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Abstract: Drought has severe impacts on human society and ecosystems. In this study, we used data
acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) and Tropical Rainfall
Measuring Mission (TRMM) sensors to examine the drought effects on vegetation in Afghanistan from
2001 to 2018. The MODIS data included the 16-day 250-m composites of the Normalized Difference
Vegetation Index (NDVI) and the Vegetation Condition Index (VCI) with Land Surface Temperature
(LST) images with 1 km resolution. The TRMM data were monthly rainfalls with 0.1-degree resolution.
The relationship between drought and index-defined vegetation variation was examined by using
time series, regression analysis, and anomaly calculation. The results showed that the vegetation
coverage for the whole country, reaching the lowest levels of 6.2% and 5.5% were observed in drought
years 2001 and 2008, respectively. However, there is a huge inter-regional variation in vegetation
coverage in the study period with a significant rising trend in Helmand Watershed with R = 0.66
(p value = 0.05). Based on VCI for the same two years (2001 and 2008), 84% and 72% of the country
were subject to drought conditions, respectively. Coherently, TRMM data confirm that 2001 and 2008
were the least rainfall years of 108 and 251 mm, respectively. On the other hand, years 2009 and
2010 were registered with the largest vegetation coverage of 16.3% mainly due to lower annual LST
than average LST of 14 degrees and partially due to their slightly higher annual rainfalls of 378 and
425 mm, respectively, than the historical average of 327 mm. Based on the derived VCI, 28% and
21% of the study area experienced drought conditions in 2009 and 2010, respectively. It is also found
that correlations are relatively high between NDVI and VCI (r = 0.77, p = 0.0002), but slightly lower
between NDVI and precipitation (r = 0.51, p = 0.03). In addition, LST played a key role in influencing
the value of NDVI. However, both LST and precipitation must be considered together in order to
properly capture the correlation between drought and NDVI.
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1. Introduction

Drought has become one of the most frequent and critical natural disasters and hostile climatic
phenomena that badly affect societies, water resources and ecosystem [1–4]. This has been evidenced
as a causal factor in decreasing agricultural productivity [5]. The nature of drought is dynamic
and causes difficulties in planning, monitoring, and prediction to assist drought-stricken areas [6,7].
Since the 1970s, numerous studies have used satellite-based land observations to monitor land surface
dynamics [8–12]. Remotely sensed data provide a synoptic view of the land and a spatiotemporal
context to measure drought impacts [9,13,14]. Geospatial techniques are used to derive various indices
(vegetation, water content, and drought indices) for the effective analysis of drought using various
image processing methods [15,16].

Remotely sensed drought indices are effective and suitable for spatial and temporal monitoring of
drought conditions [17]. Different vegetation types can be clearly classified by using remote sensing
vegetation indices, such as NDVI [18–20]. The indices for monitoring the intensity, impact, and duration
of droughts include normalized difference vegetation index (NDVI), land surface temperature (LST),
vegetation condition index (VCI), and temperature condition index (TCI), among other remote
sensing-based drought indices [21]. NDVI is derived as the normalized difference in reflectance
between the near-infrared (NIR) and visible red bands. It plays an important role in vegetation
monitoring [22,23]. It measures the changes in chlorophyll content within the vegetation canopy so that
higher NDVI values represent greater vigor and photosynthetic capacity of vegetation canopy [23–25].
The role of NDVI in vegetation dynamics, drought monitoring, and assessment has been frequently
described during the last few decades [26–29]. NDVI has been calculated from the Advanced Very
High-Resolution Radiometer (AVHRR) data from 1981 onwards. This creates a useful time-series data
for monitoring vegetation dynamics all over the world [30]. Thereafter, for drought monitoring, NDVI
is limited by the time lag between NDVI response and rainfall deficit [31–33]. The VCI has been found
suitable for monitoring large scale response of vegetation to drought by numerous researchers, and its
correlation with crop yield is strong [34–36]. However, these indices do not consider climatic factors
such as variation in rainfall, especially in semi-arid regions where rainfall is a dominant factor [37].
Nowadays, drought and flood monitoring are also done by using remotely sensed precipitation
produced by satellites, such as Tropical Rainfall Measuring Mission (TRMM), as an alternative to
in-situ meteorological data [38–41]. Hence, the drought indices derived from remotely sensed data are
developed by synthesizing precipitation and used for complex monitoring of drought [42].

