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Abstract: Hyperspectral image (HSI) classification has become one of the most significant tasks in the
field of hyperspectral analysis. However, classifying each pixel in HSI accurately is challenging due to
the curse of dimensionality and limited training samples. In this paper, we present an HSI classification
architecture called camera spectral response network (CSR-Net), which can learn the optimal camera
spectral response (CSR) function for HSI classification problems and effectively reduce the spectral
dimensions of HSI. Specifically, we design a convolutional layer to simulate the capturing process
of cameras, which learns the optimal CSR function for HSI classification. Then, spectral and spatial
features are further extracted by spectral and spatial attention modules. On one hand, the learned
CSR can be implemented physically and directly used to capture scenes, which makes the image
acquisition process more convenient. On the other hand, compared with ordinary HSIs, we only need
images with far fewer bands, without sacrificing the classification precision and avoiding the curse of
dimensionality. The experimental results of four popular public hyperspectral datasets show that our
method, with only a few image bands, outperforms state-of-the-art HSI classification methods which
utilize the full spectral bands of images.

Keywords: hyperspectral image (HSI) classification; convolutional neural networks (CNN);
camera spectral response (CSR) function optimization; dimensionality reduction; feature extraction

1. Introduction

Hyperspectral image (HSI) collects as many as hundreds of spectral bands of a scene, and has been
widely used in the area of remote sensing. Taking advantage of its abundant spectral profiles, HSIs have
been applied to earth monitoring [1], mineral exploration [2,3] and agriculture characterizing [4,5],
to name a few. Given that the spectral and spatial information in HSI can provide discriminative
features in identifying material characteristics, utilizing this information to classify HSIs has become
an active topic in the hyperspectral community.

HSI classification often identifies the category of the material at each pixel instead of the full image,
where the high-dimensional spectral vector is supposed to provide sufficient characteristics and can be
easily distinguished by classifiers. However, due to the limited number of labeled training samples,
some approaches are largely affected by the curse of dimensionality [6], which may lead to a drop
in classification accuracy. The trade-off between classification accuracy and number of dimensions
has been known as the Hughes effect [7]. In order to reduce the Hughes effect when classifying
HSIs, dimensionality reduction operation is often utilized to simplify the original high-dimensional
data. Most HSI classification methods focus on transforming the high-dimensional HSI samples
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into lower ones, while maintaining the intrinsic and most discriminative features. This kind of
dimensionality reduction method can be called feature extraction. The goal of feature extraction is to
derive an effective representation of the original HSI in a certain feature space, and reduce redundant
information within HSIs.

During the early research on HSI classification, some methods directly exploit spectral features.
For example, PCA [8], DBN [9], and SAE [10] simply exploit the linear feature representation of HSIs
in the spectral domain. Considering the limited representation ability of linear models, some nonlinear
methods are presented to extract spectral features. Li et al. [11] used pixel-pair features extracted by
the convolutional neural network (CNN) to explore the correlation between hyperspectral pixels in
spectral domain. Hu et al. [12] utilized 1D-CNN to convolve the high dimensional vector of each pixel
to form a low-dimensional feature for HSI classification. Spectral feature-extraction-based methods
have a small computational cost, but the accuracy is limited, for they do not explore the neighboring
information.

Recently, more approaches have begun to extract features with both spectral and spatial
information. Since deep-learning-based methods are convenient tools to exploit spatial correlation
while extracting features, spectral–spatial feature-based classification is becoming increasingly popular.
Zhang et al. [13] fused the features extracted by multi-scale kernels to obtain features from different
spatial neighbors. Zhang et al. [14] learned a mapping between two patches to find the hidden
spectral–spatial feature. 3D-CNN [15,16] directly extracted spectral and spatial features simultaneously.
A recent trend is to incorporate attention mechanism [17–19] during deep feature extraction, as the
importance of different spectral bands varies. Although these methods have achieved promising
results, they rely on high-dimensional HSIs and collecting them is costly.

To solve these HSI classification problems, we present a CNN architecture, i.e., the camera spectral
response network (CSR-Net), which can achieve the optimal camera spectral response (CSR) functions
for HSI classification. More importantly, the learned CSR can be directly used to reduce data dimensions
when capturing images as well as guarantee the classification accuracy. In CSR-Net, we design a
specialized convolutional layer to simulate the capturing process of cameras, and the optimal CSR is
learned in this layer under smooth and non-negative constraints. The learned CSR can be regarded
as a practical dimensionality reduction method for HSIs, and the obtained low-dimensional features
are further classified by an attention-based feature extractor which draws global context to enhance
feature extraction ability.

The main contributions of this work are summarized as follows:

1. The physical process of CSR is modeled via a specific convolutional layer and the optimal
CSR is learned automatically along with the entire classification model, which can reduce the
dimensionality of spectral data in the image capturing process;

2. In CSR-subspace, the spectral attention module and spatial attention module are further designed
to effectively exploit the spectral–spatial correlation and enhance feature extraction ability.

The remainder of this paper is organized as follows. Section 2 reviews previous studies relevant to
this paper. Section 3 describes the proposed CSR-Net in detail. Section 4 shows the experimental results
and some analysis on our work. Finally, Section 5 concludes this paper and points out future work.

2. Related Work

In this section, we review the most relevant studies on CSR optimization, traditional dimensionality
reduction methods, and state-of-the-art deep feature extraction methods for HSI classification.

2.1. Learned Spectral Filters

When capturing the same scene using different cameras, the obtained image may look different
in color due to different CSRs, and the amount of information contained in these images is also
different. Some previous works [20–22] have investigated the influence of the CSR on several HSI tasks.
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Arad et al. [20] estimated HSIs from a single RGB image, and found out that the quality of recovered
images was sensitive to the camera sensitivity filters. Fu et al. [21] modeled optimal CSR selection as
a convolutional layer and recovered the HSI from a single RGB image under the selected best filters.
In HSI super-resolution, the study in [22] used CNN to select the proper CSR, or directly learned a
CSR function under some physical restrictions to improve the results.

