morphological opening
operation, wherein the result is sensitive to the selection of the optimal window size. To solve this
issue, Liu et al. [41] used a progressive morphological filter to select ground seed points. Although the
morphology-based method is easy to achieve, its performance intensively relies on a set of parameters,
particularly for the maximum window size [22]. To improve the extraction accuracy of ground
seed points, two studies [40,41] used the feature (i.e., ground points belonging to planes) to remove
error points from ground seed points. However, this approach further increases the number of
parameters. In addition, Nie et al. [42] used the Douglas–Peuker principle to densify ground seed
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points under the initial terrain. However, the method cannot reduce the type I error considerably
because the number of ground seed points above the initial terrain is not increased. To summarize,
although the aforementioned improvements have been proven successful, most algorithms require
many user-defined parameters when densifying ground seed points. Moreover, these parameters are
sensitive to particular scenes.
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Figure 1. Most ground points on discontinuities and hilltops are not preserved (they are misclassified
as “off-terrain”) by progressive TIN densification filtering (PTDF) because of the coarse initial terrain.
(a) Reference digital terrain model (DTM), (b) DTM generated from PTDF.

Recently, a new surface-based method called cloth simulation filtering (CSF) algorithm has
begun receiving attention because its user-defined parameters are few and easy to set [44,48,49].
CSF approximates the initial terrain with simulated cloth (CS) and then adds ground points from the
unfiltered points to the initial terrain by using elevation information only, based on the assumption
that the actual terrain should be close to a horizontal plane within a certain local area [17,34,39].
This algorithm, which only needs an integer parameter, can obtain an initial terrain that is near the
actual terrain. However, unfiltered points are easily misclassified during the refinement of the initial
terrain for steep mountainous areas, because the feature differences for ground and non-ground
objects on steep surfaces are significantly different from flat surfaces. Sithole and Vosselman [2]
suggested using additional contexts to solve this problem. In this sense, PTDF is one of the best
implementations [45].

In addition, the challenge with PTDF is that the cautious tuning of parameters is necessary for
various landforms. To overcome this limitation, several solutions for parameter threshold adaption
have been proposed to improve the automation of PTDF. Axelsson [36] first proposed a statistical
analysis-based method for adaptive determination of parameter thresholds. The method used
characteristic values of statistics from ground points as the parameter thresholds. Experimental results
show that this method can make PTDF achieve promising filtering performance in most types of
landscape. However, the details of this method have not been reported. The possible reason is that the
academic practitioner tends to maintain work proprietary [37]. Shi et al. [43] used kriging method
to predict terrain slope and proposed a parameter threshold estimation formula by analyzing the
connection between the terrain slope and the parameters of progressive TIN densification (PTD).
However, the method may fail to provide satisfactory results in dense forest areas, because the
kriging method cannot accurately predict the terrain slope when the ground seed point is sparse [5].
As mentioned above, estimated parameter thresholds are usually derived from the ground points.
In addition, in order to obtain accurate thresholds, it is necessary to acquire as many ground points as
possible before PTD.

To summarize, PTDF can acquire a filtering result with high precision, even in steep mountainous
areas. The problem is that it usually relies on the detailed initial terrain and suitable parameter
thresholds. CSF can obtain a high-quality initial terrain, which also provides a good foundation
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for parameter threshold estimation of PTD. However, misclassification can occur easily during the
refinement of the initial terrain with respect to steep mountainous areas. To make use of the advantages
of PTDF and CSF, this study proposes a novel algorithm to differentiate between ground and non-ground
points from airborne LiDAR point clouds in a high-precision and easy-to-use manner by combining
cloth simulation (CS) and progressive TIN densification (PTD).

2. Test Data

Two airborne LiDAR point clouds namely ISPRS (International Society for Photogrammetry
and Remote Sensing) data and dense point cloud were used to test the performance of the proposed
algorithm. ISPRS data, which were collected with an Optech ALTM scanner, include eight sites (named
as Site 1–8) consisting of different environments: four urban sites and four rural sites. Fifteen reference
samples with different terrain features and land-cover types were selected from Site 1–7 to evaluate the
filtering accuracy, as listed in Table 1. Site 8 was excluded due to lack of reference data. The point density
is 0.4–1 points/m2 for urban sites and 0.08–0.25 points/m2 for rural sites, respectively. For each sample,
the reference data was manually generated with prior knowledge and available aerial imagery [2].

Table 1. Characteristics of each sample.

Environment Site Sample Features
Reference (Points)

Ground Non-Ground

Urban

1
S11 Mixture of vegetation and buildings on

hillside 21,786 16,224

S12 Mixture of vegetation and buildings 26,691 25,428

2

S21 Road with bridge 10,085 2875
S22 Irregularly shaped buildings and bridge 22,504 10,202
S23 Large, irregularly shaped buildings 13,223 11,872
S24 Steep slopes 5434 2058

3 S31 Complex buildings 15,556 13,306

4
S41 Data gaps, irregularly shaped buildings 5602 5629
S42 Railway station with trains 12,443 30,027

Rural
5

S51 Vegetation on hillside 13,950 3895
S52 Steep, terraced slopes 20,112 2362
S53 Steep, terraced slopes 32,989 1389
S54 Dense buildings 3983 4625