Droughts are likely to be the norm by 2030, leading to land degradation and desertification in
Afghanistan [43,44]. Some 80 percent of Afghans depend on rain-fed agriculture and cattle-grazing
for their income, both of which are threatened by temperature increase and erratic rainfall [45]. It is
estimated that 36 percent of people have been affected by natural disasters. The cumulative effects of
more frequent and intense droughts on reservoirs and groundwater could threaten the water supply of
entire communities in the most arid regions of Afghanistan, leading to a range of humanitarian crises,
including disease, population displacement, and conflict [46]. Rising winter and spring temperatures
will lead to a more rapid and earlier snowmelt, creating a risk of flash flooding. The impact of
increasingly frequent flash floods is exacerbated by drought, which has the effect of hardening soils
and reducing their permeability [47].

Afghanistan offers a variety of ecological conditions, meaning that different vegetation types cover
the land surface. These vegetation types exhibit high biodiversity since the floristic influence from
various neighboring regions is an important factor in floristic and vegetation patterns. Afghanistan
lies at the “crossroad” of several biogeographical regions. While it is a very dry country, scarce rainfall
varies by region and among lowlands and mountains. The country experiences a semi-arid and strongly
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continental type of climate with major daytime and night-time temperature fluctuation. The eastern
parts receive partly monsoonal rains in summer as the basis for the occurrence of various forest types
that, however, are strongly degraded or deforested nowadays [48]. Vegetation all over Afghanistan
has been severely influenced by human activities, and only a few high mountain and very dry desert
areas retain a quasi-natural vegetation cover [49]. Desertification is a commonly known problem in
most countries of the dry Middle East, Central Asia, and Afghanistan. In most parts, the vegetation
depends on the winter rain, while in the south, winter rains are often irregular. Rainfall increases to the
north and east resulting in better vegetation conditions in these parts. The eastern parts also receive
some monsoon rains in summer [50]. Until recently, there are few studies on the relationship between
climatological factors with drought and vegetation of Afghanistan, especially from a watershed point
of view. In terms of ecological sustainability, Afghanistan is subject to deforestation, desertification,
and severe soil erosion. Given that in this county, most of the watershed areas and their critical points
are located in mountainous and hilly areas, these areas usually have very sparse or no tree cover.
Studying vegetation dynamics and their link to drought in the region is very important to the ecological
sustainability of this country.

It is fair to say that each environment has its own unique set of influential variables and
complex characteristics, which must be properly accounted for when using different vegetation indices.
Therefore, each vegetation index has its specific expression of green vegetation, its own suitability
for specific uses, and some limitation factors. As for Afghanistan, it is a third world country that
is absolutely lacking in sufficient in situ data for fostering the research of the current study’s foci.
Therefore, the authors must fully utilize their knowledge and experiences as well as searching the
literature done in the field about vegetation indices to assess the vegetation variation in the country.
Besides, the authors have attempted to apply some other parameters such as LST and TRMM to
optimize more accurate findings about the vegetation variation in the study area.

The objective of this study is thus to investigate the relationship between vegetation coverage
and drought stress in Afghanistan by using various indices, derived using MODIS, TRMM, and LST
datasets. Is the precipitation alone dominating the drought occurrence? Should both precipitation
and temperature be simultaneously considered? This study will answer the two questions and thus
present: (a) the analysis of time-series database (2001 to 2018) of MODIS-derived NDVI and VCI; (b) the
relationship between NDVI and VCI over Afghanistan; (c) the relationship between NDVI, precipitation
and temperature (LST) over Afghanistan; (d) drought information provided by NDVI, VCI, SPI and
LST, based on a seasonal comparison; and (e) investigation of drought conditions over Afghanistan.

2. Study Area and Material and Methods

2.1. Study Area

Afghanistan is located between latitudes of 29◦30′–38◦40′North and longitudes 60◦30′–74◦50′ East,
covering approximately 650,000 km2 (Figure 1). The lowland plains in the south of Afghanistan
experience extreme seasonal variations in temperature, with average summer (June to August)
temperature exceeding 33 ◦C and mean temperature around 10 ◦C in winter (December to February).
The majority of the country experiences very low temperatures all year round and is at high
altitude. The highest region’s average summer temperatures do not exceed 15 ◦C, while winter
temperatures are below zero. Rainfall is very scarce in Afghanistan, with higher amounts received
in the northern highlands starting in March and April. In the more arid lowlands, rainfall is rare
and very unpredictable [49,51] (Figure 1). There are five major and distinct river basins defined in
Afghanistan those are: the Amu Darya (ADW), Harirod-Murghab (HMW), Hilmand (HW), Kabul (KW)
and Northern (NW) [52–54]. The ADW originates from the High Pamir Mountains of Afghanistan and
Tajikistan and is surrounded in the north by the Ab-i Pamir River, and in the south by the Wakhan River.
The ADW generates 57% of the total river flow in Afghanistan. The source of HMW is the western
slope of the Koh-i Baba Mountains and Murghab (Tir Band-i Mountains in Turkistan). The HMW
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contributes to a small 4% of the total annual flow in Afghanistan. The HW is the largest basin in
Afghanistan which covers the southern half of the country, drain water from the Sia Koh Mountains in
Hirat province to the eastern mountains in Gardez province and the Parwan Mountains northwest
of Kabul. Though the HW shares about 43% of the national territory it drains only 11% of the total
annual flow of Afghanistan. Starting from the Hindu Kush Mountains, the KW covers 700 km till
flowing to the Indus River, Pakistan [55]. The KW shares 12% of the national territory, 23% of the
total settlements, drains 26% of the total annual water flow, and nearly 35% of the total population
of Afghanistan. The basin further divided in 3 major sub-basins based on its physiographic and
hydro-climatic parameters those are Lower Kabul, Panjshir and Logar-Upper Kabul. The NW takes its
sources in the high mountains of the central highlands and is the least annual flow contributing basin
in Afghanistan by only 2% of the total (Figure 1).
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Figure 1. Elevation and the main watersheds of the study area, Afghanistan.