These methods have proved that CSR optimization is a possible solution for improving the
accuracy of different hyperspectral tasks. Furthermore, we observe that, different from these methods,
which aim to improve accuracy, CSR optimization can be practically beneficial for HSI classification,
since the capturing process of cameras is akin to the dimensionality reduction in HSIs. Therefore,
we attempt to learn the optimal CSR that can retain the most significant features for HSI classification,
and ease the process of data acquisition as well.

2.2. Traditional Dimensionality Reduction for HSI

The high spectral resolution of HSI implies abundant spectral information within HSI data, but
it may also cause Hughes effect and severe overfitting for HSI classifiers. Therefore, it is significant
to find out a proper dimensionality reduction method to map high-dimensional HSI samples into
lower ones. An effective dimensionality reduction method is supposed to eliminate the redundant
information of HSI, avoid the curse of dimensionality, and maintain most discriminative information of
the original HSI using a small number of feature channels.

Previous works usually use traditional linear machine-learning methods to learn the mapping
between the original images and the corresponding feature maps. Licciardi et al. [23] used principal
component analysis (PCA) to learn the subspace of HSI data by minimizing data variation. Independent
component analysis (ICA) [24] separated each subcomponent by maximizing the statistical
independence. Local linear embedding (LLE) [25] encoded the high-dimensional spectral vectors
by a low-dimensional mapping to reduce redundancy among the pixels. Nonparametric-weighted
feature extraction (NWFE) [26] defined nonparametric scatter matrices by setting greater weights
near the decision boundary. Linear discriminative analysis (LDA)-based methods [27] explored
the best subspace which maximized the interclass distance and minimized the intraclass distance
simultaneously in a supervised manner.

Different from most dimensionality reduction methods, which have strict hand-crafted parameters,
our CSR-Net uses a simple convolution kernel to reduce dimensions, which simulates the
image-sensing process, and the parameters of our method are automatically learned along with
the entire framework.

2.3. Deep Feature Extraction for HSI

Recently, deep-learning-based methods have been introduced to HSI classification, and are a
breakthrough technology for this area. As we know, deep learning has strong abilities regarding
representation, and learns complex features without specific model assumption. Besides, as the
parameters can be automatically obtained through back propagation, deep-learning-based methods
are easy to train without hand-crafted parameters. Mou et al. [28] regarded HSIs as continuous spectral
bands, and used recurrent neural networks (RNN) for per-pixel HSI classification. Zhu et al. [29] used
a conditional generative adversarial network with an auxiliary multi-class classifier to identify HSIs.
Some works [30,31] followed the idea of capsule networks [32] and employed neural capsules to replace
neurons and learned spectral–spatial features. He et al. [33] modified BERT architecture [34] that was
originally used in the natural language processing field, and proposed HSI-BERT for HSI classification.

As CNN is well-known and widely applied in image classification, a large number of approaches
designed CNN-based architectures to extract features of HSIs. Some methods [15,35] simply employed
3D-CNN, for 3D kernels were able to slide in both the spatial domain and long spectral bands. Besides,
some famous CNN architectures for RGB image classification have been used for HSI classification,
e.g., ResNet [36,37], DenseNet [38], and PyramidNet [39]. Inspired by the attention mechanism,
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Mou et al. [17] added an attention module in front of feature-extraction networks to recalibrate the
input, thus important bands were emphasized. Haut et al. [18] designed a two-branch network to
learn features and a weighted mask when extracting features. Fusion-based methods were another
way to increase accuracy; they fused features from different sources [40–42], different neighbors [13],
or different hierarchies [14,43].

In our method, we also take advantage of CNN to learn feature representations of the scene.
We use residual networks as a backbone network, followed by two attention modules, i.e., the spectral
attention module and the spatial attention module. The spectral attention module is responsible
for learning the correlation among spectral bands, and the spatial attention module considers the
interdependencies between any two spatial pixels. Therefore, our model can effectively exploit both
spectral and spatial features.

3. The Proposed Method

In this section, we first formulate the problem and introduce the motivation for our proposed
method. Then, we describe our CSR optimization network and the feature extractor we use. Finally,
learning details are provided. The overall framework of the proposed CSR-Net is illustrated in Figure 1.
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Figure 1. Overview of our CSR-Net. The high-dimensional data are first reduced to a low-dimensional
image by our CSR optimization layer. Then, the feature extractor contained a spatial attention module,
and a spectral attention module is used to extract the spectral and spatial features. Finally, these
features are fed into a fully connected classifier. The dimensionality reduction is conducted in the
training stage, and the learned CSR is used to capture low-dimensional testing images.

3.1. Formulation and Motivation

Assuming that a hyperspectral camera is able to capture spectral images with M channels and N
pixels, the obtained HSI H at the spatial position n for the m-th band can be described as

Hm(n) =
∫

cm(λ)r(n, λ)dλ, (1)

where cm(λ) denotes the CSR function along wavelength λ for the m-th band. r(n, λ) is the radiance
of scene point at position n and wavelength λ, which is the compound of spectral reflectance and
the illumination condition. Instead of using the continuous spectral bands, it is usually discretely
described along spectra in practice, i.e., {λb}, where 1 ≤ b ≤ B and B is the number of spectral bands.
Thus, Equation (1) can be rewritten as

Hm(n) =
B

∑
b=1

cm(λb)r(n, λb), (2)

and it can be simplified in the matrix form as

H = CR, (3)
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where H ∈ RM×N denotes the matrix form of Hm(n), C ∈ RM×B and R ∈ RB×N represent CSR
and scene radiance, respectively. According to Equation (3), the captured hyperspectral data are
determined by two factors, i.e., the CSR function C and the radiance of the scene R. R is consistent for
each scene when capturing outdoors or remotely sensed images. Since the spectral distribution of CSR
depends on the type of camera, we could choose a proper C to influence the formation of H so as to
retain more scene information for HSI classification.

