Preliminary Utility of the Retrospective IMERG Precipitation Product for Large-Scale Drought Monitoring over Mainland China
Abstract
:1. Introduction
2. Study Area, Datasets and Methods
2.1. Study Area
2.2. IMERG and Other SPPs
2.3. In Situ Observation Dataset
2.4. Standardized Precipitation Index (SPI)
2.5. Statistical Metrics
3. Results
3.1. Evaluation of IMERG Precipitation at Multiple Temporal and Spatial Scales
3.2. Quantitative Evaluation of IMERG-Based SPI
3.3. Regional Validation of IMERG-Based SPI for Drought Events
4. Discussion
4.1. Usability of Retrospective IMERG-Based SPI
4.2. Does the Retrospective IMERG Feature Significant Advantages Compared to Other SPPs for Drought Monitoring?
5. Conclusions
- (1)
- Spatially, the IMERG has good agreement with the observed precipitation data in most regions, and there are obvious discrepancies in the Xinjiang and Qinghai-Tibet Plateau regions. Temporally, the IMERG possesses a strong capacity for estimating intra-annual precipitation changes (regional mean CC over 0.7), and it features the best performance at the monthly scale (most CCs above 0.9). The highly accurate and significantly reliable monthly IMERG precipitation is an important data source for drought monitoring.
- (2)
- The IMERG-based SPI performed well for drought monitoring in most regions over mainland China (with CCs above 0.8), while it exhibited comparatively poor stability in Xinjiang and Qinghai-Tibet Plateau. As the timescale incremented from 1 to 12 months, the accuracy of the IMERG-based SPI correspondingly increased or decreased in certain regions.
- (3)
- With regard to the regional drought characteristics (i.e., drought intensity and area), the IMERG precisely depicted the onset and extinction of representative drought events (with temporal CCs over 0.96 and RMSEs below 0.16), and it imitated precisely the spatial drought shapes of the specific four-month period (with spatial CCs above 0.8 and RMSEs below 0.55).
- (4)
- Although the retrospective IMERG features some uncertainties in both precipitation estimation and drought monitoring, it clearly outperforms the other three widely used post-process SPPs, i.e., PERSIANN-CDR, CHIRPS, and TMPA 3B42V7.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wilhite, D.A. Drought as a natural hazard: Concepts and definitions. In Drought, a Global Assessment; Wilhite, D.A., Ed.; Routledge: London, UK, 2000; Volume 1, pp. 3–18. [Google Scholar]
- Kao, S.C.; Govindaraju, R.S. A copula-based joint deficit index for droughts. J. Hydrol. 2010, 380, 121–134. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Farahmand, A.; Melton, F.S.; Teixeira, J.; Anderson, M.C.; Wardlow, B.D.; Hain, C.R. Remote sensing of drought: Progress, challenges and opportunities. Rev. Geophys. 2015, 53, 452–480. [Google Scholar] [CrossRef] [Green Version]
- Lai, C.; Zhong, R.; Wang, Z.; Wu, X.; Chen, X.; Wang, P.; Lian, Y. Monitoring hydrological drought using long-term satellite-based precipitation data. Sci. Total Environ. 2019, 649, 1198–1208. [Google Scholar] [CrossRef]