The great mass of vegetation is confined to the main ranges and their immediate offshoots,
whilst it is almost entirely absent on the more distant and terminal prolongations. Vegetation all over
Afghanistan has been severely influenced by human disturbance. Only a few high mountains and
very dry desert areas retain a quasi-natural vegetation cover [49]. Desertification is a known long-term
problem in most countries of the dry Middle East and Central Asia especially Afghanistan. In most
parts, the vegetation depends on the winter rain, in the south, winter rains are often irregular. Rainfall
increases to the north and east, resulting in better vegetation conditions in these parts. The eastern parts
additionally receive some monsoon rains in summer [56] (Figure 2). The water systems for irrigation
in Afghanistan can be classified into three major sources: (a) surface water as the main irrigation water
source covering 86.5 percent of the irrigated area that can be clearly affected by precipitation variation,
(b) springs accounting for 6.9 percent of the area, and (c) Karezes or Qanat for 6.2 percent with rest
0.4 percent from shallow and deep wells [57].
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Figure 2. The natural vegetation of Afghanistan (adapted from [49]).

Afghanistan main vegetation types are shown in Figure 2 (natural vegetation of Afghanistan).
They include: Calligonum-Aristida, sand desert (1a); Haloxylon salicornicum, desert (1b); other deserts
(rich in chenopod) (1c); ephemeral desert (1d); dwarf Amygdalus, semidesert (2); subtropical
dry scrub and savannah (3); Pistacia vera, woodlands (4a); Pistacia atlantica, woodlands (4b);
Juniperus-woodlands (5a); Amygdalus, woodlands (5b); sclerophyllous oak forests (6); conifer forests (7);
Rhododendron-Krummholz (8); thorny cushions, subalpine and alpine semi-deserts and meadows (9);
nival belt, glaciers (10); azonal vegetation: riverine vegetation (11a); and azonal vegetation, swamps,
salt swamps, lakes (11b) [49].

2.2. Data and Methodology

Remote sensing enables the collection of information from points, objects, and environmental
phenomena by different sensors. It becomes one of the fundamental branches of science [9] to draw
contextual drought scenarios in both spatial and temporal domains. This study used the Shuttle
Radar Topography Mission (SRTM) digital elevation data with a resolution of 1 arc-second (~30 m) for
providing the elevation map of the study area [58].

2.2.1. Normalized Difference Vegetation Index (NDVI)

The most common and useful index for investigating vegetation status is NDVI, which is measured
with the leaf area index (LAI) and production pattern [15,59]. NDVI has been used by many scientists
in different studies over the modern era [60–63]. The basic concept of NDVI is based on the fact that the
internal mesophyll of healthy green leaves highly reflects near-infrared (NIR) radiation, whereas the
leaf chlorophyll and other pigments absorb a large proportion of the red visible (RED) radiation [64].
This function of the internal leaf structure becomes reversed in case of unhealthy or water-stressed
vegetation [15,30]. NDVI is calculated using Equation (1).
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NDVI =
NIR−RED
NIR + RED

(1)

The NDVI index ranges from −1 to +1 [65]. In this study, 437 images from Terra MODIS
16-day composite NDVI with 250-m resolution (MOD09Q1, collection v006) were downloaded by
using Application for Extracting and Exploring Analysis Ready Samples (AppEEARS) software from
https://lpdaacsvc.cr.usgs.gov.appeears, for 2001–2018 [66]. NDVI ranges from 0.2 and 1, corresponding
to areas with greenness or plants. It should be above 0.5 for healthy and dense vegetation canopy,
and fall within the range from 0.2 to 0.5 for the sparsely-vegetated areas [20]. In the current study,
to calculate seasonal and yearly vegetation coverage, NDVI is divided to 8 categories (0.2–0.3, 0.3–0.4,
0.4–0.5, 0.5–0.6, 0.6–0.7, and 0.7–0.8), and the arithmetic mean was calculated for each pixel as
Equations (2) to (6):