Previous works on HSI recovery from a single RGB image [20,21] and HSI super-resolution [22]
inferred that the abundant information of HSIs can be effectively kept in lower-dimensional data by
using the optimal CSR. Here, we design a CNN architecture, i.e., CSR-Net, to learn the optimal CSR for
the pixel-wise classification of HSI. Using the learned optimal CSR, we can capture images with much
lower dimensions and the capturing process becomes convenient. The overview of our CSR-Net is
shown in Figure 1. The CSR optimization layer and attention-based spectral–spatial feature extractor
are described in the following sections.

3.2. CSR Optimization for Dimensionality Reduction

Existing CSR optimization methods [20–22] have proven that the optimal CSR function
significantly improves the results of different HSI tasks. In this work, we aim to find the optimal
CSR, which can be used to reduce data dimensions during the image acquisition process, and make
the captured low-dimensional data contain sufficient spectral and spatial information for HSI
classification tasks.

In the field of HSI classification, most previous works utilize hundreds of spectral bands as the
model input. Due to the curse of dimensionality, dimensional reduction methods are presented to
represent the complex HSIs by lower dimensional data. For example, Chen et al. [44] performed PCA
on the input HSI before sending to a CNN, and Zhao et al. [45] proposed a balanced local discriminant
embedding algorithm to extract features from high-dimensional HSIs. All these methods capture the
full spectral bands and reduce their dimensions in the post-processing, and the main drawback is that
the acquisition process is costly.

In this work, we present an approach to reduce the acquired image dimensions by optimizing
CSR functions as well as guaranteeing the classification accuracy. Specifically, we propose a CSR
optimization layer to create new CSR functions, so that data with lower dimensions are required and
the classification accuracy is also kept in practice.

It can be observed from Equation (3) that each row of C is performing an exact convolution
operation with R along spectral bands. Thus, it can be regarded as a 1 × 1 convolutional layer.
As illustrated on the left side of Figure 1, C can be replaced by 1× 1 convolution kernels with M output
channels. Letting V denote the corresponding convolutional layer, the process of capturing the t-th
scene can be expressed as

Ht = V ∗Rt, (4)

where Rt is the radiance for the t-th scene.
Due to the limitation of CSR implementation technology, the designed CSR function should

be smooth along the spectral dimension and all parameters in V should be non-negative, for the
camera always responds with a non-negative value. Thus, V can be optimized through minimizing
the empirical loss under smooth and non-negative constraints

Lc =
T

∑
t=1
‖V ∗Rt − Zt‖2

2 + η‖GV‖, s.t. V ≥ 0, (5)

where Zt denotes the corresponding ground truth for Ht, and is the low dimensional data under the
optimal CSR. η is the predefined parameter, and G denotes the first derivative matrix for the penalty
of non-smoothness.
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In the training stage, the CSR optimization layer can simulate the capturing process of cameras
and generate low-dimensional data. Then, the low-dimensional data are directly fed to the feature
extractor (more details in Section 3.3). By optimizing the whole model, the optimal CSR for HSI
classification is obtained. In the testing stage, thanks to the advanced filter technology, the learned CSR
can be realized physically by optical filters. Our model makes it possible to capture fewer image bands
in the data acquisition process and reduce the collection expenses to a great extent. As the learned
CSR function contains prior knowledge of HSI classification, the captured low-dimensional data are
sufficient for HSI classification. To better visualize the effect of our optimal CSR, we utilize a technique
called t-SNE [46] to show the two-dimensional feature distributions from both the full HSI and the
dimensionality-reduced image, which is captured under our optimal CSR, as shown in Figure 2. It can
be observed that samples of different categories overlap a lot for the image without dimensionality
reduction, while those samples become separable for the reduced image.

(a) Entire Image (b) CSR-subspace

Figure 2. The two-dimensional t-SNE visualization on Indian Pines dataset for (a) the entire
HSI and (b) the dimensionality-reduced image using the optimal CSR. Different colors denote
different categories.

3.3. Deep Feature Extraction

To effectively extract the spatial and spectral features of the low dimensional images obtained by
the optimal CSR, we employ the spectral attention module and spatial attention module to draw a
global context over local features. Applying this architecture to pixel-wise HSI classification can help
in the exploitation of spatial and spectral features, because the spectral attention module investigates
the interdependencies between any two spectral maps and the spatial attention module exploits the
global correlation between spatial pixel pairs.

The overview of the deep feature extraction network is shown on the right of Figure 1. We utilize
an ordinary residual network as a backbone network. Specifically, a convolutional layer is performed
to produce feature maps with P channels, and followed by K residual modules. In our experiment,
we set K = 10 and P = 256. Each residual module has three convolutional layers, and the number
of input and output channels are set as a0 = a2 = P, while the depth of the middle layer a1 = P/4,
as shown in Table 1. Thus, the output of the k-th residual module Fk ∈ RP×N can be expressed as

Fk = Bk(Fk−1), (6)
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where Bk denotes the k-th residual module, and F0 is the input for the first residual block. After K
residual modules, a feature map FK is obtained.

Table 1. The architecture of the residual module B.

Layer Kernel Size Padding Stride

Conv1 P/4× 1× 1× P 0 1

Batch Normalization

ReLU

Conv2 P/4× 3× 3× P/4 1 1

Batch Normalization

ReLU

Conv3 P× 1× 1× P/4 0 1

Batch Normalization

ReLU

The number of feature channels remains consistent through the residual blocks, and the output
features still contain spatial and spectral correlation. The output of the K-th residual block FK directly
flows to two attention modules, i.e., the spectral attention module and spatial attention module, to
exploit more global spectral and spatial correlation.