- Xu, Z.; Wu, Z.; He, H.; Wu, X.; Zhou, J.; Zhang, Y.; Guo, X. Evaluating the accuracy of MSWEP V2. 1 and its performance for drought monitoring over mainland China. Atmos. Res. 2019, 226, 17–31. [Google Scholar] [CrossRef]
- Zhong, R.D.; Chen, X.H.; Lai, C.G.; Wang, Z.L.; Lian, Y.Q.; Yu, H.J.; Wu, X.Q. Drought monitoring utility of satellite-based precipitation products across mainland China. J. Hydrol. 2019, 568, 343–359. [Google Scholar] [CrossRef]
- Dai, A. Characteristics and trends in various forms of the palmer drought severity index during 1900–2008. J. Geophys. Res. Atmos. 2011, 116, 1248–1256. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Mishra, V.; Lilhare, R. Hydrologic sensitivity of Indian sub-continental river basins to climate change. Glob. Planet. Chang. 2016, 139, 78–96. [Google Scholar] [CrossRef]
- Venkataraman, K.; Tummuri, S.; Medina, A.; Perry, J. 21st century drought outlook for major climate divisions of Texas based on CMIP5 multimodel ensemble: Implications for water resource management. J. Hydrol. 2016, 534, 300–316. [Google Scholar] [CrossRef] [Green Version]
- Ali, G.; Pumijumnong, N.; Cui, S. Decarbonization action plans using hybrid modeling for a low-carbon society: The case of Bangkok Metropolitan Area. J. Clean. Prod. 2017, 168, 940–951. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, S.; Ren, L.; Xu, C.; Yuan, F.; Liu, Y.; Yang, X. An approach for identification and quantification of hydrological drought termination characteristics of natural and human-influenced series. J. Hydrol. 2020, 125384. [Google Scholar] [CrossRef]
- Li, X.; Jin, H.; He, R.; Huang, Y.; Wang, H.; Luo, D.; Yu, S. Effects of forest fires on the permafrost environment in the northern da xing’anling (hinggan) mountains, northeast china. Permafr. Periglac. 2019, 30, 163–177. [Google Scholar] [CrossRef]
- Collins, L.; Bennett, A.F.; Leonard, S.W.J.; Penman, T.D. Wildfire refugia in forests: Severe fire weather and drought mute the influence of topography and fuel age. Glob. Chang. Biol. 2019, 25, 3829–3843. [Google Scholar] [CrossRef]
- Etchells, H.; O’Donnell, A.J.; Lachlan McCaw, W.; Grierson, P.F. Fire severity impacts on tree mortality and post-fire recruitment in tall eucalypt forests of southwest Australia. For. Ecol. Manag. 2020, 459, 117850. [Google Scholar] [CrossRef]
- Shuttleworth, K. Australia Fire Crisis Fuels Protests Calling for Bolder Action on Climate Change: Thousands Protest in Cities as Prime Minister Scott Morrison Defends His Government’s Response to the Disaster; The Washington Post (Online): Washington, DC, USA, 2020. [Google Scholar]
- Qiao, Z.; Fang, L.; Zhang, Y.; Yang, J.; Jiang, T.; Yuan, H. Spatio-temporal characteristics of forest fires in china between 2001 and 2017. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2020, 31, 55–64. [Google Scholar]
- Palmer, W.C. Meteorological Drought; US Department of Commerce, Weather Bureau: Washington, DC, USA, 1965.
