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Abstract: Phase filtering is a key issue in interferometric synthetic aperture radar (InSAR) applications,
such as deformation monitoring and topographic mapping. The accuracy of the deformation and terrain
height is highly dependent on the quality of phase filtering. Researchers are committed to continuously
improving the accuracy and efficiency of phase filtering. Inspired by the successful application of
neural networks in SAR image denoising, in this paper we propose a phase filtering method that is
based on deep learning to efficiently filter out the noise in the interferometric phase. In this method,
the real and imaginary parts of the interferometric phase are filtered while using a scale recurrent
network, which includes three single scale subnetworks based on the encoder-decoder architecture.
The network can utilize the global structural phase information contained in the different-scaled feature
maps, because RNN units are used to connect the three different-scaled subnetworks and transmit
current state information among different subnetworks. The encoder part is used for extracting the phase
features, and the decoder part restores detailed information from the encoded feature maps and makes
the size of the output image the same as that of the input image. Experiments on simulated and real
InSAR data prove that the proposed method is superior to three widely-used phase filtering methods
by qualitative and quantitative comparisons. In addition, on the same simulated data set, the overall
performance of the proposed method is better than another deep learning-based method (DeepInSAR).
The runtime of the proposed method is only about 0.043s for an image with a size of 1024× 1024 pixels,
which has the significant advantage of computational efficiency in practical applications that require
real-time processing.
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1. Introduction

In recent decades, the spatial resolution of synthetic aperture radar (SAR) images acquired from
space has continuously improved, thanks to the precise orbit control, hardware upgrades, and algorithm
advancements in the signal processing field [1]. For example, the spotlight mode of TerraSAR-X has a
spatial resolution of 1 m, and its staring spotlight mode even reaches 0.25 m [2]. This breakthrough has
brought life to interferometric SAR (InSAR) applications, such as topography mapping and deformation
monitoring. Because the acquisition of high-resolution SAR images has become possible, the high-precision
measurement of useful geophysical parameters (such as terrain height and surface deformation) can be
achieved while using InSAR techniques. Therefore, InSAR is bursting with new research vitality.
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In the whole InSAR processing chain, the accuracy of the obtained terrain height is highly related
to phase unwrapping, but the presence of noise in the interferometric phase increases the difficulty of
unwrapping and reduces the accuracy of unwrapping. Therefore, it is necessary to filter the interferometric
phase before unwrapping to reduce noise. In the process of filtering noise, it is essential to preserve
good phase detail features (such as phase fringe edges), which determines the accuracy of the obtained
terrain height. At the same time, in order to meet the requirements of quickly obtaining height products in
practical applications, the computational efficiency of the filtering algorithm should be as high as possible.
It is worth noting that the ideal filtering effect is to completely separate the phase and noise from the noisy
interferometric phase, but the filtering algorithm cannot achieve this ideal state [3]. Therefore, researchers
are committed to continuously developing filtering algorithms that can efficiently filter out noise as much
as possible while preserving the fine detail features.

The widely-used phase filtering methods can be grouped into three categories: spatial domain,
transform domain, and nonlocal (NL) methods. One typical spatial domain method is the Lee filter which
filters out noise along fringes adaptively according to the local noise statistics and directionally dependent
windows [4]. Based on the basic Lee filter, several improved versions have appeared afterward [5–8].
For example, a directionally adaptive method is proposed in [6]. The length and width of the filter window
can continuously change with the fringe density, and the direction can be changed according to the fringe
direction. Examining these filters carefully, they are trying to increase the capacity to preserve the phase
detail based on an adaptive windowing process of the interferometric phase, but this window processing
operation may cause fringe detail loss due to excessive smoothing and it requires heavy processing time.

The transform domain method is usually divided into the frequency domain and wavelet domain.
The first frequency domain method was proposed by Goldstein and Werner in [9]. The method can
smooth the interferometric phase while using the bandpass characteristic of the filter, because the power
spectrum of the interferometric phase is typically the sum of a narrow-band component combined with
broad-band noise. A modified version of the Goldstein filter is presented in [10], which enhances the
filtering capacity for areas of low coherence by modifying the Goldstein filter parameter according to the
value of coherence. Most of the frequency domain methods consider the area with different values of
coherence in the filtering process to improve filtering effect, but the filtering result of the low coherence
area still needs to be improved [10–13]. Besides, the first wavelet domain method for interferometric phase
filtering is proposed in [14], which reduces noise in the complex wavelet plane. This work has important
implications for subsequent research [15,16]. Generally speaking, wavelet domain filters have a better
capacity to preserve spatial resolution when compared with spatial domain methods.

Generally speaking, when comparing the above two types of methods, the transform domain
method may have a stronger capacity to preserve phase details, while the spatial domain method has
a stronger capacity to suppress noise. Therefore, researchers continue to pursue better performance by
fully mining more useful information from the interferometric phase. In order to improve the capacity
to preserve phase details, the NL-means algorithm [17–19] has been successfully applied to the fields of
InSAR [20–24]. The first NL-InSAR approach for the estimation of the interferometric phase is proposed
in [20], which derives a patch-similarity criterion that is suitable for the interferogram and performs
the weighted averaging of similar pixels defined by the criterion. In order to address the inherent
diversity of natural terrain in generating digital elevation models (DEMs) process, an NL-InSAR filter is
proposed in [25], which can adjust the filtering parameters adaptively to ensure the fine filtering effect.
Combining the non-local approach, wavelet transform, and Wiener filtering, an InSAR block-matching
3D filtering method, called InSAR-BM3D, is proposed in [26], which preserves phase structures well.
When compared with the above two types of methods, this type of method may achieve better filtering
effects. However, due to a large number of similar area search operations, this type of method sacrifices
computational efficiency.
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In recent years, deep learning has been successfully applied to many fields, such as machine vision,
optical image processing [27–30], and SAR image denoising [31–33]. In addition, the research of deep
learning in the field of interferometric SAR has also begun to sprout [34–36]. In this paper, we propose a
deep learning-based method to filter the interferometric phase for InSAR, which can better balance the
noise suppression capacity and phase detail preservation capacity in order to obtain higher-precision
results and ensure computational efficiency. In order to preserve the range ((−π, π]) of the interferometric
phase, the filtering is implemented on the real and imaginary parts of the interferometric phase. In this
method, the real and imaginary parts of the interferometric phase are filtered using a scale recurrent
network, called phase filtering network (PFNet), which includes three single scale subnetworks that are
based on the encoder-decoder architecture. The network can utilize the global structural phase information
that is contained in the different-scaled feature maps, because RNN units are used to transmit current
state information among different subnetworks. The encoder part is used for extracting the phase features,
and the decoder part restores detailed information from the encoded feature maps and makes the size
of the output image the same as that of the input image. Experiments on simulated and real InSAR data
prove that the proposed method is superior to three widely-used phase filtering methods by qualitative
and quantitative comparisons and it has the significant advantage of computational efficiency.

The remainder of the paper is organized, as follows. In Section 2, we describe the necessity and
particularity of the interferometric phase filtering in InSAR. A data generation method, the proposed
method, and evaluation indexes are described in Section 3, and experiments that are based on simulated
and real InSAR data are implemented in order to evaluate the proposed method with the other three
widely-used methods in Section 4. The conclusion is presented in Section 5.

2. Problem Description

This section describes, in detail, why the interferometric phase filtering is required in the InSAR
processing chain, the particularity of the interferometric phase filtering when compared to general image
filtering, and the noise model of the interferometric phase in InSAR. At the same time, this section provides
a theoretical basis for generating simulated data.