6 S61 Data gaps, discontinuity 33,854 1206

7 S71 Underpass and bridge 13,875 1770

Since the ISPRS data were collected almost two decades ago, the average point density was
relatively low ranging from 0.08–1 points/m2. Recent advances in LiDAR technology allow continuous
improvement of point density. To further test the performance of the proposed algorithm on high
density of point cloud, data with an average point density of 31.12 points/m2 were used. The data
were obtained in 2018 using an unmanned aerial vehicle laser scanning system (SZT-R250) flying
about 50 m above the ground level. The data were obtained over 35 ha, 10,912,743 points in total
(including 1,749,516 ground points and 9,163,227 non-ground points), and elevations ranging from
0 m to 398.82 m, including the steep slopes, vegetation on hillside and discontinuities which are
all typical features of the terrain in mountainous regions, as shown in Figure 2. We produced the
reference data using a widely adopted method, which classifies point clouds into ground points and
non-ground points by automatic classification tool in Terrasolid, and then the filtering results were
further improved manually, through a repeated process in which the results were checked and rectified
to ensure accuracy [50–52]. Although the classification results of the reference data are not completely
accurate, the misclassification in reference data is much lower than that of the automatic filtering
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results [53]. Thus, in this study, we assume that the reference data is a correct classification of the
LiDAR data.
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Figure 2. Dense point cloud. (a) Original point cloud, (b) DSM.

3. Methods

A series of critical improvements are implemented to increase the accuracy and practicality of
CSF and PTDF in this paper. First, we use CS to select the ground seed points instead of using the
lowest points in a user-defined grid cell. This algorithm provides more ground seed points that
are almost evenly distributed in general, thereby generating a high-quality initial provisional DTM.
Second, parameter thresholds (i.e., the maximum angle (θ) and the maximal terrain slope (s)) for PTD
are derived from the initial provisional DTM based on the statistical analysis theory to improve the
automation of the filter. Third, the initial provisional DTM is refined by PTD with adaptive parameter
thresholds. The entire workflow is composed of three parts, i.e., generation of initial provisional DTM,
estimation of parameter thresholds and refinement of the initial provisional DTM, as shown in Figure 3.
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3.1. Generation of Initial Provisional DTM Based on Cloth Simulation

3.1.1. Cloth Simulation

This method simulates the physical process of cloth-touching objects. After a cloth drops on an
inverted (upside-down) landscape, the final shape of the cloth can be confirmed and regarded as an
approximated terrain, as shown in Figure 4.
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measurements. (b) Each particle drops to the inverted measurements under the external force,
and their displacement is computed based on the second law of Newton. If the cloth particles
collide with the measurements, these particles will stop falling and be labeled unmovable particles.
(c) Except for unmovable particles, each particle is moved according to the internal force produced by
neighboring particles. Steps (b) and (c) are repeated until the maximum height variation of all particles
is sufficiently small.

The process consists of an external force operation followed by an internal force operation.
According to the second law of Newton, the relationship between position and forces is decided by
Equation (1).

m
∂X(t)
∂t2 = Fext(X, t) + Fint(X, t) (1)

where m represents the mass of the cloth particle, X is the position of a cloth particle at time t, Fext(X, t) is
the external force, that is, gravity, and Fint(X, t) is the internal force that is produced by interconnections
between particles.

When the cloth drops to the inverted measurement surface, the displacement of each cloth particle
only under the external force is computed by Equation (2).

X(t + ∆t) = 2X(t) −X(t− ∆t) + g∆t2 (2)
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where ∆t represents the time step, and g is the acceleration. If the cloth particles collide with the
inverted surface in the direction of its movement, these particles will stop moving and be labeled
unmovable particles.

After cloth particles are moved by an external force, an internal force is exerted to constrain the
particles’ displacement in the void areas of the inverted surface. The displacement (vector) of each
particle is calculated as follows:

→

d =
∑3

RT=1

(1
2

)RT
b
(
→
p i −

→
p0

)
∆
→
n (3)

where
→

d is the displacement vector of a particle, b is zero when the particle is unmovable, otherwise it
equals to one,

→
p0 represents the position of the current particle,

→
p i represents the position of the

neighboring particle that connects with p0, and
→
n represents a normalized vector that points to the

vertical direction,
→
n = (0, 0, 1)T. RT is the repeated time that controls the rigidness of the cloth.

As shown in Figure 5, when RT is set to one, the movable particle will move 1/2 vertical distance (VD)
between the two particles. When RT is set to two, the movable particle will move 3/4VD. When RT is
set to three, the movable particle will move 7/8VD. When the terrain is extremely steep, RT is specified
as a small value (RT = 1). When the terrain is relatively steep, RT is set to a medium value (RT = 2).
When handling a flat terrain, a large value (RT = 3) must be set.
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3.1.2. Ground Seed Point Acquisition

When the maximum height variation of all cloth particles is sufficiently small, the cloth is regarded
as stationary, and the CS (cloth simulation) process is terminated. The measurements that collide with
cloth particles are labeled as ground seed points. The process is presented in Figure 6. The nearest
measurement for each cloth particle in the X-Y plane is initially searched. If the heights of the cloth
particle and its nearest measurement are equal, then this measurement is considered to collide with the
corresponding cloth particle and labeled as a ground seed point. Figure 7 illustrates the labeled results
by CS.
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3.1.3. Initial Provisional DTM Construction

After ground seed points are acquired, the initial provisional DTM is constructed through Delaunay
triangulating, as shown in Figure 8. Note that to ensure that each unfiltered point is located in this
DTM, the four corners of the study areas are simulated as ground seed points whose heights are equal
to the heights of their nearest ground seed points on the X-Y plane [37,38].

Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 23 

 

Cloth particle Ground seed point Measurements

 
Figure 6. Extraction of ground seed points by collision detection. 

Elevation

0m

398.82m
Elevation

0m

383.46m

(a) (b)
 

Figure 7. Selection result of ground seed points. (a) Original point cloud, (b) ground seed points. 

3.1.3. Initial Provisional DTM Construction 

After ground seed points are acquired, the initial provisional DTM is constructed through 
Delaunay triangulating, as shown in Figure 8. Note that to ensure that each unfiltered point is 
located in this DTM, the four corners of the study areas are simulated as ground seed points whose 
heights are equal to the heights of their nearest ground seed points on the X-Y plane [37,38].  

Elevation

0m

383.46m

(a) (b)
 

Figure 8. Construction result of initial provisional DTM. (a) Ground seed points, (b) initial 
provisional DTM. 

3.2. Parameter Threshold Estimation Based on Statistical Analysis 

The performance of PTD greatly relies on three key parameters, including: the maximum angle 
(θ), the maximum distance (d) and the maximal terrain slope (s), as shown in Figure 9. The 
maximum angle (θ) is the maximum angle between the TIN facet and the line that links the 
candidate point to the facet’s closest vertex. When the threshold of the maximum angle (θ) is set to 

Figure 8. Construction result of initial provisional DTM. (a) Ground seed points, (b) initial
provisional DTM.

3.2. Parameter Threshold Estimation Based on Statistical Analysis

The performance of PTD greatly relies on three key parameters, including: the maximum angle
(θ), the maximum distance (d) and the maximal terrain slope (s), as shown in Figure 9. The maximum
angle (θ) is the maximum angle between the TIN facet and the line that links the candidate point
to the facet’s closest vertex. When the threshold of the maximum angle (θ) is set to a relatively
large value, these non-ground points on the lower objects may be mistakenly classified as ground
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points. If the threshold of the maximum angle (θ) is small, many ground points related to key
terrain characteristic may be mistakenly classified as non-ground points. The maximum distance
(d) is the maximum distance from the candidate point to the corresponding TIN facet. The function
of the maximum distance (d) is to guarantee that when the edge length of TIN facet is relatively
large, the non-ground points on the low-large areas objects are not mistakenly classified as ground
points [37,42]. The maximum terrain slope (s) is the maximum slope between the horizontal plane and
the line that links the candidate point to the facet’s lowest vertex. The value of the maximum terrain
slope (s) decides whether to perform the mirrored operation, which makes the mirrored position of the
candidate point is located symmetrically on the other side of the vertex in the corresponding TIN facet,
relative to the original position, on the candidate point to handle the discontinuous surface [36–38,42].
More details are provided in Section 3.3.
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In this study, the maximum angle (θ) is determined by statistical analysis, which is inspired by
the work by Axelsson [36]. Statistic from initial provisional DTM is collected in the form of a discrete
histogram of the terrain slopes, as shown in Figure 10. Finally, θ based on the median value, which is
the value separating the higher half from the lower half of a data sample (a probability distribution),
is determined from this histogram.
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For the maximum distance (d), it is set to the largest elevation difference in the study region.
As shown by the example in Figure 11, when the horizontal distance between the non-ground point
and the ground seed point is large, d should be set to a suitable threshold to prevent non-ground point
from being incorrectly classified as ground point by the maximum angle threshold (θ). In this study,
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dense ground seed points generate a relatively short edge length of TIN facet. Thus, d does not work
and can be ignored. It usually is set to a rather large value, and we use the largest elevation difference
in the study region as a threshold.
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Step3: The mirrored operation is illustrated in Figure 12. Find the vertex Pvertex(xv, yv, zv) 
with the highest elevation value in the corresponding TIN facet of an unfiltered point Punfiltered(xu,
yu, zu). The mirrored point Pmirror(xm, ym, zm) of Punfiltered(xu, yu, zu) is calculated as follows: 

�
xm = 2xv − xu
ym = 2yv − yu
zm = zu

  (4) 

Step4: Calculate the distance to the TIN facet and the angle to the vertex. If both computed 
values are lower than the maximum distance (d) and the maximum angle (θ), then the unfiltered 
point is labeled as a ground point. 

Figure 11. Simple demonstration of the maximum distance threshold setting.

In theory, the maximal terrain slope (s) should be the maximum slope derived from the final
DTM. This threshold is usually not available prior to acquirement because ground points are not yet
identified [20]. Fortunately, considering the initial provisional DTM is rather close to the actual terrain,
we use this provisional DTM to obtain this threshold.

3.3. Refinement of Initial Provisional DTM Based on Progressive TIN Densification

After the initial provisional DTM and key parameters in PTD (progressive TIN densification) are
determined, unfiltered points (including ground and non-ground points) are iteratively classified using
PTD, and the detected ground points are used to update the initial provisional DTM. The procedure
contains six core steps as follows.

Step1: Find the corresponding TIN facet of an unfiltered point.
Step2: Calculate the slope of this TIN facet. If the slope is greater than the maximal terrain slope

(s), the unfiltered point will be replaced by the mirrored point in Step 3 to preserve discontinuous
terrain. Then, go to Step 4. Otherwise, the unfiltered point will be judged directly in Step 4.

Step3: The mirrored operation is illustrated in Figure 12. Find the vertex Pvertex
(
xv, yv, zv

)
with

the highest elevation value in the corresponding TIN facet of an unfiltered point Punfiltered
(
xu, yu, zu

)
.