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, American Meteorological Society, Boston, MA, USA, 17–22 January 1993. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Yan, G.X.; Liu, Y.; Chen, X. Evaluating satellite-based precipitation products in monitoring drought events in Southwest China. Int. J. Remote Sens. 2018, 39, 3186–3214. [Google Scholar] [CrossRef]
- He, B.; Lu, A.F.; Wu, J.J.; Zhao, L.; Liu, M. Drought hazard assessment and spatial characteristics analysis in China. J. Geogr. Sci. 2011, 21, 235–249. [Google Scholar] [CrossRef]
- Belayneh, A.; Adamowski, J. Standard precipitation index drought forecasting using neural networks, wavelet neural networks, and support vector regression. Appl. Comput. Intell. Soft Comput. 2012, 2012. [Google Scholar] [CrossRef]
- Bayissa, Y.; Tadesse, T.; Demisse, G.; Shiferaw, A. Evaluation of satellite-based rainfall estimates and application to monitor meteorological drought for the Upper Blue Nile Basin, Ethiopia. Remote Sens. 2017, 9, 669. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.; Shen, W.; Wu, X.; Wang, P. Applicability of long-term satellite-based precipitation products for drought indices considering global warming. J. Environ. Manag. 2020, 255, 109846. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, A.K.; Sheffield, J.; Pan, M.; Wood, E.F. Evaluation of the tropical rainfall measuring mission multi-satellite precipitation analysis (TMPA) for assessment of large-scale meteorological drought. Remote Sens. Environ. 2015, 159, 181–193. [Google Scholar] [CrossRef]
- Dhakar, R.; Sehgal, V.K.; Pradhan, S. Study on inter-seasonal and intra-seasonal relationships of meteorological and agricultural drought indices in the rajasthan state of india. J. Arid Environ. 2013, 97, 108–119. [Google Scholar] [CrossRef]
- Guo, H.; Bao, A.; Liu, T.; Chen, S.; Ndayisaba, F. Evaluation of PERSIANN-CDR for meteorological drought monitoring over china. Remote Sens. 2016, 8, 379. [Google Scholar] [CrossRef] [Green Version]
- Rajabi, A. Analysis of SPI drought class transitions due to climate change. Case study: Kermanshah (iran). Water Resour. 2016, 43, 238–248. [Google Scholar] [CrossRef]
- Zambrano, F.; Wardlow, B.; Tadesse, T.; Lillo-Saavedra, M.; Lagos, O. Evaluating satellite-derived long-term historical precipitation datasets for drought monitoring in chile. Atmos. Res. 2017, 186, 26–42. [Google Scholar] [CrossRef]
- Tan, M.; Chua, V.; Tan, K.; Brindha, K. Evaluation of TMPA 3B43 and NCEP-CFSR precipitation products in drought monitoring over singapore. Int. J. Remote Sens. 2018, 39, 2089–2104. [Google Scholar] [CrossRef]
- Beguerıa, S.; Vicente-Serrano, S.; Reig, F.; Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.; McVicar, T.; Miralles, D.; Yang, Y.; Tomas-Burguera, M. Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change. WIREs Clim. Chang. 2020, 11, e632. [Google Scholar] [CrossRef]
- West, H.; Quinn, N.; Horswell, M. Remote sensing for drought monitoring & impact assessment: Progress, past challenges and future opportunities. Remote Sens. Environ. 2019, 232, 111291. [Google Scholar]