InSAR is a technique that exploits the interferometric phase of two or more coregistered single
look complex (SLC) SAR images to acquire useful information, such as relative height and surface
deformation [37]. These images are usually obtained by means of different antennas or repeat-pass.
Figure 1 shows the commonly used InSAR geometry model in the case of two antennas or passes [1].
The flight direction of the platform is perpendicular to the paper.

Consider any scatterer point s with the surface height h in Figure 1, the unwrapped phase
ϕu = − 2Qπ

λ (R1− R2) contains two parts: the unwrapped flat-earth phase ϕ f lat = − 2Qπ
λ ·

B cos(θ−α)
R1 tan θ (R1−R2)

and the unwrapped height phase ϕh, which can be expressed [1,38] as

ϕh = ϕu − ϕ f lat = −
2Qπ

λ
· B⊥h

R1 sin (θ)
, (1)

where λ is the wavelength of the transmit signal, R1 and R2 are the range from the scatterer point s to the
two antenna phase center positions, θ is the local incident angle, α is the angle of the baseline relative to the
reference horizontal plane, B⊥ is the baseline perpendicular to the line of sight, and the factor Q depends
on the working model of the antenna. When Q = 1, one antenna transmits a signal while the two antennas
receive the echo at the same time. When Q = 2, each antenna transmits and receives signals separately,
such as space-borne repeat-pass modes. According to Equation (1), as long as ϕh is known, the height h
can be obtained, because other parameters can be easily obtaining according to system parameters and
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geometry model. The unwrapped phase ϕh can be obtained by unwrapping the ideal interferometric
phase φc after removing the flat-earth phase, and their relationship can be expressed as

φc = angle(exp(jϕh)), (2)

where angle(·) returns the phase angle. The real interferometric phase typically contains noise, and the
presence of noise increases the difficulty of phase unwrapping and reduces its accuracy, which directly
affects the accuracy of the obtained height h. Therefore, interferometric phase filtering is a critical step
before unwrapping.

h

s

B⊥

c n  = +
2R

1R



( )angle(exp( - (2 1- 2 / - )))
c flat

j Q R R   =


Figure 1. InSAR geometry model.

After removing the flat-earth phase, the phase noise can be modeled [4,14,16] as

φ = angle(s1 · s∗2)− angle(exp(jϕ f lat)) = φc + φn, (3)

where φ is the real interferometric phase, s1 and s2 are two complex SAR images, ∗ represents the complex
conjugate, and φn is the zero-mean additive Gaussian noise and independent from φc. Figure 1 also shows
this process of adding noise. The process of retrieving φc from φ is called phase filtering. In simulation
experiments, the ideal interferometric phase can be used in order to evaluate the accuracy of filtering.

Because of the periodicity of trigonometric functions, the range of the interferometric phase is
(−π, π], which forms phase fringes in interferometric phase images. In order to correctly calculate the
phase gradient in phase unwrapping, phase jumps where the phase goes from −π to π or π to −π should
be preserved. Therefore, the direct filtering for the interferometric phase cannot be adopted in the real
domain. The interferometric phase is filtered in the complex domain in order to solve this problem.
An interferometric phase in the complex domain can be expressed as

exp(jφ) = R + jI. (4)

The real and imaginary parts of the interferometric phase can be expressed as

R = φreal = cos(φ), I = φimag = sin(φ). (5)

After the real and imaginary parts are filtered, the filtered interferometric phase can be obtained by

φ′ = angle(φ′real + jφ′imag), (6)
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where φ′, φ′real , and φ′imag are the filtered interferometric phase and its real part and imaginary part,
respectively. In the above process, it is ensured that the range of the interferometric phase is not changed
while the noise is filtered out. Furthermore, phase jumps are preserved without being smoothed, which is
beneficial to the phase gradient estimation in phase unwrapping.

3. Materials and Methods

3.1. Dataset

In practice, it is very difficult to obtain a large number of real interferometric phase images with
corresponding clean phase images, while network training usually requires a large number of labeled
samples. Therefore, we use a simulation method to generate samples in order to verify the effectiveness
of the proposed method and evaluate its performance. This section describes the detailed sample
generation process.

In experiments on simulated data, the Gaussian distributed random matrix is used to generate
unwrapped phase in order to simulate the diversity of real terrain in nature [39]. When the unwrapped
phase is known, we can easily obtain the interferometric phase according to Equation (2). The detailed
data generation steps are as follows.

1. Generate an initial Gaussian distributed random matrix. The size of the initial matrix is 7× 7 for our
simulation experiments.

2. Enlarge the matrix to a larger matrix (256× 256 pixels for our experiments) using bicubic interpolation
and scale its range of values to a larger range (0 to 20 rad for our simulation experiments). The large
matrix is considered as the unwrapped phase.

3. Get the clean and noisy interferometric phase according to Equations (2) and (3).
4. The real and imaginary parts of the clean and noisy interferometric phase are generated according

to Equation (5).

During the generation process, there are three variable parameters, namely the size of the initial
random matrix, the range of the unwrapped phase, and the level of added noise. The size of the initial
random matrix determines the number of extreme points in the unwrapped phase, so the terrain complexity
can be adjusted according to this value. When comparing Figure 2a–c and Figure 2d–f, we can see that,
the larger the initial random matrix, the more complex the terrain. Given a fixed size of the initial
random matrix, the range of the unwrapped phase determines the fringe density of the corresponding
interferometric phase. When comparing Figure 2e,f and Figure 2g,h, it can be seen that the larger the range
of the unwrapped phase, the denser the interferometric phase fringe. Furthermore, the level of added
noise determines the clarity of the interferometric phase fringe. Figure 3 shows the interferometric phase
images containing different levels of noise. Their signal-to-noise ratio (SNR) are 1.17 dB, −0.87 dB and
−2.1 dB, respectively. We can see that the stronger the noise, the less clear the phase fringe. Based on the
above analysis, it can be seen that these three parameters affect the difficulty of filtering and, the greater
their value, the greater the difficulty of filtering.

In experiments on real InSAR data, the real DEM is used to generate training samples [40], which can
make the training samples similar to the real terrain. This increase in similarity helps to obtain a better
filtering performance, because more details can be learned by the network. The real DEM used in this paper
comes from EU-DEM v1.1 and it can be downloaded from https://www.eea.europa.eu/data-and-maps/
data/copernicus-land-monitoring-service-eu-dem. To augment the training set, we obtain a group of training
samples corresponding to different fringe density from one real DEM (etna Volcano, 1536× 1536 pixels) by
scaling its elevation to different degrees. The maximum elevation of the real DEM are scaling from 150 m to
250 m with an interval of 10 m in order to obtain eleven different elevation images considered as unwrapped

https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-eu-dem
https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-eu-dem
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phase images ((250 − 150)/10 + 1). The unwrapped phase image is converted to the interferometric phase
images according to Equation (2), and each interferometric phase image is split into thirty-six small sections
(256× 256 pixels). Therefore, 396 (36 × 11) interferometric phase images can be obtained. According to
the aforementioned steps, 396 (36 × 11) pairs of real part images and 396 pairs of imaginary part images
are generated and used as the training set in Section 4.2. Figure 4 shows two examples of using DEMs to
generate samples.
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Figure 2. Two examples of the random matrices and the corresponding unwrapped phases and interferometric
phases. (a) A random matrix (3× 3). (b,c) are the corresponding unwrapped phase and interferometric phase,
respectively, when the range of the unwrapped phase is 0–20 rad. (d) A random matrix (7× 7). (e,f) are the
corresponding unwrapped phase and interferometric phase respectively when the range of the unwrapped
phase is 0–20 rad. (g,h) are the corresponding unwrapped phase and interferometric phase, respectively,
when the range of the unwrapped phase is 0–30 rad.
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Figure 3. Interferometric phase images with different levels of noise. (a) 1.17 dB. (b) −0.87 dB. (c) −2.1 dB.
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Figure 4. Two examples of using DEMs to generate samples. (a) Unwrapped phase (maximum is 150).
(b,c) are the corresponding clean interferometric phase and noisy interferometric phase, respectively.
(d) Unwrapped phase (maximum is 250). (e,f) are the corresponding clean interferometric phase and noisy
interferometric phase, respectively.

