
remote sensing  

Article

Water Quality Retrieval from PRISMA Hyperspectral
Images: First Experience in a Turbid Lake and
Comparison with Sentinel-2

Milad Niroumand-Jadidi 1,* , Francesca Bovolo 1 and Lorenzo Bruzzone 2

1 Center for Information and Communication Technology, Fondazione Bruno Kessler, Via Sommarive,
18 I-38123 Trento, Italy; bovolo@fbk.eu

2 Department of Information Engineering and Computer Science, University of Trento, Via Sommarive,
5 I-38123 Trento, Italy; lorenzo.bruzzone@unitn.it

* Correspondence: mniroumand@fbk.eu; Tel.: +39-0461-314392

Received: 4 November 2020; Accepted: 4 December 2020; Published: 6 December 2020
����������
�������

Abstract: A new era of spaceborne hyperspectral imaging has just begun with the recent availability
of data from PRISMA (PRecursore IperSpettrale della Missione Applicativa) launched by the Italian
space agency (ASI). There has been pre-launch optimism that the wealth of spectral information
offered by PRISMA can contribute to a variety of aquatic science and management applications. Here,
we examine the potential of PRISMA level 2D images in retrieving standard water quality parameters,
including total suspended matter (TSM), chlorophyll-a (Chl-a), and colored dissolved organic matter
(CDOM) in a turbid lake (Lake Trasimeno, Italy). We perform consistency analyses among the
aquatic products (remote sensing reflectance (Rrs) and constituents) derived from PRISMA and
those from Sentinel-2. The consistency analyses are expanded to synthesized Sentinel-2 data as well.
By spectral downsampling of the PRISMA images, we better isolate the impact of spectral resolution
in retrieving the constituents. The retrieval of constituents from both PRISMA and Sentinel-2 images
is built upon inverting the radiative transfer model implemented in the Water Color Simulator
(WASI) processor. The inversion involves a parameter (gdd) to compensate for atmospheric and
sun-glint artifacts. A strong agreement is indicated for the cross-sensor comparison of Rrs products
at different wavelengths (average R ≈ 0.87). However, the Rrs of PRISMA at shorter wavelengths
(<500 nm) is slightly overestimated with respect to Sentinel-2. This is in line with the estimates of
gdd through the inversion that suggests an underestimated atmospheric path radiance of PRISMA
level 2D products compared to the atmospherically corrected Sentinel-2 data. The results indicate the
high potential of PRISMA level 2D imagery in mapping water quality parameters in Lake Trasimeno.
The PRISMA-based retrievals agree well with those of Sentinel-2, particularly for TSM.

Keywords: PRISMA; hyperspectral imagery; water quality; remote sensing reflectance; lake;
chlorophyll-a; TSM; CDOM; Sentinel-2; physics-based inversion

1. Introduction

The applications of Earth observation data are becoming more and more widespread in the
monitoring and management of aquatic systems [1,2]. This is due to the underpinning role of remote
sensing in providing spatially and temporally distributed data, whereas traditional field measurements
fall short in capturing the spatiotemporal dynamics of the inland/coastal biophysical properties [3–5].
Having accurate and timely information on biophysical parameters such as water quality and habitat
indicators is crucial for sustainable management of a variety of aquatic ecosystem services, such as
urban and agricultural water supply, fisheries, tourism, and recreation activities [4,5]. Furthermore,
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this kind of information contributes to a better understanding of processes such as eutrophication
and harmful algal blooms, carbon cycle, as well as climate change impacts [6–8]. Among water
quality parameters, the concentration of chlorophyll-a (Chl-a), which is in turn an indicator of the
phytoplankton abundance, can be considered a key parameter for assessment of the primary production,
the trophic status, and the quality of water [9]. Harmful algal blooms (HABs) can endanger aquatic
and human health. The monitoring of HABs requires timely and spatially distributed information
about Chl-a concentration [10,11]. Total suspended matter (TSM) is a measure of organic and mineral
solids suspended in the water column [12]. A high concentration of TSM can significantly reduce the
light availability for primary production and thus lead to degradation of aquatic habitat, and limit
fisheries and drinking water resources [13]. Colored dissolved organic matter (CDOM) is another
key water quality indicator that is closely linked to the carbon content. Spatiotemporal monitoring of
CDOM can contribute to studies of carbon cycle, aquatic ecology, climate change, and water treatment
projects [14–16].