The mirrored point Pmirror

(
xm, ym, zm

)
of Punfiltered

(
xu, yu, zu

)
is calculated as follows:


xm = 2xv − xu

ym = 2yv − yu
zm = zu

(4)
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Step4: Calculate the distance to the TIN facet and the angle to the vertex. If both computed values
are lower than the maximum distance (d) and the maximum angle (θ), then the unfiltered point is
labeled as a ground point.

Step5: Calculate edge length of the TIN facet in the X-Y plane. If the ratio between the maximum
edge length and the minimum edge length is smaller than the length ratio threshold (it is set to four),
then the ground point is added to update the initial provisional DTM. Note that the introduction
of length ratio threshold helps to avoid long narrow triangles, which is low credibility in terrain
expression [40].

Step6: Repeat Steps 1–5 until all unfiltered points have been judged. Figure 13 illustrates the
final DTM.
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3.4. Accuracy Indexes

Three accuracy indexes (i.e., type I, type II, and total errors) were used to assess the accuracy of
the proposed algorithm quantitatively. The type I error is the percentage of ground points incorrectly
classified as non-ground points. The type II error is the percentage of non-ground points incorrectly
classified as ground points. The total error is the percentage of all mistakenly classified points.
These indexes are calculated as follows [2]:

Type I = a
c

Type II = b
d

Total = a + b
c + d

(5)

where a is the number of reference ground points incorrectly classified as non-ground points, b is the
number of reference non-ground points incorrectly classified as ground points, and c and d are the
numbers of reference ground and non-ground points, respectively.

4. Experiments

4.1. Testing with ISPRS Dataset

The distance between neighboring cloth particles, which is defined as cloth resolution (CR), has a
strong relationship with the number of ground seed points. Generally, the smaller the CR value,
the more ground seed points are obtained, and vice versa. Meanwhile, the parameter affects the time
of cloth simulation because it decides how many cloth particles are generated and modified for the
dataset. In CSF [44], CR is set to 0.5 m based on the principle of optimal accuracy. To objectively
compare the proposed algorithm and CSF, the proposed algorithm under CR = 0.5 m was first tested.
Then, the proposed algorithm under CR = 1 m was tested based on the balance between processing
speed and filtering accuracy, which is discussed in Section 5.2. In addition, optimally tuned thresholds
were used to compare our results with optimally tuned results. Specifically, we used a back-calibration
optimization process based on the ground reference data provided by ISPRS to find the lowest total error
of each sample. We tested the maximum angle threshold with 5◦ increments from 5◦ to 30◦. The result
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with the lowest total error identifies the provisional optimized threshold (POT). POT was further
refined with 1◦ increments from POT-2◦ to POT+2◦ for obtaining the final optimized threshold (FOT).
For example, if POT equals to 15◦, FOT will be selected from 13◦, 14◦, 15◦, 16◦ and 17◦, and the result
with the lowest total error identifies the FOT. Similarly, we tested the maximum distance threshold
with 0.5 m increments from 0.5 m to 1.5 m. POT was further refined with 0.1 m increments from
POT−0.2 m to POT + 0.2 m. We also tested the maximal terrain slope threshold with 10◦ increments
from 60◦ to 90◦. POT was further refined with 1◦ increments from POT-2◦ to POT+2◦.

Figure 14 shows the accuracies of the proposed algorithm under CR = 0.5 m against other
31 algorithms [2,24–27,31–34,37,38,41–44,47,54–61]. The average total error of the proposed algorithm
under CR = 0.5 m provides competitive performance, below four filtering algorithms, but above 27
other algorithms. Four filtering algorithms with higher accuracy are discussed in Section 5.3.
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Figure 14. Total error average on 15 samples for 32 filters, in which CR value in the proposed algorithm
is set to 0.5 m. The proposed algorithm is marked in red.

As shown in Figure 15, the average total error of the proposed algorithm under CR = 1 m is in the
middle of all algorithms. However, the time consumption of the proposed algorithm under CR = 1 m is
only about 0.25 times against CR = 0.5 m. We compared the proposed algorithm under CR = 1 m with
all publicized improved PTDF algorithms, which completely used the 15 reference samples of the ISPRS
dataset to assess their performances in terms of average total error. All parameters in the first three
publicized improved PTDF algorithms were determined by the developers’ experienced judgment
for a particular terrain type, which is somewhat subjective. However, in the proposed algorithm,
these parameters were automatically extracted from the initial provisional DTM. The detailed values of
parameters in these algorithms are listed in Table 2. Note that the two algorithms proposed by Zhang
and Lin [37], Lin and Zhang [38] share the same parameter values.

Remote Sens. 2018, 10, x FOR PEER REVIEW  12 of 23 

 

to POT+2° for obtaining the final optimized threshold (FOT). For example, if POT equals to 15°, 
FOT will be selected from 13°, 14°, 15°, 16° and 17°, and the result with the lowest total error 
identifies the FOT. Similarly, we tested the maximum distance threshold with 0.5m increments 
from 0.5 m to 1.5 m. POT was further refined with 0.1 m increments from POT−0.2 m to POT + 0.2 m. 
We also tested the maximal terrain slope threshold with 10° increments from 60° to 90°. POT was 
further refined with 1° increments from POT-2° to POT+2°. 

Figure 14 shows the accuracies of the proposed algorithm under CR = 0.5 m against other 31 
algorithms [2,24–27,31–34,37,38,41–44,47,54–61]. The average total error of the proposed algorithm 
under CR = 0.5 m provides competitive performance, below four filtering algorithms, but above 27 
other algorithms. Four filtering algorithms with higher accuracy are discussed in Section 5.3. 