3.2. Proposed Method

In this paper, an interferometric phase filtering method that is based on deep learning is proposed.
The method has two stages, as shown in Figure 5: training and testing process. For the training process,
PFNet takes the real part and imaginary part images of the interferometric phase as input and produces
the corresponding filtered real part and imaginary part images. The trainable parameters are updated
by minimizing the loss function calculated from the network output and the real part and imaginary
part images of the clean interferometric phase (ground truth). Adam optimizer [41] is used and the loss
function is introduced in the next subsection. For the testing process, the real part and imaginary part
images of a noisy interferometric phase are separately fed into the trained PFNet to obtain the filtered
real part and imaginary part images. Finally, the corresponding filtered interferometric phase image is
obtained according to Equation (6) and it is compared with the clean interferometric phase image in order
to analyze filtering performance by performance evaluation functions. Next, we first introduce the overall
architecture of PFNet and then describe the network details via the single scale subnetwork.

Figure 6 illustrates the overall architecture of PFNet. The network is built based on a scale recurrent
structure including three single scale subnetworks, and different subnetworks correspond to different
scales of inputs and outputs. The scale of the three subnetworks are 64× 64, 128× 128, and 256× 256,
respectively. Each subnetwork consists of input, output, encoder, decoder, and RNN unit. The input of the
first subnetwork (Input-1) is two identical down-sampled original images, and the input of the second
and third networks (Input-2 and Input-3) is the output of the previous subnetwork and a scaled original
image. The un-sampling and down-sampling operation are completed while using bilinear interpolation.
RNN units are used to connect different subnetworks, which can transmit the current state information
to the RNN unit of the next subnetwork, in order to utilize the global structural phase information
contained in the different-scaled feature maps. This facilitates the restoration of a full-resolution clean
phase image across scales. RNN units can be different forms, such as long-short term memory (LSTM) [42],
gated recurrent unit (GRU) [43], and simple recurrent unit (SRU) [44]. In our method, GRU is selected,
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since its performance is best in our experiments. In addition, the trainable parameters of each subnetwork
are shared, rather than independent, in order to reduce the number of parameters.

PFNet

Input Output

Loss function

Ground truth
Opimize 

parameters
Clean phaseClean phase

Noisy phase

(a)

Trained

PFNet

Trained

PFNet

Performance evaluation  

function

 Noisy phase

Clean phase

Input

Filtered phase

Output

(b)

Figure 5. (a) Training and (b) testing process of the proposed method.
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Figure 6. Overall architecture of PFNet.

Figure 7 illustrates the detailed structure of each subnetwork and Table 1 lists the detailed parameter
configuration. Because the input size of different subnetworks are different, for convenience, the width and
height of the image are expressed by M× N. The encoder part transforms the input image into the feature
maps with a smaller size and more channels, and it contains five encoder blocks. As shown by different
colored modules in Figure 7, each encoder block consists of a convolution (Conv) layer, a residual network
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(ResBlock) [27], and a convolution layer. A convolution layer includes two operations: convolution and
rectified linear unit (Relu). In the latter four encoder blocks, the first convolution layer doubles the number
of channels of the previous layer and halves the size of its feature map. In the encoder process, the main
phase fringe information is captured and, meanwhile, noise is gradually suppressed after each block.
On the other hand, the size of the feature map is reduced, which helps to increase the training speed and
reduce the demand for computing power. The decoder part restores detailed information from the encoded
feature maps and makes the size of the output image the same as that of the input image. It also contains
five decoder blocks. The first decoder block consists of a ResBlock and a convolution layer, and the other
four blocks have one more deconvolution (Deconv) layer. A deconvolution layer includes two operations:
deconvolution and rectified linear unit. In the last four decoder blocks, the first deconvolution layer halves
the number of channels of the previous layer and doubles the size of its feature map. In the decoder
process, the detail phase information and image size are gradually restored after each block and the size of
feature maps gradually returns to that of the input image.

Table 1. Detailed parameter configuration of each subnetwork.

# Layer Name Filter Size # Channels Stride Padding Output Size

Encoder block 1
Conv + Relu 5× 5 8 1 2 M× N × 8

Resblock 5× 5 8 1 2 M× N × 8
Conv + Relu 5× 5 8 1 2 M× N × 8

Encoder block 2
Conv + Relu 5× 5 16 2 2 M/2× N/2× 16

Resblock 5× 5 16 1 2 M/2× N/2× 16
Conv + Relu 5× 5 16 1 2 M/2× N/2× 16

Encoder block 3
Conv + Relu 5× 5 32 2 2 M/4× N/4× 32

Resblock 5× 5 32 1 2 M/4× N/4× 32
Conv + Relu 5× 5 32 1 2 M/4× N/4× 32

Encoder block 4
Conv + Relu 5× 5 64 2 2 M/8× N/8× 64

Resblock 5× 5 64 1 2 M/8× N/8× 64
Conv + Relu 5× 5 64 1 2 M/8× N/8× 64

Encoder block 5
Conv + Relu 5× 5 128 2 2 M/16× N/16× 128

Resblock 5× 5 128 1 2 M/16× N/16× 128
Conv + Relu 5× 5 128 1 2 M/16× N/16× 128

Decoder block 1
RNN unit - - - - M/16× N/16× 128
Resblock 5× 5 128 1 2 M/16× N/16× 128

Conv + Relu 5× 5 128 1 2 M/16× N/16× 128

Decoder block 2
Deconv + Relu 4× 4 64 2 1 M/8× N/8× 64

Resblock 5× 5 64 1 2 M/8× N/8× 64
Conv + Relu 5× 5 64 1 2 M/8× N/8× 64

Decoder block 3
Deconv + Relu 4× 4 32 2 1 M/4× N/4× 32

Resblock 5× 5 32 1 2 M/4× N/4× 32
Conv + Relu 5× 5 32 1 2 M/4× N/4× 32

Decoder block 4
Deconv + Relu 4× 4 16 2 1 M/2× N/2× 16

Resblock 5× 5 16 1 2 M/2× N/2× 16
Conv + Relu 5× 5 16 1 2 M/2× N/2× 16

Decoder block 5
Deconv + Relu 4× 4 8 2 1 M× N × 8

Resblock 5× 5 8 1 2 M× N × 8
Conv + Relu 5× 5 8 1 2 M× N × 8

- ResBlock 5× 5 8 1 2 M× N × 8
- Conv + Relu 5× 5 1 1 2 M× N × 1
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Figure 7. Detailed structure of each subnetwork.

Deep networks are good for enriching the level of features and integrating low/mid/high-level
features, but it may be difficult to train [45]. Therefore, two methods are used to avoid the problem.
First, in each encoder or decoder block, a Resblock is connected after the first convolution or deconvolution
layer in order to accelerate convergence and avoid gradient explosion or gradient disappearance when
deepening the network [46]. Besides, a convolution or deconvolution layer is inserted after each Resblock
to further increase the network depth. Second, between the encoder and decoder, the feature maps with
the same size are added by skip connections [47], which can pass detailed phase information to the top
layer and facilitate the gradient propagation. In the decoder process, the feature maps from convolution
layers can compensate the main detailed phase information. In other words, these added skip connections
can improve network performance and make training easier and more efficient.