The spectral attention module is illustrated in Figure 3a. It learns a P × P attention map MC
along channels to improve the feature representation of spectral semantics, and the steps for obtaining
spectral attention map are described as follows. First, we perform a matrix multiplication of FK and
the transpose of FK to obtain a P× P tensor, which represents the interdependencies between every
two feature channels. Then, a softmax layer is employed to rescale the spectral attention map between
0 and 1, the spectral attention map can be described as

MC = so f tmax(FKFT
K). (7)

Then, by multiplying MC and the original feature FK and adding a skip connection, the correlations
between every two feature channels are added to the original feature map, and we obtain features
with more global semantics

EC = αMCFK + FK, (8)

where α is a learnable variable.
Similar to the spectral attention module, as illustrated in Figure 3b, the spatial attention module

obtains an attention map by performing a matrix multiplication of the transpose of FK and FK

MP = so f tmax(FT
KFK), (9)

and the map size is N × N. It measures the mutual influence of any two spatial points. Thus, the
output of the spatial attention module can be expressed as

EP = βMPFK + FK, (10)

where β is learned with the whole architecture.
Then, the features from two attention modules are simply summed up and sent to a feature

fusion residual block. We perform downsampling by two convolutional layers with a stride of 2,
followed by batch normalization and ReLU [47], as well as an average pooling layer. Finally, the fused
features are fed to a fully connected layer, which is the classifier of our model and outputs a category
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prediction. Since the final feature map considers both spectral and spatial correlation, it contains more
discriminative features that are useful for HSI classification.
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Figure 3. (a,b) The architecture of the two attention modules.

3.4. Learning Details

The learning framework mainly consists of two parts, i.e., a CSR optimization layer and a deep
feature extractor. The output of the former part is directly fed to the latter part, and both parts are
learned simultaneously.

Letting Θ denote the parameter for our deep feature extraction network, the loss function for
classification can be described as

L f =
T

∑
t=1

H(ĝ(F(t)
k , Θ), g(t)), (11)

where ĝ and g represent the predicted label and ground truth label for the t-th scene, and H is the cross
entropy loss to evaluate the classification accuracy.

When our model is trained, the loss for both the CSR layer and feature extractor are minimized
simultaneously

L = τLc + L f , (12)

where τ is a predefined parameter.
In the experiment, through trial and error, we set η = 0.1 and τ = 1 in Equations (5) and (12).

Our network is optimized by the Stochastic Gradient Descent (SGD) [48] optimizer; the learning rate is
initially set to 0.1 and finally decays to 0.001. The CSR optimization layer is initialized with random
positive weights, and the feature extraction network is initialized by Kaiming initialization [49].

4. Experimental Results and Analysis

In this section, we first introduce four public HSI datasets used in our experiment and describe
our experimental setting. Then, we present some analysis on CSR optimization. Finally, we compare
our method with the state-of-the-art dimensionality reduction-based methods and feature-extraction
methods.

4.1. Hyperspectral Datasets

In our experiment, four public remote-sensing datasets are used to evaluate all methods,
i.e., the Indian Pines dataset, the University of Pavia dataset, the Salinas Valley dataset, and the
Kennedy Space Center dataset.

Here, we provide more details of the datasets.
The University of Pavia dataset is captured by the ROSIS sensor in Pavia, Northern Italy.

The whole image of the University of Pavia dataset contains 610 × 610 pixels, with 103 spectral
bands ranging from 430 to 860 nm, and the spatial resolution is 1.3 m per pixel. As some part of this
image is corrupted and contains no useful information, these parts are discarded and the size remains
610× 340 in practice. Each pixel in the University of Pavia dataset is labeled in 9 classes, and the
sample numbers for each class is presented in Table 2.
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Table 2. Number of samples in the University of Pavia dataset.

Class No. Color Class Name Samples

1 Asphalt 6631
2 Meadows 18649
3 Gravel 2099
4 Trees 3064
5 Painted metal sheets 1345
6 Bare Soil 5029
7 Bitumen 1330
8 Self-Blocking Bricks 3682
9 Shadows 947

The Indian Pines dataset is collected in north-western Indiana by the AVRIS sensor, and mainly
consists of crops, forests and other natural perennial vegetation. The spatial size of the Indian Pines
dataset is 145× 145, and it has 224 spectral bands ranging from 400 to 2500 nm. In our experiments,
we use the corrected version of the dataset, which removes 24 bands over the region of water absorption.
The ground truth is divided into 16 classes, and more details are shown in Table 3.

Table 3. Number of samples in the Indian Pines dataset.

Class No. Color Class Name Samples

1 Alfalfa 46
2 Corn-notill 1428
3 Corn-mintill 830
4 Corn 237
5 Grass-pasture 483
6 Grass-trees 730
7 Grass-pasture-mowed 28
8 Hay-windrowed 478
9 Oats 20

10 Soybean-notill 972
11 Soybean-mintill 2455
12 Soybean-clean 593
13 Wheat 205
14 Woods 1265
15 Buildings-Grass-Trees-Drives 386
16 Stone-Steel-Towers 93

The Salinas Valley dataset is also captured by AVRIS sensor, over Salinas Valley, which is the most
productive agricultural region in California. The image size is 512× 217, with a high spatial resolution
of 3.7 m per pixel. The total number of spectral bands is 204 after removing 20 water absorption bands.
The ground truth of the Salinas Valley dataset contains 16 classes, which is presented in Table 4.

The Kennedy Space Center dataset is acquired over the Kennedy Space Center, Florida, using
the AVIRIS sensor. This dataset has a spatial resolution of 18 m per pixel, and consists of 512× 614
pixels in total. After removing some noisy and low-SNR bands, 176 bands are used in the experiments.
The ground truth consists of 13 classes, and more details are provided in Table 5.
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Table 4. Number of samples in the Salinas valley dataset.

Class No. Color Class Name Samples

1 Brocoli_green_weeds_1 2009
2 Brocoli_green_weeds_2 3726
3 Fallow 1976
4 Fallow_rough_plow 1394
5 Fallow_smooth 2678
6 Stubble 3959
7 Celery 3579
8 Grapes_untrained 11271
9 Soil_vinyard_develop 6203

10 Corn_senesced_green_weeds 3278
11 Lettuce_romaine_4wk 1068
12 Lettuce_romaine_5wk 1927
13 Lettuce_romaine_6wk 916
14 Lettuce_romaine_7wk 1070
15 Vinyard_untrained 7268
16 Vinyard_vertical_trellis 1807

Table 5. Number of samples in the Kennedy Space Center dataset.