 

Figure 14. Total error average on 15 samples for 32 filters, in which CR value in the proposed 
algorithm is set to 0.5 m. The proposed algorithm is marked in red. 

 

Figure 15. Total error average on 15 samples for 32 filters, in which CR value in the proposed 
algorithm is set to 1 m. The proposed algorithm is marked in red. 

As shown in Figure 15, the average total error of the proposed algorithm under CR = 1 m is in 
the middle of all algorithms. However, the time consumption of the proposed algorithm under CR = 
1 m is only about 0.25 times against CR = 0.5 m. We compared the proposed algorithm under CR = 1 
m with all publicized improved PTDF algorithms, which completely used the 15 reference samples 
of the ISPRS dataset to assess their performances in terms of average total error. All parameters in 
the first three publicized improved PTDF algorithms were determined by the developers’ 
experienced judgment for a particular terrain type, which is somewhat subjective. However, in the 
proposed algorithm, these parameters were automatically extracted from the initial provisional 
DTM. The detailed values of parameters in these algorithms are listed in Table 2. Note that the two 
algorithms proposed by Zhang and Lin [37], Lin and Zhang [38] share the same parameter values. 

25
.7

8

20
.7

3

17
.4

8

12
.3

4

12
.0

4

11
.4

3

11
.1

2

10
.6

3

10
.5

2

9.
51

9.
45

9.
35

9.
22

8.
72

8.
02

7.
16

6.
58

6.
18

5.
62

5.
33

5.
13

4.
85

4.
82

4.
62

4.
6

4.
39

4.
11

3.
88

3.
67

3.
51

2.
97

2.
74

0

5

10

15

20

25

30

To
ta

l e
rro

r (
%

)

25
.7

8

20
.7

3

17
.4

8

12
.3

4

12
.0

4

11
.4

3

11
.1

2

10
.6

3

10
.5

2

9.
51

9.
45

9.
35

9.
22

8.
72

8.
02

7.
16

6.
95

6.
58

6.
18

5.
62

5.
33

5.
13

4.
85

4.
82

4.
62

4.
6

4.
39

4.
11

3.
67

3.
51

2.
97

2.
74

0

5

10

15

20

25

30

To
ta

l e
rro

r (
%

)

Figure 15. Total error average on 15 samples for 32 filters, in which CR value in the proposed algorithm
is set to 1 m. The proposed algorithm is marked in red.
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Table 2. The values of parameters in all filters for each sample. Note that “c”, ”θ”, “d” and “s” represent
“grid cell size”, “maximum angle”, “maximum distance” and “maximal terrain slope”, respectively.

Samples Zhang and Lin Nie et al. The Proposed Algorithm

c(m) θ(◦) d(m) s(◦) c(m) θ(◦) d(m) s(◦) c(m) θ(◦) d(m) s(◦)

S11 20 6 1.4 80 20 15 1.4 80 1 23.37 >15 88.96
S12 20 6 1.4 80 20 15 1.4 80 1 32.68 >15 85.04
S21 60 6 1.4 88 60 15 1.4 88 1 23.12 >15 62.71
S22 60 6 1.4 88 60 15 1.4 88 1 18.21 >15 88.26
S23 60 6 1.4 88 60 15 1.4 88 1 28.21 >15 85.63
S24 60 6 1.4 88 60 15 1.4 88 1 25.6 >15 63.37
S31 35 6 1.4 88 35 15 1.4 88 1 9.33 >15 84.71
S41 60 6 1.4 88 60 15 1.4 88 1 15.62 >15 62.23
S42 60 6 1.4 88 60 15 1.4 88 1 16.37 >15 70.76
S51 10 6 1 70 10 15 1 70 1 18.75 >15 82.42
S52 10 6 1 70 10 15 1 70 1 22.02 >15 86.37
S53 10 6 1 70 10 15 1 70 1 27.96 >15 85.92
S54 10 6 1 70 10 15 1 70 1 16.06 >15 59.33
S61 40 6 1.4 70 40 15 1.4 70 1 20.64 >15 80.97
S71 20 6 1.4 70 20 15 1.4 70 1 16.38 >15 62.32

Note: In the proposed algorithm, d does not work and is set to a rather large value.

Table 3a shows the total error of the proposed algorithm against four other improved PTDF
algorithms. The average total error of the proposed algorithm is 6.95%. Compared to the results
of other improved PTDF algorithms, the proposed algorithm achieves the highest precision for 7/15
samples in terms of the total error and is also the best for average values. Seven samples achieving
the highest precision are S22, S23, S52, S53, S54, S61, and S71. These samples contain a variety of
complex terrain features, including steep slopes, terraced terrain, and discontinuity. The statistical
results in Table 3b suggest the average type I and II errors of the proposed algorithm are 4.6% and
11.42%. Compared to the results of other improved PTDF algorithms, the proposed algorithm achieves
the highest precision for 11/15 samples in terms of the type I error and is also the best for average
values. However, the proposed algorithm is poor in avoiding the type II error. The main reason is more
ground seed points will increase the risk of the type II error, while they are controlled to an acceptable
level, because the accuracy of ground seed points obtained from CS is extremely high (the average
overall precision is 98.39%). Moreover, the inclination to type II error may not be a fatal flaw for the
filter strategy, taking into consideration that type II error can be more easily handled by human editing
than type I error [2].