3.3. Loss Function

The mean-square error (MSE) between the filtered real part or imaginary part image (network output)
and the clean real part or imaginary part image (ground truth) is adopted as the loss function. It can be
expressed as

L =
n

∑
i=1

∥∥φi −φ′i
∥∥2

2
Mi

, (7)

where n is the scale number of the scale recurrent network, Mi is the number of pixels of the i-th scaled
images, φi and φ′i are the ground truth and network output in the i-th scale, respectively.

3.4. Performance Evaluation Index

The evaluation of the filtering performance is divided into two aspects: filtering accuracy and
computational efficiency, in which the filtering accuracy is evaluated by comprehensively considering the
capacities of noise suppression and phase detail preservation. An excellent phase filtering method is usually
efficient and it has a sufficient capacity to suppress noise while preserving fine phase detail information.
In this paper, qualitative and quantitative evaluation methods are adopted to complete the evaluation task.
Qualitative evaluation means that the evaluator performs filtering quality judgment based on visual effects.
Therefore, the noisy and filtered interferometric phase images are simultaneously provided for qualitative
evaluation. In this evaluation process, it is mainly examined whether the noise is suppressed, whether
the phase fringe is preserved, and whether other unnecessary information is introduced. This method
is subjective, so that the evaluation results vary from person to person and have no stability. In order to
objectively evaluate the filtering performance, five commonly used evaluation indexes are adopted for
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quantitative evaluation, namely the number of residues (NOR) [9], MSE, mean structural similarity index
(MSSIM) [48], no-reference metric Q [49], and runtime (T).

NOR can reflect the capacity to suppress noise of the filtering method. The smaller the NOR of
the filtered interferometric phase, the stronger the capacity to suppress noise. The definition of residues
depends on the loop integration of the phase gradient of 2x2 neighboring pixels. For an interferometric
phase image, the phase gradient between adjacent pixels can be obtained by

∇φ(p, p− 1) =

 φ(p)− φ(p− 1), |φ(p)− φ(p− 1)| ≤ π

φ(p)− φ(p− 1)− 2π, |φ(p)− φ(p− 1)| > π

φ(p)− φ(p− 1) + 2π, φ(p)− φ(p− 1) < −π

, (8)

where φ(p) and φ(p − 1) is the interferometric phase of adjacent pixel p and pixel p − 1, respectively.
As shown in Figure 8, given a pixel (m, n), whether this point is a residue can be determined by

F =∇φ1((m + 1, n), (m, n)) +∇φ2((m + 1, n + 1), (m + 1, n))

+∇φ3((m, n + 1), (m + 1, n + 1)) +∇φ4((m, n), (m, n + 1)).
(9)

There are three possible values for F, namely 0 and±2π, which correspond to a non-residue, a positive
residue, and a negative residue, respectively. After judging each pixel in an interferometric phase image,
its NOR can be obtained.

1m ,n+（ ） 1 1m ,n+ +（ ）

1m,n +（ ）m,n（ ）

1

2

3

4

Figure 8. Schematic diagram of residue calculation.

MSE is an index for measuring the difference between the filtered and clean interferometric phase.
The smaller MSE means that the filtered interferometric phase is closer to the clean interferometric phase,
but it does not consider the correlation between pixels in images. Therefore, MSSIM is employed to
evaluate the structural similarity of the filtered and clean images. A higher MSSIM means that the
structural information is kept better during the filtering process. For a clean interferometric phase patch x
and the corresponding filtered patch y, the SSIM can be expressed as

SSIM(µx, µy) =

(
2µxµy + C1

) (
2σxy + C2

)(
µ2

x + µ2
y + C1

) (
σ2

x + σ2
y + C2

) , C1 = (K1L)2 , C2 = (K2L)2 , (10)
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where µx, µy, σx,σy, σxy are the local means, standard deviations and cross-covariance, C1 and C2 are
constants and used to avoid instability when µ2

x + µ2
y or σ2

x + σ2
y is very close to zero, L is the dynamic

range of the pixel values, and K1 � 1 and K2 � 1 are both small constants [48]. In order to evaluate the
overall filtering quality of a filtered image, the MSSIM is adopted and it can be expressed as

MSSIM =
1
K

M

∑
i=1

SSIM(xi, yi), (11)

where K is the number of patches, and xi and yi are the i-th patch in a clear interferometric phase image
and the corresponding filtered image, respectively.

For real InSAR data, the no-reference metric Q is adopted, because the clean/reference interferometric
phase is usually unknown. The index can comprehensively reflect the capacities of noise suppression and
detail preservation of the filtering method [16,49], so it is suitable for our evaluation. According to [49],
the local dominant orientation is calculated by the singular value decomposition of local interferometric
phase image gradient matrix G

G = USVT = U

[
s1 0
0 s2

] [
v1 v2

]T
, (12)

where v1 is the dominant orientation of the gradient field and v2 is orthogonal to v1. s1 ≥ s2 ≥ 0 are
the singular values that represent the energy of phase gradient in the directions v1 and v2, respectively.
According to the singular values, the metric Q can be defined as

Q = s1R = s1
s1 − s2

s1 + s2
. (13)

For a clean interferometric phase region, R is near 1, because s1 is much larger than s2. When there is
noise, R would decrease due to the destruction of the structure of this region. Therefore, a higher Q means
that the accuracy of the filtering method is better.

4. Results and Discussion

We carry out a series of experiments on simulated and real data and compare our proposed method
with the Lee filter, Goldstein filter, and InSAR-BM3D filter under the same experimental conditions in order
to verify the effectiveness and robustness of the proposed method. For a clear comparison, qualitative
and quantitative indexes are used for performance evaluation. All of the experiments were implemented
on a PC with an i9-9900k CPU and an NVIDIA GeForce GTX 2080Ti GPU, and our proposed method is
implemented on TensorFlow platform based on Python 3.6.6.

4.1. Experiments on Simulated Data

The data set was generated while using the simulated method that is described in Section 3.1. The size
of the initial Gaussian distributed random matrix, the range of the unwrapped phase and the level of added
noise are set to 7× 7, 0–20 rad and −1.49 dB, respectively. The training set contains 10,000 pairs of real
part images and 10,000 pairs of imaginary part images, and the testing set contains additional 2500 pairs of
real part images and 2500 imaginary part images. We use Adam optimizer with a mini-batch size of 10 [41]
and Glorot’s method [50] to initialized all trainable variables. The learning rate is exponentially decayed
from an initial value of 1 ×10−4 to 0 with a power of 0.3. Early Stopping [51,52] is used to choose when
to stop iteration, and 120,000 iterations are enough for convergence in our experiment that takes about
six hours. In each iteration, the input training samples are randomly selected. After training, the trained



Remote Sens. 2020, 12, 3453 13 of 25

PFNet was tested by the testing samples. We first randomly select a testing sample in order to visually
analyze the filtering performance and then calculate the average evaluation indexes of all testing samples
for quantitative analysis.

A clean interferometric phase image and its real part and imaginary part images are shown in
Figure 9a–c, respectively. After noise is added, the corresponding noisy interferometric phase image
and its real part and imaginary part images are shown in Figure 9d–f, respectively. The noisy real part
and imaginary part images are filtered using the trained PFNet, and the filtered versions and the phase
differences between the filtered version and the clean version are shown in Figure 10. We can observe
that the filtered real part and imaginary part images are very close to the corresponding clean real part
and imaginary part images, because most of the pixels of the phase difference images are close to zero.
In order to more intuitively and clearly show this phase difference, the fitted histogram curves of the
phase differences are shown in Figure 11. The histogram curve is plotted according to the value of the
phase difference histogram, which reflects the distribution density of the phase difference. The vertical
axis is the number of pixels and the horizontal axis is the value of the phase difference. From Figure 11,
it can be seen that the two curves are sharp near zero, which indicates that the differences are small and
concentrated near zero, that is, the noise is well suppressed in the real and imaginary parts of the noisy
interferometric phase. According to the filtered real and imaginary parts, the filtered interferometric phase
can be obtained using Equation (6).
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Figure 9. Simulated interferometric phase. (a) Clean interferometric phase , and its (b) real part and
(c) imaginary part. (d) Noisy version of (a), and its (e) real part and (f) imaginary part.