Class No. Color Class Name Samples

1 Scrub 761
2 Willow swamp 243
3 CP hammock 256
4 Slash pine 252
5 Oak/Broadleaf 161
6 Hardwood 229
7 Swamp 105
8 Graminoid marsh 431
9 Spartina Marsh 520

10 Cattail marsh 404
11 Salt Marsh 419
12 Mud flats 503
13 Water 927

4.2. Experimental Settings

For all four public remote-sensing datasets, we randomly select 15% pixels as training samples,
and the remained pixels are served as testing samples. For spectral-feature-extraction-based dimensionality
reduction methods, the input is each 1 × 1 pixel. As for spatial spectral-feature-extraction-based
methods, the spatial size of the input patch infers the amount of neighboring information, and may
influence the classification results. Therefore, we investigate the relationship between patch size and
classification results. The classification results of our method using the patch size of 7× 7, 11× 11,
15× 15 and 19× 19 on these four datasets are provided in Table 6, and it can be observed that the
accuracy becomes stable when the patch size is larger than 11× 11. Considering both the classification
accuracy and computational cost, we choose a spatial size of 11× 11 for all spectral–spatial feature
extraction methods.

In our experiments, all methods are evaluated by three widely used metrics, i.e., overall accuracy
(OA), average accuracy (AA), and Kappa coefficient. Our experiments are run on an NVIDIA GTX
1080Ti GPU with the deep-learning framework PyTorch.
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Table 6. Quantitative classification results using different input patch sizes.

Dataset Metrics 7 × 7 11 × 11 15 × 15 19 × 19

University of Pavia OA (%) 99.81 99.97 99.96 99.95
Kappa 0.9974 0.9996 0.9995 0.9993

Indian Pines OA (%) 96.43 99.23 99.52 99.64
Kappa 0.9593 0.9915 0.9945 0.9949

Salinas valley OA (%) 99.81 99.97 99.96 99.97
Kappa 0.9979 0.9997 0.9996 0.9996

Kennedy Space Center OA (%) 97.67 99.30 99.89 99.98
Kappa 0.9741 0.9922 0.9987 0.9997

4.3. CSR Analysis

4.3.1. The Optimal CSR

To empirically analyze how our CSR optimization layer works, we present the spectral power
distribution of the learned CSR under 10 spectral bands in Figure 4a. It can be seen that the combination
of all spectra nearly cover the whole spectral bands, and some spectral bands with large weights
can be considered as significant bands for HSI classification. This observation can be intuitively
understood, since, for each component, capturing information independently could improve the
utilization of feature channels. Covering all spectral bands retains the integral information of the scene.
Some spectral bands contain more useful information for HSI classification, and these bands turn out
to have larger weights. To further explain the optimal CSR, we compute the singular values for our
optimal CSR function, and the result is shown in Figure 4b. Figure 4b further indicates the low linear
correlation in optimal CSR.
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Figure 4. The optimal CSR for the Salinas Valley dataset designed by our network. (a) The spectral
distribution of the optimal CSR. Different colors denote CSR functions for different channels. (b) The
corresponding singular values.

4.3.2. The Curse of Dimensionality

It is known that the curse of dimensionality widely exists in HSI classification, and some classifiers
show an apparent performance degradation as data dimensions become higher. Thus, it is significant
for HSI classification methods to extract lower dimensional data before sending to the classifier. Besides,
choosing a balanced number of dimensions is important, because high dimensions may cause the
curse of dimensionality and images with too low dimensions (like RGB images) apparently contain less
information. Thus, dimensionality reduction is introduced.
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Since our CSR-based dimensionality reduction method reduces data dimensions in the spectral
domain, we use spectral-feature-based HSI classification methods including SVM and 1D-CNN to
verify the effectiveness of our optimal CSR on dimensionality reduction ability. We consider the spectral
information for each pixel, and the spatial 1× 1 tensor is regarded as the model input. The results
that use our CSR-based dimensionality reduction are denoted as CSR-SVM and CSR-1DCNN, and the
OA and Kappa performances are shown in Table 7. It can be seen that by using the low dimensional
data that are captured by the optimal CSR, both methods achieve better classification results than
when using the HSIs with full spectral bands. The reason for this is that the results using entire HSI as
input suffer from the curse of dimensionality, and our CSR-optimization-based dimensionality reduction
effectively avoids this phenomenon.

Table 7. Results of SVM and 1D-CNN with and without CSR optimization.

Method Dimension University of Pavia Indian Pines

OA (%) Kappa OA (%) Kappa

CSR-SVM

10 94.96 0.9331 82.87 0.8039
20 95.01 0.9337 82.52 0.8003
30 95.32 0.9379 83.43 0.8106
40 95.36 0.9384 83.68 0.8137
50 95.47 0.9399 84.24 0.8200

SVM - 93.61 0.9148 81.16 0.7841

CSR-1DCNN

10 95.90 0.9456 87.80 0.8607
20 95.72 0.9433 86.35 0.8443
30 95.84 0.9449 86.26 0.8431
40 95.81 0.9444 86.01 0.8402
50 95.94 0.9461 85.10 0.8300

1D-CNN - 94.49 0.9269 84.09 0.8180

4.4. Compared with the State-of-the-Arts

4.4.1. Comparisons with Dimensionality Reduction Methods

First, we evaluate the effectiveness of our learned optimal CSR, compared with several famous
dimensionality reduction methods, including Principle Component Analysis (PCA) [8], Locally
Linear Embedding (LLE) [25], and Independent Component Analysis (ICA) [24]. Our dimensionality
reduction method based on CSR optimization is denoted as CSR-Opt.

In the compared methods, PCA learns an orthogonal transformation to map the redundant data
into a lower dimension space by maximizing the data variance. LLE is a manifold learning-based
method that learns the compact representation of the high-dimensional data. ICA separates the data
into additive non-Gaussian subcomponents. Our CSR-Opt attempts to find the best CSR by simulating
camera sensors that could capture more informative images. To evaluate the dimensionality reduction
ability, for CSR-Opt, the outputs of the CSR optimization layer are directly fed to the classifier without
passing through the feature-extraction network.