Winter vegetation coverage =

∑
(image 353 to image 065)

6
(2)

Spring vegetation coverage =

∑
(image 081 to image 161)

6
(3)

Summer vegetation coverage =

∑
(image 177 to image 257)

6
(4)

Fall vegetation coverage =

∑
(image 273 to image 337)

5
(5)

Yearly vegetation coverage =

∑
(image 017 to image 001)

23
(6)

2.2.2. TRMM

The TRMM was launched by NASA and the National Space Development Agency of Japan as
a joint project [67,68]. It was developed to observe precipitation in tropical and subtropical regions.
Its precipitation-related sensors include the visible and infrared radiometer system (VIRS), microwave
imager (TMI), and precipitation radar (PR) [38,69]. TRMM data consists of three temporal resolution
products of three-hourly (3B42), daily (3B42 derived), and monthly (3B43) extending from latitude 50◦ S
to 50◦ N [70,71]. The Global Precipitation Climatology Center (GPCC) derives the TRMM monthly
(3B43) dataset using Huffman’s algorithm [72]. In this study, TRMM GPM_3IMERGM monthly datasets
from 2001 to 2018 used were acquired from Giovanni website (https://giovanni.gsfc.nasa.gov/giovanni/)
with 0.1 × 0.1 degrees spatial resolution [73]. The data was used for calculating the standardized
precipitation index (SPI).

Standardized Precipitation Index (SPI)

McKee et al. (1993) developed the standardized precipitation index (SPI) to monitor drought [74],
while Thom (1958) found the gamma distribution to fit climatological precipitation time, outlined by
its frequency or chance density function:

f (x)=
1

βατα
xβ−1e−x/β (7)

where α is a shape factor, β is a scale factor, x is equal to all non-zero values in the precipitation history.
It is assumed, α > 0 and β > 0. The gamma function may be expressed as follows:

https://lpdaacsvc.cr.usgs.gov.appeears
https://giovanni.gsfc.nasa.gov/giovanni/
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Γ (α) =

∫
∞

0
e−ttα−1dt (8)

where Γ (α) is the gamma function.
SPI calculation includes fitting a gamma probability density function for a station to a given

frequency distribution of overall precipitation. The maximum likelihood solutions are used to optimally
estimate α and β as follows [75],

.
α=

1
4A

1 +

√
1 +

4A
3

 (9)

.
β=

x
α

(10)

A = ln x−
∑

ln(x)
n

(11)

where n is number of precipitation observations, A is a measure of the skewness of the distribution x is
the arithmetic mean of all non-zero values. The cumulative probability is given by:

G (x)=
∫ x

0
g(x)dx=

1
.

.
β

.
α
τ

.
α

∫ x

0
xa−1e−x/β (12)

where t = x/β; and G (x) = 1
Γ

.
a

∫ x
0 ta−1e−tdt.

The gamma function is undefined for x = 0, and a precipitation distribution may contain zeros.
The cumulative probability becomes

H (x) = q + (1− q) G(x) (13)

The value of q is assumed to be a probability of zero. If m is the number of zeros in a precipitation
time series, according to Thom (1958) q can be estimated by m/n. The cumulative probability, H(x),
is then transformed to the standard normal random variable Z with mean zero and variance of one,
which is the value of the SPI [75]. SPI is categorized based on the range of values shown in Table 1.

Table 1. Wet and drought period classification according to the SPI index [76,77].

Index Value Class Description

Non Drought

SPI ≥ 2.00 Extremely wet
1.50 ≤ SPI < 2.00 Very wet
1.00 ≤ SPI < 1.50 Moderately wet
−1.00 ≤ SPI < 1.00 Near normal

Drought
−1.50 ≤ SPI < −1.00 Moderate drought
−2.00 ≤ SPI < −1.50 Severe drought

SPI < −2.00 Extreme drought

2.2.3. Land Surface Temperature (LST)

In this study, for calculating the daytime LST, we used 828 images of the sixth product,
MOD11A2, an eight-day LST product by averaging from two to eight days of the MOD11A1
(MOD11A2.006_LST_Day_1km). The product was downloaded by using Application for Extracting and
Exploring Analysis Ready Samples (AppEEARS) software from https://lpdaacsvc.cr.usgs.gov.appeears,
for 2001 to 2018 [66]. To calculate yearly LST the arithmetic mean has been calculated for each pixel as
Equation (14).