We compare our proposed method with three widely-used methods in order to further analyze the
performance of the proposed method: the Lee filter, Goldstein filter, and InSAR-BM3D filter. Figure 12
shows the filtered interferometric phase images and the phase difference between the clean phase and
filtered phase. We can see that the result of the proposed method is very close to the clean interferometric
phase and is better than the other three methods from the naked eye, because its phase difference image is
closer to zero. In order to more intuitively and clearly show this phase difference, the fitted histogram
curves of the phase differences are shown in Figure 13. We can see that the fitted curve of the proposed
method is sharper near zero than that of other methods, which indicates that the phase difference of
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the proposed method is more centered on zero, that is, the proposed method is significantly better
from the perspective of the phase difference. Furthermore, the four aforementioned evaluation indexes,
namely NOR, MSSIM, MSE, and T, are adopted and listed in Table 2. We can see that the proposed
method obtains the lowest NOR and MSE, and the highest MSSIM, which reveals that the proposed
method filters out the most noise and maintains the most detailed information among the four methods,
which is, the proposed method has the strongest noise suppression capacity and the detail preservation
capacity. In more detail, when compared with the InSAR-BM3D filter, the MSSIM and MSE of the proposed
method are improved by 19.62% and 51.15%. Meanwhile, the proposed method has the smallest runtime
(T), which means that it has a great advantage in computational efficiency. From another perspective,
the proposed method has the highest accuracy, because the comprehensive evaluation of MSSIM and
MSE reflects the accuracy of phase filtering. Combining accuracy and computational efficiency to analyze,
we note that, although the runtime of the Lee filter and the Goldstein filter are less than the InSAR-BM3D
filter, their MSSIM and MSE is not as good as the InSAR-BM3D filter. This contradiction between accuracy
and computational efficiency has been resolved in the proposed method, because the runtime of the
proposed method is the smallest and its accuracy is highest among the four methods. In summary,
the proposed method is superior to the other three methods from qualitative and quantitative perspectives.
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Figure 10. Filtered results and phase differences of Figure 9e,f using PFNet. (a) Filtered result of the real
part. (b) Filtered result of the imaginary part. (c) Phase difference of the real part. (d) Phase difference of
the imaginary part.
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Figure 11. Fitted phase difference histogram curves of Figure 10c,d.
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Figure 12. Filtered results (Top) and phase difference (Bottom) of four methods on simulated data. (a) Lee
filter. (b) Goldstein filter. (c) InSAR-BM3D filter. (d) Proposed method.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Phase difference (rad)

0

1000

2000

3000

4000

5000

6000

7000

8000

N
u

m
b

er
 o

f 
p

ix
el

s

No filtering

Lee filter

Goldstein filter

InSAR-BM3D filter

Proposed method

Figure 13. Fitted phase difference histogram curves of four methods.

Table 2. Quantitative indexes of four methods on simulated data.

Method NOR MSSIM MSE T (s)

No filtering 10,572 0.0251 4.6494 -
Lee Filter 369 0.2008 2.3631 3.3

Goldstein Filter 16 0.4617 1.4839 4.1
InSAR-BM3D Filter 0.012 0.7366 0.8227 6.9
Proposed method 0.004 0.8811 0.4019 0.015

In the above experiments, the SNR of all testing samples is the same as the training samples,
but, in practical applications, the SNR of the testing sample may be different from the training sample.
Therefore, we next analyze the robustness of the proposed method when processing images with different
values of SNR. We select four situations covering the range of noise from strong to weak for visual
display, and the filtered results of four methods are shown in Figure 14. It can be seen that the proposed
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method and InSAR-BM3D filter outperform the other two methods in these four cases because their
phase difference is closer to zero. Furthermore, when the SNR (−2.1 dB, 0.08 dB) of the testing sample
is close to that of the training sample (−1.49 dB), the proposed method outperforms the InSAR-BM3D
filter, and when the SNR (2.74 dB, 5.55 dB) of the testing sample is far from that of the training sample,
the performance of the InSAR-BM3D filter is better than the proposed method. In order to quantitatively
analyze the above-mentioned inferences, we calculated the MSSIM and MSE of each method according
to the filtered results in the SNR range of (−2.1, 5.55) dB, as shown in Figure 15. It can be seen that
the MSSIM of the proposed method and the InSAR-BM3D filter is significantly higher than the other
two methods, and their MSE is significantly lower than the other two methods, which indicates that the
capacities of noise suppression and detail preservation of the proposed method and InSAR-BM3D filter
are significantly better. Next, comparing the proposed method with the InSAR-BM3D filter, the proposed
method is significantly better than the InSAR-BM3D filter when the SNR of the testing sample is close to
that of the training sample, which reveals that as long as the SNR of the testing sample keeps within a
certain interval with the that of the training sample, the proposed method can obtain better performance
than the InSAR-BM3D filter. Moreover, it is worth noting that the difficulty of filtering is greatly reduced
in the case of high SNR, and the performance of the filtering algorithm in the case of low SNR is more
worthy of attention. This is also the reason for choosing a lower SNR of training samples.

(a) (b) (c) (d) (e) (f)(a) (b) (c) (d) (e) (f)

-2.1dB

0.08dB

2.74dB

5.55dB
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2.74dB

5.55dB

(a) (b) (c) (d) (e) (f)

-2.1dB

0.08dB

2.74dB
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Figure 14. Filtered results of four methods for images with different values of SNR. (a) Noisy interferometric
phase. (b) Clean interferometric phase. (c) Phase difference of the Lee filter. (d) Phase difference of the
Goldstein filter. (e) Phase difference of the InSAR-BM3D filter. (f) Phase difference of the proposed method.
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Figure 15. Quantitative indexes of four methods on simulated images with different values of signal-to-noise
ratio (SNR). (a) Mean structural similarity index (MSSIM). (b) Mean-square error (MSE).

We carry out four experiments under the same condition, and each experiment halves the number of
training samples in order to test the impact of the sample reduction on the performance of the proposed
method. Their MSSIM and MSE are calculated and listed in Table 3. From Tables 2 and 3, we can find that
as the number of training samples decreases, the performance of the proposed method decreases slightly,
but it is still better than the other three methods. That is to say, the performance of the proposed method is
still better than the other three methods when the number of training samples is reduced by eight times.

Table 3. Quantitative indexes of the proposed method in the case of different numbers of training samples.

# Training Samples MSSIM MSE

20,000 0.8811 0.4019
10,000 0.8652 0.4645
5000 0.8434 0.5392
2500 0.8374 0.5502

In order to further demonstrate the performance of the proposed method, we compare it with another
deep learning filtering method (called DeepInSAR) [35]. For a fair comparison, the data set used in this
paper is the same as the data set used in [35] in terms of the data simulation method and number of images.
The code of the simulation method can be downloaded from https://github.com/Lucklyric/InSAR-
Simulator. The training set contains 28,800 pairs of real part images of simulated interferometric phases
and 28,800 pairs of imaginary part images of simulated interferometric phases with a size of 256× 256,
and the testing set contains additional 900 pairs of simulated real part images and 900 pairs of simulated
imaginary part images with a size of 1024× 1024. In this experiment, the proposed method converges after
345,600 iterations, and the filtered results are obtained by the testing process. For quantitative analysis,
the MSSIM and Root Mean Square Error (RMSE) of DeepInSAR are taken from [35], and the indexes of
the two methods are listed in Table 4. From Table 4, it can been seen that the MSSIM of the proposed
method is comparable to DeepInSAR, and its RMSE is greatly improved by 21.47%. Therefore, the overall
performance the proposed method is better than DeepInSAR on the same data set.

https://github.com/Lucklyric/InSAR-Simulator
https://github.com/Lucklyric/InSAR-Simulator
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Table 4. Quantitative indexes of the proposed method and DeepInSAR.