Table 3a. Performance comparison between the proposed algorithm and the publicized improved PTDF
algorithms in terms of the total error (%). The best results across all the algorithms are marked in red.

Samples Zhang and Lin Lin and Zhang Nie et al. Shi et al. Ours

S11 18.49 19.5 18.79 11.12 16.24
S12 5.92 4.78 6.62 7.17 8.85
S21 4.95 6.08 5.60 6.58 14.18
S22 14.18 9.24 14.89 14.02 4.25
S23 12.06 14.43 18.08 17.43 8.52
S24 20.26 5.28 24.57 13.06 15.59
S31 2.32 1.61 2.14 3.13 7.28
S41 20.44 32 27.13 10.06 13.04
S42 3.94 5.95 2.42 1.91 4.75
S51 5.31 4.09 2.85 12.69 3.51
S52 12.98 7.56 14.43 16.67 4.65
S53 5.58 9.9 19.37 9.77 3.95
S54 6.4 10.72 4 4.99 2.58
S61 16.13 6.27 6.89 7.51 0.86
S71 10.44 5.22 3.68 5.68 2.03

Avg. 10.63 9.51 11.43 9.45 6.95
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Table 3b. Performance comparison between the proposed algorithm and the publicized improved
PTDF algorithms in terms of the type I and II errors (%). The best results across all the algorithms are
marked in red.

Samples Zhang and Lin Lin and Zhang Nie et al. Shi et al. Ours

I II I II I II I II I II

S11 25.67 8.84 26.28 10.4 37.24 1.35 14.74 6.07 7.51 27.98
S12 8.13 3.61 6.56 3.31 11.86 1.05 11.86 1.93 4.68 13.21
S21 1.17 18.23 0.85 24.45 6.2 4.49 7.54 3.18 16.27 6.87
S22 19.05 3.44 6.43 15.44 20.82 3.6 19.44 2.15 2.22 8.73
S23 19.25 4.05 23.21 4.64 35.63 1.6 29.69 3.89 3.48 14.13
S24 22.86 13.41 3.99 8.7 32.58 15.42 15.86 5.63 3.13 48.49
S31 2.1 2.59 0.54 2.59 2.02 2.41 4.61 1.43 12.74 0.91
S41 39.54 1.44 62.22 1.92 52.03 0.32 17.92 2.33 25.56 0.35
S42 9.72 1.55 19.02 0.54 6.69 1.26 3.88 1.1 9.71 2.71
S51 2.05 16.97 2.22 10.81 2.9 2.77 15.14 3.79 0.07 15.81
S52 12.53 16.77 6.46 16.89 16.14 2.96 17.52 9.31 0.98 35.9
S53 4.25 37.22 9.62 16.41 20.22 0.72 10.11 1.77 2.72 33.05
S54 3.59 8.82 3.16 17.23 6.76 1.78 8.65 1.87 1.16 3.81
S61 16.62 2.49 6.26 6.55 8.17 2.07 7.75 0.84 0.39 13.93
S71 10.07 13.39 2.62 25.65 5.24 0.79 6 3.18 0.28 15.71

Avg. 13.11 10.19 11.96 11.06 17.63 2.84 12.71 3.23 4.6 11.42

Figure 16 shows our results and optimally tuned results under CR = 0.5 m and CR = 1 m in
terms of average total error. We can observe two characteristics. First, it appears that our results are
relatively close to the optimally tuned results. The fact that the proposed algorithm is effective to
parameter estimation demonstrates the wide applicability of this algorithm. Second, the difference
between our result and optimally tuned result under CR = 0.5 m is lower than the difference under
CR = 1 m, and the difference between optimally tuned results under CR = 0.5 m and CR = 1 m is small.
It indicates that the detail degree of the initial terrain and the accuracy of parameter estimation have a
significant positive correlation relationship.
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Figure 17 shows the DTMs and the space distribution of type I and II errors (SDEs) generated by the
proposed algorithm under CR = 0.5 m and CR = 1 m in several representative samples, which are named
as DTMCR=0.5, DTMCR=1, SDECR=0.5 and SDECR=1. S11 has a considerable slope change, and many
mixtures of buildings and vegetation are on the hillside. The visualizations of DTMCR=0.5 and DTMCR=1

exhibit similar appearances. Exploration of further details for some recognizable differences between
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them shows DTMCR=0.5 is closer to the reference DTM than DTMCR=1 in the terrain discontinuities,
as shown in the rectangle regions in Figure 17b–d. However, compared to DTMCR=1, there are more
non-ground objects in DTMCR=0.5, as shown in the circle regions in Figure 17b–d. Compared to
SDECR=1, SDECR=0.5 shows lower type I error but higher type II error. The reason can be explained by
exploring the procedure of CS. When cloth gradually approaches terrain with more cloth particles,
a more detailed initial terrain is constructed, thereby assisting PTD to correctly classify the ground
point in complex terrain. However, the ground seed points are not 100% correctly obtained by CS.
Thus more seed points will increase the risk of type II error. For S52, the ground surface has many
abrupt changes. In comparison with the reference DTM, DTMCR=0.5 and DTMCR=1 can effectively
preserve the steep and terraced slopes.
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4.2. Testing with Dense Point Cloud