Yearly LST =

∑
(image 009 to image 001)

46
(14)

https://lpdaacsvc.cr.usgs.gov.appeears
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2.2.4. Vegetation Condition Index (VCI)

The vegetation condition index (VCI) was first introduced by Kogan (1995, 1997) [26,78].
It effectively shows how close the current month’s NDVI is to the minimum NDVI calculated from the
long-term record of remote sensing data [79]. The VCI is a pixel-based normalization of the NDVI to
separate the long-term ecosystem changes from the short-term weather-related NDVI fluctuation and
reflects relative changes in the vegetation condition from extremely bad to optimal [34,42]. The VCI
is a better indicator of drought stress impact on vegetation condition than NDVI. It ranges from 0
(extremely unfavorable) to 1 (optimal). It is close or equal to 0 in an extremely dry month when the
vegetation condition is poor. Fair vegetation conditions are reflected by a VCI of 0.5, while VCI is close
to 1 when vegetation is in the best state [80]. It is obtained by the following formula:

VCI =
( NDVI−NDVImin

NDVImax−NDVImin

)
× 100 (15)

where NDVI is the smoothed pixel values of NDVI based on the Savitzky–Golay filter [81]. NDVImax

and NDVImin are respectively maximum NDVI and minimum NDVI, calculated by the corresponding
pixels in monthly, seasonal, and yearly period from the entire NDVI records for the whole study area
from 2001 to 2018.

2.2.5. Linear Regression

This study used the linear regression to define the correlations, at a significance level of 0.05,
for further analysis. Linear regression is a statistical method to model the relationship between two
variables by fitting a linear equation to observed data. One variable is considered to be an explanatory
variable, and the other is considered to be a dependent variable [82]. A linear regression model can be
described as follows:

yi = a + bxi (16)

where a and b are regression coefficients. The coefficients of (11) can be obtained from the given (xi, yi).

3. Results and discussion

3.1. NDVI Change

Figure 3 shows the average vegetation coverage in the study area during the whole study period.
This figure reveals that the NDVI gradually rose from the first of January (with 8% of the study area),
and the rise was continuously seen rapidly until late April and the first of May with about 20% of the
area (about 132,000 km2). From the tenth of May, the vegetation coverage gradually decreased, and the
coverage reached its minimum yearly coverage at the mid of October with 6% vegetation coverage
(about 37,500 km2). The vegetation coverage experienced a very weak rise from late November to
middle December, and then a falling trend was observed. Accordingly, the main growing season in
Afghanistan starts around the first of January and ends in the first ten days of May (Figure 3).

The annual variation rates of the different types of NDVI coverage (0.2–0.3, 0.3–0.4, 0.4–0.5, 0.5–0.6
and >0.6) were calculated for each pixel for the study area by multiplying the number of pixels with
different NDVI values (0.2–0.3, . . . ) to the area of each pixel (62,500 m2) between 2001 and 2018.
The temporal trend of annual NDVI coverage showed heterogeneity in the study area. Two types of
vegetation (NDVI 0.2–0.4) show no trend, and the other types of vegetation (0.41–0.8) show a significant
increasing trend. Figure 4 shows the temporal trends of the annual coverage of NDVI in the area.

Figures 5 and 6 show the relationship between annual vegetation coverage (drought severity)
determined by using NDVI and VCI index in Afghanistan during the study period (2001 to 2018).
The drought area (DA) and no drought area (NDA) are defined as the areas with a VCI index between
0 and 50% (DA), and between 50.1 and 100% (NDA), respectively. For the whole of Afghanistan (about
650,000 km2) in the study period, on average, 11.66% has been covered by vegetation (75,800 km2).
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There were some years with the maximum and minimum of DA in the study area as years 2001,
and 2008 with maximum DA (84 and 72% of the study area, respectively), and years 2010, and 2016
with the lowest value of DA (21.4 and 22.5% of the study area, respectively). The vegetation coverage
of those years also has been respectively among the maximum and minimum in the study period
(2001 with 6%, 2008 with 5.4%, 2010 with 16.3% and 2016 with 14.9% of the study area). As shown,
there is a significant relationship between DA and NDA with NDVI coverage in the study area,
while the trends of the NDVI, DA, and NDA were temporally coherent, as indicated with the regression
models of the DA versus NDVI (r = 0.77, p < 0.05) and the NDA versus NDVI (r = 0.77, p < 0.05)
(Figures 5 and 6).

Table 2 shows the area covered by each class of NDVI in the study area. It indicates that 70.2%
of all of the vegetation in Afghanistan was in the NDVI range of 0.2–0.3, NDVI range of 0.3–0.6 was
29.4%, and NDVI >0.6 was just less than 0.5% of the vegetation (Table 2 and Figure 7). Figure 7 shows
the area of Afghanistan with different categories of NDVI between 2001 to 2018. It is clearly observable
that Afghanistan is rather sparsely vegetated. Furthermore, only 29.9% of the country is vegetated
with NDVI higher than 0.3. Obviously, Afghanistan demonstrates the characteristics of an arid and
semi-arid climate.