Method MSSIM RMSE

DeepInSAR 0.8666 0.8536
Proposed Method 0.8606 0.6703

4.2. Experiments on Real Data

In this section, we use the training samples that were generated by the real DEM to train the
proposed network. The detailed sample generation process is described in Section 3.1. The learning
rate and mini-batch size are the same as in Section 4.1, and 31,600 iterations are enough for convergence.
After training, two interferograms (SIR-C/X-SAR data and TerraSAR-X data) are processed in order to
evaluate the performance and generalization ability of the proposed method.

4.2.1. SIR-C/X-SAR Data

In this subsection, a real interferometric phase image with a size of 1024× 1024 pixels (SIR-C/X-SAR,
Etna Volcano, Italy) was used as a testing sample, as shown in Figure 16. The interferogram was obtained
from two SLC images acquired by two shuttle passes on 9 and 10 October 1994 [53], and no multilook
processing was performed. For a better comparison of the detailed filtering effects of areas with different
values of coherence, a low coherence area (labeled A) and a high coherence area ( labeled B) are enlarged
in Figure 16. For qualitative evaluation, the filtered results of Figure 16 using the Lee filter, Goldstein filter,
InSAR-BM3D filter, and the proposed method are shown in Figures 17 and 18. From these two figures,
we can infer that the results of the Lee filter and Goldstein filter preserve more noise, which is, the noise
suppression capacity is not enough, while the result of InSAR-BM3D smooths the fringe edges excessively,
that is, the detail preservation capacity is insufficient. Note that the filtering result of the proposed method
reaches a balance between the two states among the four methods.

A

B

Figure 16. SIR-C/X-SAR data: a real interferometric phase image and its a low coherence area (labeled A)
and a high coherence area (labeled B).
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(a) (b)

(c) (d)

Figure 17. Filtered results of Figure 16 using four methods. (a) Lee filter. (b) Goldstein filter. (c) InSAR-BM3D
filter. (d) Proposed method.

To confirm the above-mentioned inference, the quantitative evaluation indexes of Figure 16 and the
corresponding filtered results are calculated and listed in Table 5. Because the corresponding clean
interferometric phase is unknown, MSE is no longer used, but the no-reference metric Q that can
comprehensively reflect the capacities of noise suppression and detail preservation is used. In addition,
due to the residues of Figure 16 can not completely be filtered, the percentage of the reduced residues
(PRR) is also calculated to show the noise suppression capacity more clearly. From Table 5, we can see that
the PRR and metric Q of the Lee filter and Goldstein filter are significantly lower than the InSAR-BM3D
filter and proposed method. When comparing the latter two methods, although the InSAR-BM3D filter
has a higher PRR, its Q is lower, which means that its noise suppression capacity is too strong and
some detailed information is lost. In more detail, the metric Q of the proposed method increases by
70.76% as compared with the InSAR-BM3D filter. Therefore, it can be seen that the proposed method
maintains the best balance between the two capacities among the four methods, which is consistent
with the above-mentioned qualitative inference from images. In addition, although the InSAR-BM3D
filter has higher MSSIM and PRR than the Lee filter and Goldstein filter, it consumes multiple runtime,
which shows the same contradiction between accuracy and computational efficiency as in the simulation
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experiments. However, the runtime of the proposed method is only about 0.043 s while ensuring the best
balance between the noise suppression capacity and detail preservation capacity among the four methods.
When compared with the runtime of InSAR-BM3D filter (125.2 s), this thousand-fold improvement in
computational efficiency has a great advantage in practical applications that require real-time processing.

(a) (b) (c) (d)

Figure 18. Filtered results of area A (Top) and area B (Bottom) using four methods. (a) Lee filter. (b) Goldstein
filter. (c) InSAR-BM3D filter. (d) Proposed method.

Table 5. Quantitative indexes of four methods on SIR-C/X-SAR data.

Method NOR PRR (%) Metric Q T(s)

No filtering 218,168 0 0.4776 -
Lee Filter 36,583 83.23 21.2007 50.9

Goldstein Filter 14,911 93.17 38.3316 68.1
InSAR-BM3D Filter 1219 99.44 46.5475 125.2
Proposed method 11,306 94.82 79.4867 0.043

4.2.2. TerraSAR-X Data

A real interferometric phase image with a size of 3072× 3072 pixels (TerraSAR-X, Uluru, Australia)
was used as a testing sample in order to further evaluate the generalization ability of the proposed method
on real InSAR data, as shown in Figure 19. The interferogram was obtained from two SLC images acquired
by two satellite passes on 12 and 23 February 2009 [54], and no multilook processing was performed.
The interferogram was processed by the proposed method as a whole. The filtered results are shown in
Figure 20 and the quantitative indexes are listed in Table 6. From Figure 20 and Table 6, we can see that
the PRR and metric Q of the Lee filter and Goldstein filter are lower than the InSAR-BM3D filter and
proposed method. When comparing the latter two methods, although the InSAR-BM3D filter has a higher
PRR, its Q is lower, which means that it lost some detailed information due to its strong noise suppression
capacity. In more detail, the metric Q of the proposed method increases by 14.84% as compared with
the InSAR-BM3D filter. Therefore, it can be seen that the proposed method maintains the best balance
between detail preservation and noise suppression among the four methods, which is consistent with the
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conclusion presented in Section 4.2.1. Through the above analysis, it can be seen that the performance of the
proposed method is still better than the other three methods, which further verifies its generalization ability.
In addition, comparing the runtime of the InSAR-BM3D filter and the proposed method, the efficiency
advantage of the proposed method has been verified again.
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Figure 19. TerraSAR-X data: a real interferometric phase image.

Table 6. Quantitative indexes of four methods on TerraSAR-X data.

Method NOR PRR (%) Metric Q T(s)

No filtering 327,488 0 18.4225 -
Lee Filter 199,399 39.11 19.6906 425.4

Goldstein Filter 139,356 57.45 18.4413 605.9
InSAR-BM3D Filter 27,900 91.48 21.8857 1078.1
Proposed method 69,455 78.79 25.1338 0.398
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(a) (b)

(c) (d)

Figure 20. Filtered results of Figure 19 using four methods. (a) Lee filter. (b) Goldstein filter. (c) InSAR-BM3D
filter. (d) Proposed method.