We employ support vector machines (SVM) with RBF kernel to classify the low-dimensional
features generated by the aforementioned methods, and the number of reduced dimensions are set
from 10 to 50, at the interval of 10, for each method. Experiments are conducted on all four datasets
mentioned in Section 4.1, and the corresponding OA and Kappa coefficients are shown in Tables 8–11.
To better visualize this, we show the OA performances of all methods along feature numbers (ranging
from 1 to 50) in Figure 5. It can be seen that PCA performs better than other traditional reduction
methods. The reason for this is that PCA extracts more discriminative features, which help the classifier
to make predictions. Our CSR-Opt shows better classification accuracy, compared to these traditional
methods, and this verifies the effectiveness of our CSR optimization method for dimensional reduction.
Moreover, from Tables 8–11 and Figure 5, we can observe that the classification accuracy of our
dimensionality reduction method improves significantly when we increase the number of dimensions
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from 1 to 10, while OA results are almost fixed using dimensions greater than 10. Other methods seem
to require more dimensions to reach the saturated accuracy, e.g., 20 dimensions for PCA. In addition,
our CSR optimization networks are simply implemented by convolutional layers, and the learned CSR
can be further physically implemented to capture low-dimensional data in the acquisition process.

Table 8. Quantitative classification results of dimensionality reduction methods on the University of
Pavia dataset. The best results are highlighted in bold.

Dimension Metrics PCA LLE ICA CSR-Opt

10 OA (%) 89.62 77.64 87.54 94.91
Kappa 0.8600 0.6845 0.8314 0.9324

20 OA (%) 93.32 82.69 92.36 95.34
Kappa 0.9107 0.7616 0.8979 0.9382

30 OA (%) 93.35 85.57 91.93 95.20
Kappa 0.9111 0.8037 0.8923 0.9362

40 OA (%) 93.36 86.44 91.24 95.30
Kappa 0.9111 0.8160 0.8831 0.9376

50 OA (%) 93.40 87.65 90.52 95.41
Kappa 0.9118 0.8331 0.8736 0.9391

Table 9. Quantitative classification results of dimensionality reduction methods on the Indian Pines
dataset. The best results are highlighted in bold.

Dimension Metrics PCA LLE ICA CSR-Opt

10 OA (%) 76.39 58.47 68.07 82.13
Kappa 0.7275 0.5033 0.6267 0.7958

20 OA (%) 79.07 66.57 71.13 83.56
Kappa 0.7594 0.6092 0.6648 0.8123

30 OA (%) 80.67 68.40 75.73 84.07
Kappa 0.7780 0.6317 0.7204 0.8180

40 OA (%) 81.23 70.33 76.53 83.24
Kappa 0.7847 0.6561 0.7296 0.8088

50 OA (%) 81.95 71.83 77.35 83.18
Kappa 0.7929 0.6752 0.7400 0.8079

Table 10. Quantitative classification results of dimensionality reduction methods on the Salinas Valley
dataset. The best results are highlighted in bold.

Dimension Metrics PCA LLE ICA CSR-Opt

10 OA (%) 91.58 84.13 89.96 94.26
Kappa 0.9060 0.8219 0.8877 0.9360

20 OA (%) 92.50 88.04 92.47 94.24
Kappa 0.9162 0.8665 0.9159 0.9358

30 OA (%) 92.52 88.59 92.75 94.54
Kappa 0.9165 0.8726 0.9191 0.9392

40 OA (%) 92.68 89.95 92.80 94.57
Kappa 0.9183 0.8877 0.9197 0.9395

50 OA (%) 92.73 90.80 92.61 94.61
Kappa 0.9188 0.8972 0.9176 0.9399
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Table 11. Quantitative classification results of dimensionality reduction methods on the Kennedy Space
Center dataset. The best results are highlighted in bold.

Dimension Metrics PCA LLE ICA CSR-Opt

10 OA (%) 85.01 84.67 76.14 93.61
Kappa 0.8328 0.8290 0.7330 0.9288

20 OA (%) 91.96 88.87 90.61 93.61
Kappa 0.9104 0.8759 0.8953 0.9288

30 OA (%) 92.55 89.44 91.24 93.18
Kappa 0.9169 0.8822 0.9024 0.9241

40 OA (%) 92.55 89.82 89.62 93.91
Kappa 0.9169 0.8865 0.8842 0.9321

50 OA (%) 92.57 89.64 89.35 93.63
Kappa 0.9172 0.8846 0.8812 0.9291

0 10 20 30 40 50
Number of Dimensions

50

60

70

80

90

100

O
ve

ra
ll 

A
cc

u
ra

cy
 [

%
]

PCA

LLE

ICA

CSR-Opt

(a) The University of Pavia

0 10 20 30 40 50
Number of Dimensions

40

60

80

100

O
ve

ra
ll 

A
cc

u
ra

cy
 [

%
]

PCA

LLE

ICA

CSR-Opt

(b) The Indian Pines

0 10 20 30 40 50
Number of Dimensions

70

80

90

100

O
ve

ra
ll 

A
cc

u
ra

cy
 [

%
]

PCA

LLE

ICA

CSR-Opt

(c) The Salinas Valley

0 10 20 30 40 50
Number of Dimensions

40

60

80

100

O
ve

ra
ll 

A
cc

u
ra

cy
 [

%
]

PCA

LLE

ICA

CSR-Opt

(d) The Kennedy Space Center

Figure 5. (a–d) Comparisons between different dimensionality reduction methods.