Remotely sensed data have long been leveraged in quantification and mapping of optically
active constituents such as Chl-a, TSM, and CDOM. Information on bathymetry and benthic habitats
such as submerged aquatic vegetation can be also derived from water-leaving spectral data [17–19].
This is only feasible in optically shallow waters where the optical condition (e.g., turbidity and water
depth) allows for a back and forth traveling of the light through the entire water column [19–22].
The multispectral sensors onboard satellite platforms are the main source of optical images for the
estimation of biophysical parameters of inland/coastal waters [6]. In this context, ocean color sensors
such as the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) and MEdium Resolution Imagining
Spectrometer (MERIS) have long been used for estimation of a variety of biophysical parameters
in open oceans and coastal environments [6]. The recent twin Ocean and Land Color Instruments
(OLCI) onboard Sentinel-3A and Sentinel-3B are follow-ups for the MERIS mission but with significant
improvements of six additional bands [23]. However, the spatial resolution of ocean color sensors
(300–1000 m) suits only the studying of large water bodies. Studies on smaller water bodies such
as lakes benefited from the heritage Landsat mission (30 m), and the Operational Land Imager
(OLI) aboard Landsat-8 has received more interest as it provides an enhanced radiometric resolution
(12 bit). The improved dynamic range of Landsat-8 OLI provides sensitivity to the variations of
water-leaving radiance and thus the in-water constituents [24]. Along with OLI, the twin MultiSpectral
Instruments (MSI) onboard Sentinel-2A and Sentinel-2B are currently in the main spotlight of the
remote sensing community for analyzing inland/coastal waters at a relatively high spatial resolution
(10–30 m). A temporal resolution of about 2–3 days can be achieved by the MSI sensors and this further
improves in conjunction with OLI observations (revisits every 16 days). More recently, a revolutionary
satellite constellation called PlanetScope consisting of a large number (+130) of CubeSats provides very
high-resolution imagery (3 m) on a daily basis [25]. Despite the low spectral resolution (4–5 bands),
some studies demonstrated the potential of the PlanetScope imagery in the estimation of bathymetry
and in-water constituents [26–28].

Another relevant source of data in this context is hyperspectral satellite sensors, which have
been poorly available. Hyperspectral remote sensing or imaging spectroscopy provides hundreds
of contiguous and narrow spectral bands with bandwidths of 5–15 nm [29,30]. However, there is a
trade-off among spectral, spatial, and radiometric resolution which constrains the spatial resolution of
the spaceborne hyperspectral images to medium/coarse resolutions [31]. A relatively large pixel size
is required to ensure that a sufficient number of photons are available to be measured over narrow
portions of the spectrum. In this context, the number of satellite missions carrying hyperspectral sensors
has been considerably lower than the multispectral ones due to several challenging factors, including
(i) maintaining sufficient signal-to-noise ratio (SNR) in bottom-of-atmosphere (BOA) reflectance
over narrow spectral bands, (ii) high cost of hyperspectral sensors, and (iii) large data volume and
high computational cost [30,32]. Over the last two decades, Hyperion [33] and Compact High
Resolution Imaging Spectrometer (CHRIS) [34] were the main sources of hyperspectral imagery at



Remote Sens. 2020, 12, 3984 3 of 21

30 m resolution [32]. Currently, we have entered a new era of hyperspectral imaging spectroscopy
by the very recent availability of the data from PRecursore IperSpettrale della Missione Applicativa
(PRISMA) launched in 2019 by the Italian space agency. PRISMA provides hyperspectral images
with 239 bands (400–2500 nm) at <12 nm spectral resolution and 30 m spatial resolution. There is
also a suite of upcoming missions that will further expand the hyperspectral remote sensing from
space: Environmental Mapping and Analysis Program (EnMAP), Hyperspectral Infrared Imager
(HyspIRI), Hyperspectral Imager Suite (HISUI), Hyperspectral X Imagery (HypXIM), Spaceborne
Hyperspectral Applicative Land and Ocean Mission (SHALOM), NASA’s Plankton, Aerosol, Cloud,
Ocean Ecosystem (PACE), and Copernicus Hyperspectral Imaging Mission (CHIME) [32,35–37].
With these missions, there is the potential to provide more accurate retrieval of standard aquatic
products such as concentrations of Chl-a, TSM, and CDOM due to the high spectral resolution [38].
Moreover, these sensors can potentially provide more detailed information about the optically active
constituents such as particle size, phytoplankton species, and functional types [38,39].