5. Conclusions

An interferometric phase filtering method based on deep learning is proposed in this paper in order
to better balance the noise suppression capacity and the phase detail preservation capacity and ensure
computational efficiency when compared with the widely-used phase filtering methods. In this method,
PFNet is used to filter the real and imaginary parts of the interferometric phase. With a scale recurrent
strategy, the network includes three single scale subnetworks based on the encoder-decoder architecture.
Because the three subnetworks are connected by RNN units that can transmit current state information
among different subnetworks, the method can utilize the global structural phase information contained
in the different-scaled feature maps. The encoder part is used for extracting the phase features, and the
decoder part restores detailed information from the encoded feature maps and makes the size of the output
image the same as that of the input image. Experiments on simulated and real InSAR data prove that the
proposed method is superior to three widely-used phase filtering methods by qualitative and quantitative
comparisons. When compared with the InSAR-BM3D filter, MSSIM and MSE of the proposed method in
simulation experiments are improved by 19.62% and 51.15%. In addition, when the SNR of the testing
sample is close to the SNR of the training sample, the proposed method can obtain better performance.
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When the number of training samples is reduced by eight times, the performance of the proposed method
is still better than the other three methods. Moreover, on the same data set, the overall performance the
proposed method is better than DeepInSAR, because the MSSIM of the proposed method is comparable to
DeeInSAR, while its RMSE is improved by 21.47%. When processing SIR-C/X-SAR data, the metric Q of
the proposed method increases by 70.76% as compared with the InSAR-BM3D filter, and the runtime of the
proposed method is only about 0.043 s for a real interferometric image with a size of 1024× 1024 pixels,
which has the significant advantage of computational efficiency in practical applications that require
real-time processing. Furthermore, when processing TerraSAR-X data without retraining, the metric Q of
the proposed method increases by 14.84% compared with the InSAR-BM3D filter, which further verifies
the generalization ability of the proposed method.

The proposed method successfully introduces scale recurrent networks into the field of InSAR phase
filtering. This suggests a path for future research that may focus on new networks with the capacity
for better detail preservation and noise suppression. A second topic of future work will be to apply the
proposed method to more real data sets.

Author Contributions: All authors made significant contributions to the work. L.P., X.Z., Z.Z. and J.S. designed the
research and analyzed the results. L.P. and Z.Z. performed the experiments. L.P. and X.Z. wrote and revised the
manuscript. S.W. and Y.Z. provided suggestions for the preparation and revision of the paper. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Key R&D Program of China under Grant 2017YFB0502700
and in part by the National Natural Science Foundation of China under Grants 61571099, 61501098, and 61671113.

Acknowledgments: We thank all the reviewers and editors for their comments towards improving this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on synthetic
aperture radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [CrossRef]

2. Zhu, X.; Wang, Y.; Montazeri, S.; Ge, N. A Review of Ten-Year Advances of Multi-Baseline SAR Interferometry
Using TerraSAR-X Data. Remote Sens. 2018, 10, 1374. [CrossRef]

3. Wang, Y.; Huang, H.; Dong, Z.; Wu, M. Modified patch-based locally optimal Wiener method for interferometric
SAR phase filtering. ISPRS J. Photogramm. Remote Sens. 2016, 114, 10–23. [CrossRef]

4. Lee, J.S.; Papathanassiou, K.P.; Ainsworth, T.L.; Grunes, M.R.; Reigber, A. A new technique for noise filtering of
SAR interferometric phase images. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1456–1465.

5. Vasile, G.; Trouvé, E.; Lee, J.S.; Buzuloiu, V. Intensity-driven adaptive-neighborhood technique for polarimetric
and interferometric SAR parameters estimation. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1609–1621. [CrossRef]

6. Fu, S.; Long, X.; Yang, X.; Yu, Q. Directionally adaptive filter for synthetic aperture radar interferometric phase
images. IEEE Trans. Geosci. Remote Sens. 2012, 51, 552–559. [CrossRef]

7. Chao, C.F.; Chen, K.S.; Lee, J.S. Refined filtering of interferometric phase from InSAR data. IEEE Trans. Geosci.
Remote Sens. 2013, 51, 5315–5323. [CrossRef]

8. Yu, Q.; Yang, X.; Fu, S.; Liu, X.; Sun, X. An adaptive contoured window filter for interferometric synthetic
aperture radar. IEEE Geosci. Remote Sens. Lett. 2007, 4, 23–26. [CrossRef]

9. Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998,
25, 4035–4038. [CrossRef]

10. Baran, I.; Stewart, M.P.; Kampes, B.M.; Perski, Z.; Lilly, P. A modification to the Goldstein radar interferogram
filter. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2114–2118. [CrossRef]

11. Trouve, E.; Nicolas, J.M.; Maitre, H. Improving phase unwrapping techniques by the use of local frequency
estimates. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1963–1972. [CrossRef]

http://dx.doi.org/10.1109/MGRS.2013.2248301
http://dx.doi.org/10.3390/rs10091374
http://dx.doi.org/10.1016/j.isprsjprs.2016.01.013
http://dx.doi.org/10.1109/TGRS.2005.864142
http://dx.doi.org/10.1109/TGRS.2012.2202911
http://dx.doi.org/10.1109/TGRS.2012.2234467
http://dx.doi.org/10.1109/LGRS.2006.883527
http://dx.doi.org/10.1029/1998GL900033
http://dx.doi.org/10.1109/TGRS.2003.817212
http://dx.doi.org/10.1109/36.729368


Remote Sens. 2020, 12, 3453 24 of 25

12. Song, R.; Guo, H.; Liu, G.; Perski, Z.; Fan, J. Improved Goldstein SAR interferogram filter based on empirical
mode decomposition. IEEE Geosci. Remote Sens. Lett. 2013, 11, 399–403. [CrossRef]

13. Abdallah, W.B.; Abdelfattah, R. Two-dimensional wavelet algorithm for interferometric synthetic aperture radar
phase filtering enhancement. J. Appl. Remote Sens. 2015, 9, 096061. [CrossRef]

14. Lopez-Martinez, C.; Fabregas, X. Modeling and reduction of SAR interferometric phase noise in the wavelet
domain. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2553–2566. [CrossRef]

15. Zha, X.; Fu, R.; Dai, Z.; Liu, B. Noise reduction in interferograms using the wavelet packet transform and wiener
filtering. IEEE Geosci. Remote Sens. Lett. 2008, 5, 404–408.

16. Fang, D.; Lv, X.; Wang, Y.; Lin, X.; Qian, J. A sparsity-based InSAR phase denoising algorithm using nonlocal
wavelet shrinkage. Remote Sens. 2016, 8, 830. [CrossRef]

17. Buades, A.; Coll, B.; Morel, J.M. A review of image denoising algorithms, with a new one. Multiscale Model. Simul.
2005, 4, 490–530. [CrossRef]

18. Parrilli, S.; Poderico, M.; Angelino, C.V.; Verdoliva, L. A nonlocal SAR image denoising algorithm based on
LLMMSE wavelet shrinkage. IEEE Trans. Geosci. Remote Sens. 2011, 50, 606–616. [CrossRef]

19. Cozzolino, D.; Parrilli, S.; Scarpa, G.; Poggi, G.; Verdoliva, L. Fast adaptive nonlocal SAR despeckling. IEEE Geosci.
Remote Sens. Lett. 2013, 11, 524–528. [CrossRef]

20. Deledalle, C.A.; Denis, L.; Tupin, F. NL-InSAR: Nonlocal interferogram estimation. IEEE Trans. Geosci.
Remote Sens. 2010, 49, 1441–1452. [CrossRef]

21. Chen, R.; Yu, W.; Wang, R.; Liu, G.; Shao, Y. Interferometric phase denoising by pyramid nonlocal means filter.
IEEE Geosci. Remote Sens. Lett. 2013, 10, 826–830. [CrossRef]

22. Lin, X.; Li, F.; Meng, D.; Hu, D.; Ding, C. Nonlocal SAR interferometric phase filtering through higher order
singular value decomposition. IEEE Geosci. Remote Sens. Lett. 2014, 12, 806–810. [CrossRef]

23. Su, X.; Deledalle, C.A.; Tupin, F.; Sun, H. Two-step multitemporal nonlocal means for synthetic aperture radar
images. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6181–6196.