Table 2. The area covered by different NDVI categories (km2) in Afghanistan between 2001 and 2018.

Year NDVI
0.2–0.3

NDVI
0.3–0.4

NDVI
0.4–0.5

NDVI
0.5–0.6

NDVI
0.6–0.7

NDVI
0.7–0.8

2001 25,036 9613 3712 1320 321 7
2002 57,744 14,884 4235 1189 177 2
2003 72,583 24,661 4323 1049 108 0
2004 64,816 13,560 3630 965 135 0
2005 63,457 13,476 4218 833 61 0
2006 39,943 12,282 3896 871 92 0
2007 57,467 17,498 4120 954 120 2
2008 20,916 9978 3431 972 156 3
2009 75,356 23,642 5944 1090 131 2
2010 80,358 17,998 5545 1544 287 3
2011 36,993 12,657 4543 1307 177 1
2012 55,481 14,436 4246 1096 120 0
2013 65,988 15,982 6135 1377 208 4
2014 47,301 13,978 5699 1624 307 12
2015 69,112 19,007 7038 1810 400 13
2016 71,390 15,998 6642 1992 549 48
2017 44,531 14,097 6141 1517 219 4
2018 37,759 14,656 7531 2293 672 55

Average 54,791 15,467 5057 1322 236 9
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Figure 3. The average vegetation coverage in Afghanistan between 2001 and 2018.
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Figure 4. Time series of different categories of NDVI for the study area between 2001 and 2018
(significance level at p = 0.05).
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Figure 5. The relationship between vegetation coverage area and areas of DA and NDA in Afghanistan
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Table 3 shows the correlation between DA (VCI 0–50%) with spatial coverage of each NDVI class
in the study period. There exists a meaningful negative relationship between NDVI 0.2–0.3 categories
with DA and an insignificant negative relationship between NDVI 0.6–0.8 categories with DA. The table
shows that the dense and semi-dense vegetation (NDVI > 0.5) are less sensitive to drought condition
than the sparse vegetation (NDVI 0.2–0.5). Because the dense vegetation can endure a short-term
drought (one or two years), the sparse vegetation cannot withstand even a seasonal drought. It cannot
be concluded from the relationship between DA condition, with all categories of NDVI, that it is just
precipitation to control the vegetation variation. Hence, it is needed to study the seasonal relationship
between VCI and NDVI.

Table 3. The correlation between DA with spatial coverage of different NDVI categories in Afghanistan
between 2001 and 2018.

NDVI
0.2–0.3

NDVI
0.3–0.4

NDVI
0.4–0.5

NDVI
0.5–0.6

NDVI
0.6–0.7

NDVI
0.7–0.8

DA −0.59 * −0.46 * −0.68 * −0.37 −0.19 −0.21

Note: * denotes significance level at p = 0.05.

3.2. Watershed NDVI Variation

Figure 8 shows the time series and vegetation coverage of each watershed in the study area
between 2001 and 2018. NW and ADW watershed share 27% and 23% of the vegetation coverage of the
country, respectively. In contrast, KW, HMW, and HW share 22%, 19%, and 9% of the whole country’s
vegetation, respectively.
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Figure 8. Time series and trend of vegetation coverage of each watershed in Afghanistan between 2001
and 2018 (* denotes significance level at p = 0.05).

In the study period, there was a significantly positive rising trend in vegetation coverage in HW
with R = 0.66 (p value = 0.05). The other watersheds do not exhibit a significant trend, but a negative
falling trend was observed in HMW and NW. Also, the figure shows the inter-regional and interannual
vegetation coverage for the five main watersheds in the study area between 2001 and 2018. Note that
there is a different attitude between the main watersheds, especially KW and HW watersheds that are
influenced by Indian Monsoon (Figure 8). On the other hand, KW and HW located in the Eastern and
Southern parts of the country are affected by the monsoon from the Indian sub-continent [57].

Table 4 shows the correlation between vegetation coverage of the five main watersheds with each
other in Afghanistan. The highest positive correlations were found in the two pairs HMW and NW,
and HW and KW with R = 0.87 and 0.73, respectively. In contrast, the negative correlations were
clearly observable between KW and NW with R = −0.93, between HMW and KW with R = −0.87,
between HW and NW with R = −0.82, and between HM and HMW with R = −0.69. Finally, it can be
concluded that the vegetation coverages of different watersheds in Afghanistan are affected by three
main different atmospheric patterns (one pattern for KW and HW, one for HMW and NW, and the
other one for ADW watershed (Table 4).
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Table 4. The correlation matrix of time series of vegetation coverages between five watersheds in the
study area between 2001 and 2018.