- Jiang, S.; Ren, L.; Zhou, M.; Yong, B.; Zhang, Y.; Ma, M. Drought monitoring and reliability evaluation of the latest TMPA precipitation data in the Weihe River Basin, Northwest China. J. Arid Land 2017, 9, 256–269. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Ren, L.; Xu, C.-Y.; Yong, B.; Yuan, F.; Liu, Y.; Yang, X.; Zeng, X. Statistical and hydrological evaluation of the latest Integrated Multi-satellitE Retrievals for GPM (IMERG) over a midlatitude humid basin in South China. Atmos. Res. 2018, 214, 418–429. [Google Scholar] [CrossRef]
- Wang, Z.; Zhong, R.; Lai, C.; Chen, J. Evaluation of the GPM IMERG satellite-based precipitation products and the hydrological utility. Atmos. Res. 2017, 196, 151–163. [Google Scholar] [CrossRef]
- Duan, Z.; Tuo, Y.; Liu, J.; Gao, H.; Song, X.; Zhang, Z.; Yang, L.; Mekonnen, D. Hydrological evaluation of open-access precipitation and air temperature datasets using SWAT in a poorly gauged basin in Ethiopia. J. Hydrol. 2019, 556, 612–626. [Google Scholar] [CrossRef] [Green Version]
- Ashouri, H.; Hsu, K.L.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. Persiann-CDR daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Am. Meteorol. Soc. 2015, 96, 69–83. [Google Scholar] [CrossRef] [Green Version]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huffman, G.; Bolvin, D.; Nelkin, E.; Wolff, D.; Adler, R.; Gu, G.; Hong, Y.; Bowman, K.; Stocker, E. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Aadhar, S.; Mishra, V. High-resolution near real-time drought monitoring in South Asia. Sci. Data 2017, 4, 170145. [Google Scholar] [CrossRef] [Green Version]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Xie, P.; Yoo, S.H. NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG). Algorithm Theor. Basis Doc. 2015, 4, 26. [Google Scholar]
- Hou, A.; Kakar, R.; Neeck, S.; Azarbarzin, A.; Kummerow, C.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Peng, F.; Zhao, S.; Chen, C.; Cong, D.; Wang, Y.; Ouyang, H. Evaluation and comparison of the precipitation detection ability of multiple satellite products in a typical agriculture area of china. Atmos. Res. 2020, 236, 104814. [Google Scholar] [CrossRef]
- Tang, G.; Clark, M.; Papalexiou, S.; Ma, Z.; Hong, Y. Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote Sens. Environ. 2020, 240, 111697. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Kidd, C.; Nelkin, E.J.; Sorooshian, S.; Tan, J.; Xie, P. NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). In Algorithm Theoretical Basis Document (ATBD) Version 06; NASA/GSFC: Greenbelt, MD, USA, 2019. [Google Scholar]
- Tan, J.; Huffman, G.; Bolvin, D.; Nelkin, E. Diurnal Cycle of IMERG V06 Precipitation. Geophys. Res. Lett. 2019, 46, 13584–13592. [Google Scholar] [CrossRef]
- Chen, S.; Hong, Y.; Cao, Q.; Gourley, J.J.; Kirstetter, P.; Yong, B. Similarity and difference of the two successive v6 and v7 trmm multisatellite precipitation analysis performance over china. J. Geophys. Res. Atmos. 2013, 118, 13060–13074. [Google Scholar] [CrossRef]
- Tan, J.; Petersen, W.A.; Tokay, A. A Novel Approach to Identify Sources of Errors in IMERG for GPM Ground Validation. J. Hydrometeorol. 2016, 17, 2477–2491. [Google Scholar] [CrossRef]