24. Sica, F.; Reale, D.; Poggi, G.; Verdoliva, L.; Fornaro, G. Nonlocal adaptive multilooking in SAR multipass
differential interferometry. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1727–1742. [CrossRef]

25. Baier, G.; Rossi, C.; Lachaise, M.; Zhu, X.X.; Bamler, R. A Nonlocal InSAR Filter for High-Resolution DEM
Generation From TanDEM-X Interferograms. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6469–6483. [CrossRef]

26. Sica, F.; Cozzolino, D.; Zhu, X.X.; Verdoliva, L.; Poggi, G. INSAR-BM3D: A nonlocal filter for SAR interferometric
phase restoration. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3456–3467. [CrossRef]

27. Tao, X.; Gao, H.; Shen, X.; Wang, J.; Jia, J. Scale-recurrent network for deep image deblurring. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 174–8182.

28. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation.
In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted
Intervention, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015; pp. 234–241.

29. Nah, S.; Hyun Kim, T.; Mu Lee, K. Deep multi-scale convolutional neural network for dynamic scene deblurring.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA,
21–26 July 2017; pp. 3883–3891.

30. Hirose, A. Complex-Valued Neural Networks; Springer Science & Business Media: Berlin/Heidelberg, Germany,
2012; Volume 400.

31. Wang, P.; Zhang, H.; Patel, V.M. SAR image despeckling using a convolutional neural network. IEEE Signal
Process. Lett. 2017, 24, 1763–1767. [CrossRef]

32. Zhou, Y.; Shi, J.; Yang, X.; Wang, C.; Kumar, D.; Wei, S.; Zhang, X. Deep multi-scale recurrent network for
synthetic aperture radar images despeckling. Remote Sens. 2019, 11, 2462. [CrossRef]

33. Zhang, Q.; Yuan, Q.; Li, J.; Yang, Z.; Ma, X. Learning a dilated residual network for SAR image despeckling.
Remote Sens. 2018, 10, 196. [CrossRef]

34. Mukherjee, S.; Zimmer, A.; Kottayil, N.K.; Sun, X.; Ghuman, P.; Cheng, I. CNN-Based InSAR Denoising and
Coherence Metric. In Proceedings of the 2018 IEEE SENSORS, New Delhi, India, 28–31 October 2018; pp. 1–4.

http://dx.doi.org/10.1109/LGRS.2013.2263554
http://dx.doi.org/10.1117/1.JRS.9.096061
http://dx.doi.org/10.1109/TGRS.2002.806997
http://dx.doi.org/10.3390/rs8100830
http://dx.doi.org/10.1137/040616024
http://dx.doi.org/10.1109/TGRS.2011.2161586
http://dx.doi.org/10.1109/LGRS.2013.2271650
http://dx.doi.org/10.1109/TGRS.2010.2076376
http://dx.doi.org/10.1109/LGRS.2012.2225594
http://dx.doi.org/10.1109/LGRS.2014.2362952
http://dx.doi.org/10.1109/JSTARS.2015.2421554
http://dx.doi.org/10.1109/TGRS.2018.2839027
http://dx.doi.org/10.1109/TGRS.2018.2800087
http://dx.doi.org/10.1109/LSP.2017.2758203
http://dx.doi.org/10.3390/rs11212462
http://dx.doi.org/10.3390/rs10020196


Remote Sens. 2020, 12, 3453 25 of 25

35. Sun, X.; Zimmer, A.; Mukherjee, S.; Kottayil, N.K.; Ghuman, P.; Cheng, I. DeepInSAR—A Deep Learning
Framework for SAR Interferometric Phase Restoration and Coherence Estimation. Remote Sens. 2020, 12, 2340.
[CrossRef]

36. Anantrasirichai, N.; Biggs, J.; Albino, F.; Hill, P.; Bull, D. Application of machine learning to classification of volcanic
deformation in routinely generated InSAR data. J. Geophys. Res. Solid Earth 2018, 123, 6592–6606. [CrossRef]

37. Bamler, R.; Hartl, P. Synthetic aperture radar interferometry. Inverse Probl. 1998, 14, R1. [CrossRef]
38. Rosen, P.A.; Hensley, S.; Joughin, I.R.; Li, F.K.; Madsen, S.N.; Rodriguez, E.; Goldstein, R.M. Synthetic aperture

radar interferometry. Proc. IEEE 2000, 88, 333–382. [CrossRef]
39. Wang, K.; Li, Y.; Kemao, Q.; Di, J.; Zhao, J. One-step robust deep learning phase unwrapping. Opt. Express 2019,

27, 15100–15115. [CrossRef]
40. Zhou, L.; Yu, H.; Lan, Y. Deep Convolutional Neural Network-Based Robust Phase Gradient Estimation for

Two-Dimensional Phase Unwrapping Using SAR Interferograms. IEEE Trans. Geosci. Remote. Sens. 2020, 58,
4653–4665. [CrossRef]

41. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
42. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
43. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence

modeling. arXiv 2014, arXiv:1412.3555.
44. Lei, T.; Zhang, Y.; Wang, S.I.; Dai, H.; Artzi, Y. Simple recurrent units for highly parallelizable recurrence. arXiv

2017, arXiv:1709.02755.
45. Matthew, D.; Fergus, R. Visualizing and understanding convolutional neural networks. In Proceedings of the 13th

European Conference Computer Vision and Pattern Recognition, Zurich, Switzerland, 6–12 September 2014; pp. 6–12.
46. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
47. Mao, X.; Shen, C.; Yang, Y.B. Image restoration using very deep convolutional encoder-decoder networks with

symmetric skip connections. In Proceedings of the 30th Conference on Neural Information Processing Systems,
Barcelona, Spain, 5–10 December 2016; pp. 2802–2810.

48. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural
similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [CrossRef]

49. Zhu, X.; Milanfar, P. Automatic Parameter Selection for Denoising Algorithms Using a No-Reference Measure of
Image Content. IEEE Trans. Image Process. 2010, 19, 3116–3132.

50. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings
of the Thirteenth International Conference on Artificial Intelligence and Statistics, Chia Laguna Resort, Sardinia,
Italy, 13–15 May 2010; pp. 249–256.

51. Yao, Y.; Rosasco, L.; Caponnetto, A. On early stopping in gradient descent learning. Constr. Approx. 2007, 26, 289–315.
[CrossRef]

52. Raskutti, G.; Wainwright, M.J.; Yu, B. Early stopping and non-parametric regression: An optimal data-dependent
stopping rule. J. Mach. Learn. Res. 2014, 15, 335–366.

53. Coltelli, M.; Fornaro, G.; Franceschetti, G.; Lanari, R.; Migliaccio, M.; Moreira, J.R.; Papathanassiou, K.P.;
Puglisi, G.; Riccio, D.; Schwabisch, M. On the survey of volcanic sites: The SIR-C/X-SAR interferometry.
In Proceedings of the IGARSS’96, 1996 International Geoscience and Remote Sensing Symposium, Lincoln, NE,
USA, 31–31 May 1996; Volume 1, pp. 350–352.

54. Pitz, W.; Miller, D. The TerraSAR-X satellite. IEEE Trans. Geosci. Remote Sens. 2010, 48, 615–622. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/rs12142340
http://dx.doi.org/10.1029/2018JB015911
http://dx.doi.org/10.1088/0266-5611/14/4/001
http://dx.doi.org/10.1109/5.838084
http://dx.doi.org/10.1364/OE.27.015100
http://dx.doi.org/10.1109/TGRS.2020.2965918
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1109/TIP.2003.819861
http://dx.doi.org/10.1007/s00365-006-0663-2
http://dx.doi.org/10.1109/TGRS.2009.2037432
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Description
	Materials and Methods
	Dataset
	Proposed Method
	Loss Function
	Performance Evaluation Index

	Results and Discussion
	Experiments on Simulated Data
	Experiments on Real Data
	SIR-C/X-SAR Data
	TerraSAR-X Data


	Conclusions
	References