Watersheds NW KW HMW HW ADW

NW 1
KW −0.96 * 1

HMW 0.87 * −0.87 * 1
HW −0.82 * 0.73 * −0.69 * 1

ADW 0.06 −0.19 −0.23 −0.21 1

Note: * denotes significant at p = 0.05.

Table 5 shows the correlation between seasonal DA with seasonal spatial coverage of each NDVI
class in the study period. It shows that there is a negative correlation between NDVI coverage with
DA in all of seasons. However, the correlation is more in the warm seasons (spring and summer) than
the cool seasons (winter and fall). The correlation is significant just in summer season and just for
NDVI 0.4–0.7 (respectively, R = −0.47, −0.50 and −0.46, p value = 0.05), but the correlation between
all NDVI categories with DA is more negative in the summer season than the other seasons. This is
because the LST is high enough for the plants to grow in the warm seasons. That is, if there is enough
water, the plants grow naturally. In contrast, if there is insufficient water, the plants will experience
pressure to high LST (Table 5).

Table 5. The correlation between seasonal DA with seasonal spatial coverage of different NDVI
categories in Afghanistan between 2001 and 2018.

NDVI
0.2–0.3

NDVI
0.3–0.4

NDVI
0.4–0.5

NDVI
0.5–0.6

NDVI
0.6–0.7

NDVI
0.7–0.8

WINTER −0.22 −0.25 −0.14 −0.02 0.01 −0.07
SPRING −0.37 −0.40 −0.29 −0.25 −0.24 −0.22

SUMMER −0.40 −0.40 −0.47 * −0.50 * −0.46 * −0.38
FALL −0.24 −0.29 −0.26 −0.22 −0.21 −0.18

Note: * denotes significant at p = 0.05.

3.3. Relationship Between NDVI with Precipitation and LST

Figure 9 shows the relationship between yearly NDVI coverage with annual precipitation and LST
in Afghanistan. It is observed that there is a significant correlation between NDVI with precipitation
(p = 0.03, r = 0.51) and an insignificant relationship between NDVI with LST (p = 0.55, r = 0.15).
The years 2001, 2002, 2008, and 2017 had the minimum precipitation (107.7, 219.8, 250.6, and 203.4 mm,
respectively), and years 2012, 2013, 2014, and 2015 had the maximum precipitation (511, 536.3, 548.2
and 692.2 mm, respectively). The agricultural sector is highly vulnerable to changes in rainfall patterns,
increased LST, and snowmelt. Agricultural productivity and crop choice availability are impacted by
reduced river flow from earlier snowmelt, increased soil evaporation, and less frequent rain during
peak cultivation seasons [47]. The harmony between the driest years with NDVI coverage is clear
in the years 2001 and 2008, but not obvious in the years 2002 and 2017, which, despite the drought,
experienced an increase in NDVI coverage. Also, the years 2001, 2013, 2016, and 2017 were the hottest
years (20, 19.7, 20.3, and 19.8 ◦C, respectively) and years 2008, 2009, 2010, and 2018 (18.17, 17.07, 17.82,
and 17.08 ◦C, respectively) were the coldest years. It can be concluded that the LST by controlling
the soil moisture has a key role in increasing/decreasing trend of NDVI coverage in the study area.
For example, in the year 2001 because of low SPI and high LST, it was one of the lowest coverages
of NDVI (40,010 km2), due to decreasing soil moisture in relation to high LST and water sacristy as
a result of low precipitation. On the other hand, in the year 2008, because both LST and SPI were
lower than normal value, the least NDVI coverage occurred (35,457 km2). The year 2008, as the driest
(less vegetation coverage) year, is the last year of a period of 8 dry years with precipitation lower than
normal. Therefore, it was clearly observed that, after a long continuous period (8 years) with drought
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conditions, all types of vegetation coverage had been affected, and finally, the year 2008 was the driest
during the study period. On the other hand, a drought occurred in the year 2017 after five wet years
during the study period. Hence, despite with LST higher than normal and precipitation lower than
normal, both of them can cause a stressful situation for vegetation coverage. However, due to the
facts of existing sufficient water supplies, having enough surface and ground waters, as well as the
development of irrigation areas, the year had a normal situation in vegetation coverage. In 2009 and
2010, despite that the precipitation was tightly near the historical normal, the NDVI coverage was the
highest in the study period because the LST was below normal. In contrast, even in the years 2014 and
2015, which were the wettest years in the study period, NDVI coverage could not reach the highest
level because of low LST (Figure 9).
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Figure 9. The relationship between anomaly of yearly vegetation coverage with the anomaly of annual
precipitation and LST in Afghanistan between 2001 and 2018.