4.4.2. Comparisons with Feature Extraction Methods

We compare our feature extraction network with the optimal CSR to several feature extraction
methods. The compared methods include Decision Tree (DT) [50], Logistic Regression (LR) [51],
K-Nearest Neighbors (KNN) [52], 1D-CNN [12], 2D-CNN [44], 3D-CNN [44], as well as state-of-the-art
deep-learning-based methods, i.e., VAD [18]. VAD proposes a two-branch visual attention-driven
architecture to learn the mapping from input images to feature map. From Figure 5, we can observe
that, as the number of dimensions increases from 1 to 10, the overall classification accuracy of our
dimensionality reduction method improves remarkably. However, the accuracy becomes stable when
the number of dimensions is more than 10, and using more dimensions could not achieve better results.
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In other words, 10 dimensions have kept enough information for HSI classification. Thus, we set the
number of reduced dimensions to 10 for our CSR-Net.

We have conducted experiments on all datasets, and the average accuracy for each class, OA,
AA and Kappa coefficients are shown in Tables 12–15. It can be observed that traditional feature
extraction methods like DT, LR and KNN can only provide limited classification accuracy. Among
those deep-learning-based methods, deeper networks (VAD and Ours) tend to perform better than
other architectures; this is because VAD and our method designed customized neural networks for
hyperspetral images to consider both spatial and spectral correlation. Thus, the spatial and spectral
correlation can be better utilized, and leads to better classification results. It can be noticed that
our model outperforms all compared methods. Although VAD provides a close performance to
our CSR-Net, our model does not need the full bands of HSI like VAD does, which are acquired by
advanced and extremely expensive hyperspectral sensors. In the prediction process, instead of densely
capturing the spectral information across full wavelength bands using costly devices, we only need to
capture the low-dimensional data under the optimal CSR function. Our model can classify HSIs as
accurately as other state-of-the-art architectures like VAD, with fewer input image bands.

Table 12. Quantitative classification results of feature extraction methods on the University of Pavia
dataset. The best results are highlighted in bold.

Class No. DT LR KNN 1D-CNN 2D-CNN 3D-CNN VAD CSR-Net

1 86.94 92.02 88.75 93.49 97.45 98.33 99.89 100.00
2 89.84 96.52 97.46 97.93 99.41 99.44 99.99 100.00
3 60.48 75.06 68.16 75.56 95.13 95.13 99.44 99.94
4 86.02 87.75 83.10 96.81 96.70 98.69 99.69 99.88
5 97.29 98.95 98.60 99.83 100.00 99.91 100.00 100.00
6 67.88 77.05 59.37 90.29 94.15 98.25 100.00 100.00
7 66.11 58.05 84.87 90.27 94.16 98.05 99.56 99.73
8 75.59 87.41 85.59 90.10 95.46 97.99 99.94 99.84
9 99.38 99.50 99.63 99.63 100.00 100.00 100.00 99.88

OA (%) 83.58 90.01 87.84 94.35 97.61 98.72 99.91 99.96
AA (%) 81.06 85.81 85.06 92.66 96.94 98.42 99.83 99.92
Kappa 0.7821 0.8664 0.8354 0.9250 0.9683 0.9830 0.9988 0.9995

Table 13. Quantitative classification results of feature extraction methods on the Indian Pines dataset.
The best results are highlighted in bold.

Class No. DT LR KNN 1D-CNN 2D-CNN 3D-CNN VAD CSR-Net

1 38.46 41.02 10.26 60.00 67.50 57.50 100.00 92.31
2 53.38 75.86 57.66 81.80 83.61 90.77 99.84 98.60
3 48.44 53.68 48.87 78.61 79.60 87.39 99.43 99.58
4 42.29 42.29 38.81 66.34 74.75 79.21 97.51 100.00
5 73.72 87.83 81.27 91.24 93.19 92.21 98.54 99.03
6 80.81 95.65 98.23 97.26 97.58 98.87 99.68 99.84
7 12.50 50.00 79.17 87.50 54.17 95.83 83.33 100.00
8 89.90 98.77 98.28 99.26 98.77 99.01 100.00 100.00
9 23.52 58.82 17.64 47.06 88.24 100.00 82.35 100.00
10 55.93 63.43 69.85 87.91 88.51 91.90 97.58 98.43
11 62.87 81.55 73.07 76.57 90.18 94.49 98.75 99.57
12 36.71 57.54 27.57 83.37 68.71 87.92 99.01 97.62
13 92.53 97.70 91.38 98.86 100.00 96.57 100.00 100.00
14 83.16 95.91 94.79 94.70 95.26 96.47 98.98 99.91
15 45.73 59.15 20.42 64.44 65.96 82.37 99.09 100.00
16 75.95 83.54 83.54 72.50 91.25 100.00 100.00 96.2

OA (%) 63.02 77.54 70.34 84.00 87.43 92.56 98.96 99.24
AA (%) 57.24 71.42 61.93 80.46 83.58 90.66 97.13 98.82
Kappa 0.5793 0.7419 0.6580 0.8183 0.8566 0.9152 0.9881 0.9914
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Table 14. Quantitative classification results of feature extraction methods on the Salinas Valley dataset.
The best results are highlighted in bold.

Class No. DT LR KNN 1D-CNN 2D-CNN 3D-CNN VAD CSR-Net

1 97.42 99.47 98.36 92.83 99.59 98.24 100.00 100.00
2 99.15 99.97 99.56 99.81 99.68 99.97 100.00 100.00
3 96.01 97.26 99.29 98.51 99.88 99.76 100.00 100.00
4 97.81 99.83 99.75 99.66 99.83 99.92 99.58 99.83
5 97.36 98.95 96.27 98.86 99.47 99.08 100.00 100.00
6 99.61 99.97 99.82 99.97 100.00 99.94 100.00 100.00
7 99.38 99.74 99.05 99.67 100.00 100.00 100.00 100.00
8 74.91 89.02 82.13 90.29 90.12 87.16 99.93 99.98
9 99.01 99.79 99.34 99.81 99.60 99.77 100.00 100.00
10 91.85 95.94 92.03 97.09 96.51 98.28 99.89 99.96
11 91.96 96.92 93.94 98.79 97.58 98.57 99.78 100.00
12 98.05 99.88 99.88 99.82 99.94 98.96 100.00 99.94
13 92.81 99.10 97.04 99.74 99.23 98.72 100.00 100.00
14 90.99 96.26 93.74 98.24 97.25 99.01 99.56 99.56
15 62.14 65.25 63.37 70.82 82.29 95.73 99.64 100.00
16 95.83 98.18 97.98 98.89 99.54 95.51 100.00 100.00

OA (%) 87.86 92.36 90.05 93.57 95.10 96.23 99.91 99.98
AA (%) 92.77 95.97 94.47 96.83 97.53 98.04 99.90 99.95
Kappa 0.8649 0.9148 0.8892 0.9283 0.9455 0.9582 0.9990 0.9998

Table 15. Quantitative classification results of feature extraction methods on the Kennedy Space Center
dataset. The best results are highlighted in bold.