To quantitatively assess the advantages of the proposed algorithm under CR = 1 m, which achieves
the complementary advantages of CSF and PTDF, we compared the three types of errors of the proposed
algorithm with CSF and PTDF, where CR value in CSF was set to 1 m. The results are shown in
Figure 18. We can observe three characteristics. First, the type I error is obviously larger than the type
II error for PTDF, CSF, and the proposed algorithm. The main reason is that the number of non-ground
points in this data is more than the ground points [34]. Specifically, non-ground points comprise
83.97% of all the points. Thus, only a few ground points being misclassified as non-ground points
will yield a large type I error. Second, in terms of the type I and total errors, the proposed algorithm
is better than PTDF. It occurs because CS is capable of providing enough ground seed points evenly
distributed in general, which can cover terrain characteristics and retains finer details, especially for
hilltops and steep slopes. The initial provisional DTM based on the ground seed points is close to
the actual terrain, which is important because the subsequent PTD is based on the initial provisional
DTM [40]. Third, compared with CSF, the proposed algorithm performs better in terms of three types
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of errors. It indicates that, when refining the initial provisional DTM, PTD outperforms the method
that uses elevation information only. This finding is also shared by previous studies, which have
illustrated that additional contexts can improve filtering results [2,47].

The generated DTM and the cross-section of point clouds for quality evaluation are shown in
Figure 19. In general, the DTM generated from the proposed algorithm shows the closer appearances
with the reference DTM, i.e., most of non-ground points are removed and ground points remain.
Details of the comparison show that the proposed algorithm can preserve the ground points on hill
tops and steep slopes, whereas PTDF and CSF hardly preserve terrain characteristics in areas with
large terrain variations.
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Figure 19. Comparison of DTM generated by PTDF, CSF and our algorithm. (a) Reference DTM,
(b) DTM generated from PTDF, (c) DTM generated from CSF, (d) DTM generated from our algorithm.
Filtering results for the cross-section for (e) reference data, (f) PTDF, (g) CSF, and (h) our algorithm.

An awareness of the relationship between filtering algorithms and point density helps to balance
the processing speed and filtering accuracy [53]. To analyze the effect of point density on the proposed
algorithm, the low-density versions of original LiDAR data were generated using a simple point
thinning algorithm, keeping only every nth (for example, the 10th) point along the time line from the
original LiDAR data [62]. In this study, we used every 2nd, 5th, 10th and 15th points from original
LiDAR data and generated a series of low-density versions with average point density of 15.56, 6.22,
3.11and 2.07 points/m2 (named as LD 2nd, LD 5th, LD 10th and LD 15th). As shown in Figure 20, it can
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be seen that point density has relatively less effect on the filtering results. Specifically, the root mean
square errors (RMSEs) of the type I, type II and total errors are 2.02%, 0.81%, and 0.45%, respectively.
Additionally, there is a general tendency for the type II error to be slightly negative. The possible
reason is that the effect of the type II error from high-density data is limited because non-ground points
are surrounded closely by ground points [63]. In terms of the type I error, the proposed algorithm does
not show a recognizable tendency.
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5. Discussion

5.1. Accuracy of Ground Seed Points

To explore the effects of ground seed point extraction, the numbers of ground seed points for
15 samples obtained by PTDF and the proposed algorithm under CR = 1 m are listed in Table 4.
The results show that, on average, approximately 370 ground seed points for 15 samples are extracted
by PTDF. However, the proposed algorithm can provide approximately 10368 ground seed points,
which indicates that it can significantly increase the number of ground seed points. In addition,
overall precision (OP) is employed to evaluate the quality of ground seed points. OP is the rate of
correctly classified ground points in all extracted ground seed points and is calculated as:

OP =
a

a + c
(6)

where a is the number of ground points correctly classified, and c is the number of non-ground points
incorrectly classified as ground points. The statistics in Table 4 indicate that the accuracy of ground seed
points acquired by the proposed algorithm is extremely high, and the average OP is 98.39%. To assess
the quality of ground seed point extraction intuitively, S11 is selected as the representative case for
demonstration. As shown in Figure 21a,b, the ground seed points provided by the proposed algorithm
can cover the terrain features and retain fine details, especially for steep slopes. The detailed changes
in the terrain can be presented relatively well, especially for the regions of significant variations in the
terrain. Figure 21d shows that the initial provisional DTM constructed from the proposed algorithm
is rather near the actual terrain, which is important because the subsequent PTD is based on the
initial terrain.
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Table 4. Number and OP (overall precision) of ground seed points.

Samples PTDF (Points) Ours (Points) OP (%)

S11 116 12,863 94.75
S12 158 12,135 98.95
S21 10 4600 99.7
S22 20 9973 99.38
S23 16 6391 98.18
S24 10 2554 98.08
S31 29 7687 99.32
S41 10 2310 99.65
S42 20 6377 94.65
S51 1008 10,247 97.3
S52 1329 14,942 98.02
S53 1935 23,544 99.57
S54 517 2727 99.12
S61 146 28,112 99.8
S71 224 11,062 99.39

Avg. 369.87 10,368.27 98.39
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Figure 21. Results of representative sample: (a) Overlay result of reference DTM and ground seed
points (red points) produced by PTDF, (b) overlay result of reference DTM and ground seed points (red
points) produced by the proposed algorithm, (c) initial provisional DTM generated from ground seed
points of (a), (d) initial provisional DTM generated from ground seed points of (b).