- Lu, Y.; Jiang, S.; Ren, L.; Zhang, L.; Wang, M.; Liu, R.; Wei, L. Spatial and Temporal Variability in Precipitation Concentration over Mainland China, 1961–2017. Water 2019, 11, 881. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Jia, L.; Menenti, M.; Yan, Y.; Zheng, C.; Zhou, J. Performance of the standardized precipitation index based on the TMPA and CMORPH precipitation products for drought monitoring in china. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1387–1396. [Google Scholar] [CrossRef]
- Wei, L.; Jiang, S.; Ren, L.; Yuan, F.; Zhang, L. Performance of Two Long-Term Satellite-Based and GPCC 8.0 Precipitation Products for Drought Monitoring over the Yellow River Basin in China. Sustainability 2019, 11, 4969. [Google Scholar] [CrossRef] [Green Version]
- Schneider, U.; Schneider, U.; Becker, A.; Becker, A.; Finger, P.; Finger, P.; Rudolf, B. GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol. 2014, 115, 15–40. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Zhang, L.; Zhang, Y.; Guo, M.; Liu, X. Evaluation of tropical rainfall measuring mission (TRMM) satellite precipitation products for drought monitoring over the middle and lower reaches of the yangtze river basin, china. J. Geogr. Sci. 2020, 30, 53–67. [Google Scholar] [CrossRef] [Green Version]
- Mosaffa, H.; Sadeghi, M.; Hayatbini, N.; Gorooh, V.; Asanjan, A.; Nguyen, P.; Sorooshian, S. Spatiotemporal variations of precipitation over iran using the high-resolution and nearly four decades satellite-based PERSIANN-CDR dataset. Remote Sens. 2020, 12, 1584. [Google Scholar] [CrossRef]
- Yu, C.; Hu, D.; Liu, M.; Wang, S.; Di, Y. Spatio-temporal accuracy evaluation of three high-resolution satellite precipitation products in china area. Atmos. Res. 2020, 241, 104952. [Google Scholar] [CrossRef]
- Yang, X.; Lu, Y.; Tan, M.; Li, X.; Wang, G.; He, R. Nine-year systematic evaluation of the GPM and TRMM precipitation products in the shuaishui river basin in east-central china. Remote Sens. 2020, 12, 1042. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Wei, L.; Ren, L.; Xu, C.-Y.; Zhong, F.; Wang, M.; Zhang, L.; Yuan, F.; Liu, Y. Utility of integrated IMERG precipitation and GLEAM potential evapotranspiration products for drought monitoring over mainland China. Atmos. Res. 2020, 247, 105141. [Google Scholar] [CrossRef]
Drought Rank | Index Values |
---|---|
No drought | SPI > −0.5 |
Light drought | −1.0 < SPI ≤ −0.5 |
Moderate drought | −1.5 < SPI ≤ −1.0 |
Severe drought | −2.0 < SPI ≤ −1.5 |
Extreme drought | SPI ≤ −2.0 |
Regions | Quantiles | Daily | Monthly | Yearly | ||||||
---|---|---|---|---|---|---|---|---|---|---|
CC | RMSE (mm/day) | KGE′ | CC | RMSE (mm/month) | KGE′ | CC | RMSE (mm/year) | KGE′ | ||
R1 | 0.05 | 0.68 | 3.12 | 0.54 | 0.91 | 11.9 | 0.71 | 0.79 | 49.1 | 0.61 |
0.50 | 0.74 | 4.05 | 0.65 | 0.96 | 18.7 | 0.83 | 0.91 | 88.1 | 0.78 | |
0.95 | 0.78 | 5.82 | 0.74 | 0.98 | 30.1 | 0.93 | 0.97 | 176 | 0.90 | |
R2 | 0.05 | 0.67 | 3.78 | 0.57 | 0.91 | 14.5 | 0.73 | 0.74 | 52.4 | 0.58 |
0.50 | 0.73 | 5.47 | 0.66 | 0.95 | 22.2 | 0.84 | 0.90 | 95.2 | 0.75 | |
0.95 | 0.78 | 7.60 | 0.73 | 0.97 | 38.9 | 0.91 | 0.96 | 184 | 0.86 | |