Class No. DT LR KNN 1D-CNN 2D-CNN 3D-CNN VAD CSR-Net

1 85.01 95.36 93.20 95.05 97.06 98.30 100.00 100.00
2 75.36 77.78 83.57 88.89 81.64 88.89 99.03 100.00
3 71.56 5.50 83.49 93.58 96.79 95.87 99.54 99.54
4 57.94 27.10 46.73 70.23 75.35 79.53 87.85 95.33
5 53.28 0.00 45.99 75.91 73.72 74.45 97.08 99.27
6 49.74 3.07 35.38 6718 66.15 91.79 99.49 100.00
7 51.69 0.00 55.06 80.00 94.44 92.22 100.00 100.00
8 68.03 40.98 75.96 90.74 91.55 95.10 99.18 99.45
9 84.16 86.20 89.59 95.24 94.12 99.55 100.00 100.00
10 78.43 81.34 79.01 96.22 95.35 95.64 100.00 100.00
11 98.03 91.01 96.35 97.76 100.00 99.44 100.00 100.00
12 75.23 63.08 75.70 96.73 85.98 96.73 99.07 100.00
13 98.98 98.98 98.10 99.75 97.84 99.87 100.00 100.00

OA (%) 79.98 68.58 81.81 92.33 91.56 95.55 99.07 99.68
AA (%) 72.88 51.57 73.70 88.25 88.46 92.88 98.56 99.51
Kappa 0.7773 0.6428 0.7969 0.9146 0.9061 0.9505 0.9897 0.9965

Figures 6–9 show the classification map for all methods on the University of Pavia dataset,
the Indian Pines dataset, the Salinas Valley dataset and the Kennedy Space Center dataset, respectively.
It can be seen that the visual results of our methods are close to the ground truth, and the neighboring
pixels are typically classified in the same class.
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We compare our feature extraction network with the optimal CSR to several feature extraction
methods. The compared methods include Decision Tree (DT) [50], Logistic Regression (LR) [51],
K-Nearest Neighbors (KNN) [52], 1D-CNN [12], 2D-CNN [44], 3D-CNN [44], as well as state-of-the-art
deep-learning-based methods, i.e., VAD [18]. VAD proposes a two-branch visual attention-driven
architecture to learn the mapping from input images to feature map. From Figure 5, we can observe
that, as the number of dimensions increases from 1 to 10, the overall classification accuracy of our
dimensionality reduction method improves remarkably. However, the accuracy becomes stable when
the number of dimensions is more than 10, and using more dimensions could not achieve better results.
In other words, 10 dimensions have kept enough information for HSI classification. Thus, we set the
number of reduced dimensions to 10 for our CSR-Net.

We have conducted experiments on all datasets, and the average accuracy for each class, OA,
AA and Kappa coefficients are shown in Tables 12–15. It can be observed that traditional feature
extraction methods like DT, LR and KNN can only provide limited classification accuracy. Among
those deep-learning-based methods, deeper networks (VAD and Ours) tend to perform better than
other architectures; this is because VAD and our method designed customized neural networks for
hyperspetral images to consider both spatial and spectral correlation. Thus, the spatial and spectral
correlation can be better utilized, and leads to better classification results. It can be noticed that
our model outperforms all compared methods. Although VAD provides a close performance to
our CSR-Net, our model does not need the full bands of HSI like VAD does, which are acquired by
advanced and extremely expensive hyperspectral sensors. In the prediction process, instead of densely
capturing the spectral information across full wavelength bands using costly devices, we only need to
capture the low-dimensional data under the optimal CSR function. Our model can classify HSIs as
accurately as other state-of-the-art architectures like VAD, with fewer input image bands.

Figures 6–9 show the classification map for all methods on the University of Pavia dataset,
the Indian Pines dataset, the Salinas Valley dataset and the Kennedy Space Center dataset, respectively.
It can be seen that the visual results of our methods are close to the ground truth, and the neighboring
pixels are typically classified in the same class.

Figure 9. (a–j) Classification maps of the Kennedy Space Center dataset. The OA results are provided
in the brackets.
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5. Conclusions

In this paper, we present a novel HSI classification method named the CSR-Net, which effectively
investigates the optimal CSR and makes it possible to reach high classification accuracy with only
limited number of image bands. Specifically, we design a special convolutional layer to simulate the
camera-capturing process, which can guarantee the classification accuracy and effectively reduce the
spectral dimensions of the captured data. Then, the reduced data are sent to spectral attention and
spatial attention-based networks to extract the spectral–spatial correlation. Our CSR-Net can use far
fewer bands than ordinary HSIs without sacrificing the classification accuracy, which makes it possible
to simplify the data acquisition process, and provides insight into the design of simpler sensors to
solve remote sensing problems. The experimental results of four HSI datasets verify the effectiveness
of our method, and prove that the proposed method for low-dimensional data-capturing is sufficient
for keeping enough information for HSI classification.

Our CSR optimization-based dimensionality reduction method sheds light on designing
task-specific optical filters for different tasks, and can achieve promising results without capturing the
redundant high-dimensional data. Therefore, the proposed optimal CSR-based method can further
be applied to various practical situations. For example, in tje medical field, our CSR optimization
model can be used for automatically finding the most suitable CSR, which can retain much diagnostic
information with a limited number of data dimensions, which is meaningful for disease diagnosis and
medical surgery. Applying our model in order to solve more practical problems remains one of our
important future works.
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