5.2. Parameter Analysis

For ground seed points of the 15 reference samples, the simulation time and the total error at
different cloth resolution (CR) values (ranging from 0.3 m to 1.5 m) are shown in Figure 22. The results
show that a small CR value usually has large time consumption, and the time cost is relatively stable
after the CR value exceeds 0.8 m. The accuracies are relatively stable, and the average total error is
less than 10% when CR ranges from 0.3 m to 1.1 m, and the accuracies are the highest around 0.6 m.
In view of the balance of efficiency and accuracy, the value of this parameter is usually set from 0.8 m
to 1.1 m. In terms of the principle of optimal accuracy, the value of this parameter is usually set from
0.5 m to 0.7 m.

After ground seed points are obtained, the remaining ground points are extracted using
PTD. To analyze the sensitivity of the parameters (θ and d) on the improvement of filtering
accuracy, S11 was selected as a representative in this section. We adjusted the two parameters as
follows: θ ∈

{
10
◦

, 15
◦

, 20
◦

, 25
◦

, 30
◦

, 35
◦

, 40
◦

, 45
◦

, 50
◦

, 55
◦

, 60
◦
}
, intervalθ = 5

◦

and d ∈ {0.5m, 1m, 1.5m},
intervald = 0.5m. For each parameter configuration, the total error was calculated and illustrated
in Figure 23. It shows that the total error of the proposed algorithm is lower than PTDF under all
parameter configurations, which indicates obtaining more ground seed points is an important way to
improve the filtering accuracy of PTDF. This is in agreement with the previous studies that almost
all improved PTDF focus on the densification of ground seed points. For PTDF and the proposed
algorithm, the RMSE of the total error is 4.78% and 1.51% with the change of θ and d, respectively.
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It illustrates that the proposed algorithm is insensitive to the parameter selection even though the
algorithm is parameter-dependent.
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5.3. Four Filters with Higher Accuracy

Among the four filters with higher accuracy, the two filters developed by Mongus et al. [56] and
Pingel et al. [24] used the optimal parameter values for each sample, but the two filters developed by
Yang et al. [47] and Hu et al. [34] used the same parameter values or adaptive parameter values for
each sample. Although the accuracy of the latter two filters is slightly lower than the accuracy of the
first two filters, the latter two filters are more practical. Comprehensively considering practicality and
accuracy, the performance of the proposed algorithm is only poorer than the two filters developed by
Yang et al. [47] and Hu et al. [34]. Specifically, Yang et al. [47] fused on two filters based on different
entities (i.e., points and segments) to extract ground points from LiDAR data. The algorithm is composed
of two parts: (1) Smoothness-constrained segmentation is used to separate point clouds into point
entities (e.g., trees) and segment entities (e.g., buildings) based on the area of each segment. (2) Filters
based on point and segment entities are used in corresponding entities, respectively. Filter based
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on point entities calculates the geometric properties (i.e., height difference) of each point and its
neighboring points to judge each point property (ground or non-ground). Filter based on point entities
usually fails to detect ground points around break lines. Filter based on segment entities calculates
the height difference of each segment and its neighboring segments to judge each segment property
(ground or non-ground). Filter based on segment entities is capable of retaining the break lines, but it
has a disadvantage in removing non-ground points from the segments mixed ground and non-ground
points. The area of the mixed segment is usually small, and they can be filtered better by filter based on
point entities. The fusion of filters based on different entities makes use of their advantages. However,
the performance of the fused filter significantly depends on segmentation results, and parameters
in the segmentation process are difficult to set. Compared to the filter proposed by Yang et al. [47],
the possible reason that the proposed algorithm yields lower accuracy is that we only used the filter
based on point entities. Hu et al. [34] used a step factor to control the pyramidal hierarchical structure
to obtain more ground points in a single iteration. In addition, the terrain surface was progressively
refined using thin plate spline (TPS) instead of TIN, and the bending energy function that explicitly
depicts the surface smoothness was used to calculate the adaptive threshold automatically. In contrast
to TIN, TPS is constructed to generate smooth and oscillation-free trend surface, and it can produce local
maxima in the neighborhood of the control points [3,31]. Above features reduce the influence of terrain
gradient on the accuracy of the filtering. However, at the top level of the pyramid, cell resolution is
difficult to determine. A low resolution may degrade rugged terrain features, whereas a high resolution
may fail to remove large objects. Compared to the filter proposed by Hu et al. [34], the possible reason
that the proposed algorithm yields lower accuracy is that TPS is more suitable for terrain expression
than TIN. To summarize, compared to the proposed algorithm, the aforementioned filters have slightly
higher accuracy but lower practicality, due to some parameters that are difficult to set.

6. Conclusions

Automatic filtering is usually necessary prior to LiDAR application for both DTM generation
and feature extraction. In this study, we present a high accuracy and easy-to-use filtering algorithm.
CS is used to obtain high-quality initial provisional DTM. Based on the initial provisional DTM,
statistical analysis is exploited to adaptively adjust the PTD parameter thresholds under different
terrain scenes. Finally, the algorithm utilizes PTD to refine the initial provisional DTM. The proposed
algorithm makes the best use of the advantages of CSF and PTDF, that is, (1) CS can provide high-quality
initial provisional DTM for PTD with only an easy-to-set integer parameter RT, and the high-quality
initial provisional DTM can provide a good foundation for parameter threshold estimation of PTD,
(2) PTD can yield promising results during refinement of the initial terrain, especially for hilltops
and steep slopes. Benchmark datasets with low and high point density are used to compare the
performance of the proposed algorithm with those of other publicized filtering algorithms. Overall,
the proposed algorithm produces a promising filtering result and is highly automatic. The fact may
help the users to use LiDAR data in their own applications. In the future, we will aim to develop a
more sophisticated filter by combining optical images and LiDAR data.
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