R3 | 0.05 | 0.68 | 5.76 | 0.61 | 0.89 | 22.6 | 0.77 | 0.83 | 86.9 | 0.68 |
0.50 | 0.75 | 7.56 | 0.71 | 0.94 | 33.3 | 0.84 | 0.93 | 154 | 0.80 | |
0.95 | 0.79 | 8.97 | 0.76 | 0.97 | 47.9 | 0.91 | 0.97 | 261 | 0.91 | |
R4 | 0.05 | 0.68 | 8.11 | 0.65 | 0.89 | 27.5 | 0.77 | 0.81 | 107 | 0.62 |
0.50 | 0.73 | 9.56 | 0.72 | 0.95 | 42.3 | 0.88 | 0.93 | 192 | 0.83 | |
0.95 | 0.77 | 13.8 | 0.76 | 0.97 | 72.2 | 0.94 | 0.97 | 325 | 0.93 | |
R5 | 0.05 | 0.63 | 4.96 | 0.55 | 0.90 | 20.9 | 0.72 | 0.73 | 67.9 | 0.57 |
0.50 | 0.70 | 6.88 | 0.67 | 0.95 | 30.4 | 0.88 | 0.89 | 126 | 0.76 | |
0.95 | 0.75 | 8.67 | 0.72 | 0.98 | 51.6 | 0.95 | 0.95 | 327 | 0.88 | |
R6 | 0.05 | 0.62 | 1.27 | 0.28 | 0.85 | 6.57 | 0.44 | 0.62 | 21.0 | 0.33 |
0.50 | 0.71 | 2.92 | 0.66 | 0.95 | 11.7 | 0.88 | 0.90 | 49.1 | 0.75 | |
0.95 | 0.77 | 4.66 | 0.73 | 0.98 | 20.1 | 0.96 | 0.97 | 106 | 0.93 | |
R7 | 0.05 | 0.36 | 0.65 | −0.52 | 0.62 | 3.90 | −0.41 | 0.39 | 14.8 | −0.46 |
0.50 | 0.55 | 1.57 | 0.36 | 0.79 | 10.5 | 0.58 | 0.77 | 50.4 | 0.48 | |
0.95 | 0.69 | 2.77 | 0.60 | 0.93 | 23.4 | 0.81 | 0.92 | 171 | 0.79 | |
R8 | 0.05 | 0.51 | 0.94 | −0.54 | 0.79 | 6.22 | −0.43 | 0.40 | 33.5 | −0.46 |
0.50 | 0.64 | 3.24 | 0.58 | 0.96 | 14.3 | 0.87 | 0.82 | 71.0 | 0.69 | |
0.95 | 0.72 | 4.46 | 0.70 | 0.98 | 33.5 | 0.95 | 0.94 | 219 | 0.86 | |
MC | 0.05 | 0.53 | 1.41 | 0.28 | 0.79 | 7.84 | 0.47 | 0.63 | 32.7 | 0.31 |
0.50 | 0.72 | 5.35 | 0.67 | 0.95 | 22.9 | 0.85 | 0.90 | 102 | 0.77 | |
0.95 | 0.77 | 10.3 | 0.75 | 0.97 | 54.3 | 0.94 | 0.97 | 277 | 0.91 |
Regional Mean Drought Index (Figure 6) | Regional the Ratio of Drought Area (Figure 6) | Spatial Statistical Indicators of Drought Index in Selected Months (Figure 7) | |||||
---|---|---|---|---|---|---|---|
Regions | CC | RMSE | CC | RMSE | Date (2011) | CC | RMSE |
R1 | 0.962 | 0.078 | 0.985 | 0.150 | March | 0.924 | 0.421 |
R2 | 0.974 | 0.068 | 0.992 | 0.116 | April | 0.913 | 0.451 |
R3 | 0.985 | 0.052 | 0.996 | 0.099 | May | 0.895 | 0.489 |
R4 | 0.988 | 0.052 | 0.996 | 0.098 | June | 0.801 | 0.543 |
R5 | 0.964 | 0.06 | 0.987 | 0.123 | |||
R6 | 0.966 | 0.059 | 0.985 | 0.124 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, L.; Jiang, S.; Ren, L.; Zhang, L.; Wang, M.; Duan, Z. Preliminary Utility of the Retrospective IMERG Precipitation Product for Large-Scale Drought Monitoring over Mainland China. Remote Sens. 2020, 12, 2993. https://doi.org/10.3390/rs12182993
Wei L, Jiang S, Ren L, Zhang L, Wang M, Duan Z. Preliminary Utility of the Retrospective IMERG Precipitation Product for Large-Scale Drought Monitoring over Mainland China. Remote Sensing. 2020; 12(18):2993. https://doi.org/10.3390/rs12182993
Chicago/Turabian StyleWei, Linyong, Shanhu Jiang, Liliang Ren, Linqi Zhang, Menghao Wang, and Zheng Duan. 2020. "Preliminary Utility of the Retrospective IMERG Precipitation Product for Large-Scale Drought Monitoring over Mainland China" Remote Sensing 12, no. 18: 2993. https://doi.org/10.3390/rs12182993
APA StyleWei, L., Jiang, S., Ren, L., Zhang, L., Wang, M., & Duan, Z. (2020). Preliminary Utility of the Retrospective IMERG Precipitation Product for Large-Scale Drought Monitoring over Mainland China. Remote Sensing, 12(18), 2993. https://doi.org/10.3390/rs12182993