The average annual LST of Afghanistan in the study period did not show an obvious trend,
while precipitation showed an insignificant increasing trend. The increasing trend from the year 2009
was more sensible. It was observed that from the year 2009, there were no decreases in NDVI coverage
in the study area due to precipitation shortage (Figure 9). According to climatic norms used by the
World Meteorological Organization (WMO), the mean annual temperature has increased by 0.6 ◦C
since 1960, at an average rate of around 0.13 ◦C per decade. Mean rainfall over Afghanistan has slightly
decreased at an average rate of 0.5 mm per month (or 2% per decade) since 1960 [47]. It can be said that
in arid and semi-arid areas, like almost part of the Middle East, vegetation coverage does not depend
on just either precipitation or LST. However, either precipitation or LST alone can have a strengthening
or weakening effect on the vegetation coverage. Therefore, it is very important to consider both LST
and precipitation for analyzing the variations in the vegetation coverage in these regions.

3.4. Watershed Vegetation Coverage and Precipitation

Figure 10 shows the relationship between vegetation coverage and precipitation in the study
area between 2001 and 2018. It demonstrated that there was no significant correlation between
vegetation coverage and precipitation. Also, the correlation was found to be near zero (R = −0.02) in
HMW, while positive correlations were observed in NW, HW, and ADW with R = 0.27, 0.36, and 0.17,
respectively, and negative correlation was seen in KW with R = −0.28. Thus, it seems that, in these
regions, vegetation coverage cannot be predicted just by using the precipitation, as further illustrated
in Figure 8. This finding is not completely the same as that found by Ji and Peters [33]; vegetation
greenness can be predicted using current and antecedent precipitation. Such inconsistent findings are
a result of the fact that the previous research [34] did not considered temperature as an influencing
factor in their study. That is, temperature plays an important role to alter the vegetation pattern in the
semi-arid and arid regions, such as middle east and Afghanistan.
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Figure 10. Scatter plot of time series of precipitation and vegetation coverage of each watershed in
Afghanistan between 2001 and 2018.

4. Conclusions

The present study attempted to identify drought years over Afghanistan using remotely sensed
data and to identify the best indicators for studying vegetation coverage in the study area. It was
found that MODIS NDVI-derived VCI with precipitation and LST images can be useful for monitoring
of drought in Afghanistan. There was an increased rate of annual NDVI coverage ranging from 0.2–0.3
to 0.5–0.8 for the whole study area. There was a significant relationship between the VCI and NDVI
coverage in the study area, while the regression between DA with NDVI and for the NDA with NDVI
has been the same (r = 0.77, p = 0.0002). The relationship was negative between all NDVI categories with
extreme, and moderate drought conditions, and meaningful positive relationships between all NDVI
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categories with extreme, severe, moderate, and light wet conditions were obtained. The relationship
between severe droughts and NDVI was negatively significant in categories (NDVI 0.2–0.4 and 0.6–0.8).
In the study period, the seasonal NDVI coverage well agreed with seasonal VCI, but such trends in
spring and summer were more sensible than those during winter and fall seasons.

There was a significant correlation between NDVI and precipitation and an insignificant
relationship between NDVI and LST. It seemed that LST had a key role in modifying NDVI coverage.
Years with nominal precipitation, having an average LST lower than normal years, benefit vegetation
growth due to low evapotranspiration. A year with high precipitation and very low LST resulted in
suppressed vegetation growth and lower coverage of high NDVI values. The least vegetation coverage
was found in the years 2001 and 2008, while the most vegetation coverage was found in the years 2010
and 2016. Such finding is consistent with those found by Pervaz et al. [83]. The vegetation coverage of
different watersheds in Afghanistan was affected by three main atmospheric patterns (one pattern for
KW and HW, one for HMW and NW, and the other one for ADW). Such findings are consistent with
that found by Shokory et al. [84].

In arid and semi-arid regions such as Afghanistan, the lag time between precipitation variation
and vegetation coverage is primarily controlled by LST. In these regions, it cannot be doable to predict
the vegetation coverage just by using the precipitation variation, while this result is not completely
consistent with the findings of Ji and Peters [33]; this gives space for further research.

The average annual LST of Afghanistan in the study period did not show any trend,
while precipitation showed an insignificant increasing trend. The response of vegetation to an
increasing trend of precipitation was sensible from the year 2009. Finally, it can be concluded that,
with the currently increasing trend in precipitation, especially from the year 2009, and with no
recognized trend in LST in the study period, vegetation in Afghanistan will not be decreased in the
near future. However, the conclusion did not consider other factors, such as the political situation in
the country, which could affect water and vegetation management.
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