Up to now, the hyperspectral-based studies in the literature are mostly limited to the use of
data acquired by airborne platforms. For instance, a study in Pinto Lake (USA) using airborne
hyperspectral images demonstrated the importance of high spectral resolution coupled with an
accurate atmospheric correction in mapping cyanobacteria species [40]. Multitemporal hyperspectral
images from airborne platforms are used to map the Chl-a concentration in turbid productive lakes [41].
The processing of airborne hyperspectral images from a flight campaign for the HyspIRI mission
indicated the potential of mapping Chl-a concentration. However, improvements in sensor calibration,
sensitivity, and atmospheric correction are suggested for enhancing the retrieval and characterization
of other in-water properties such as phytoplankton functional type [42]. The analyses on the simulated
water-leaving spectra showed the potential of the upcoming EnMAP hyperspectral data in the
differentiation of phytoplankton taxonomic groups [43]. Ref [44] examined the suitability of upcoming
HyspIRI data in terms of spatial, temporal, and spectral resolutions for detecting the variations in giant
kelp biomass and physiological state using long-term Landsat imagery as well as laboratory/airborne
hyperspectral data. Field and airborne hyperspectral measurements supported the potential of the
planned HyspIRI mission in the differentiation of pelagic Sargassum from other floating materials [45].
The studies based on spaceborne hyperspectral images are mainly limited to sparse studies based on
the Hyperion mission. A physics-based retrieval of Chl-a and TSM concentrations showed promising
results for the Lake Garda (Italy), whereas the retrieval of CDOM was not feasible due to its low
concentration and accordingly low SNR in Hyperion data [46]. Hyperion images were used also for
mapping bathymetry in a complex coastal environment in Florida [47]. The Hyperion data provided
improvements in mapping seagrass abundance in coastal areas in Florida compared to the results
obtained from Landsat 5 Thematic Mapper (TM) and Advanced Land Imager (ALI) [48]. However,
the low SNR and radiometric instability are addressed in several studies as a limiting factor in retrieving
in-water constituents [36,46,49]. Although the wealth of spectral information provided by spaceborne
hyperspectral images offers opportunities for in-depth studies of aquatic systems, the relatively low
SNR of the past missions implies a key challenge [32,47]. The nominal SNR of PRISMA is >200:1
for visible near-infrared (VNIR) bands [50] that can potentially provide high-quality data for aquatic
applications. The SNR is critical for aquatic applications as the downwelling irradiance is subject to
strong attenuation in the water column and the reflected signal is normally restricted to only 10–20%.
In this context, atmospheric and sun-glint artifacts can contaminate the observed signal to a large
extent [28].

In this study, we retrieve the water quality parameters from PRISMA level 2D images
(i.e., surface reflectance products) based on a fully physics-based approach. Physics-based methods
account for the interaction of the light with different media/layers between the sensor and the water
column to the depth that the signal can penetrate [51,52]. These types of methods approximate
the absorption and backscattering characteristics of the atmosphere (aerosols, water vapor, etc.),
water surface, pure water, and in-water constituents through a radiative transfer model [53].
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Other methods are based on training a regression model between image-derived spectral features and
associated in-situ measurements of the biophysical parameter of interest [7,54–57]. A key advantage
of physics-based methods is that in-situ measurements are not required to perform the retrieval.
However, the physics-based inversion of in-water constituents requires precise atmospheric correction
which is not critical for regression-based approaches [7,28]. Moreover, knowledge about bio-optical
properties such as phytoplankton species and the variation range of the constituents is required for the
parametrization of physics-based models. Here, we rely on a physics-based approach rather than a
regression-based one to neglect the dependency on the in-situ data.

A very recent study examined the quality of PRISMA level 1 imagery, i.e., top-of-atmosphere (TOA)
data, for aquatic applications [58]. The study demonstrated high consistency of TOA radiance observed
by PRISMA and Sentinel-2 MSI sensors suggesting their synergic use for aquatic applications though
more investigation is recommended [58]. In this study, we examine the potential of PRISMA level 2D
imagery in deriving water quality parameters considering the case of a turbid lake. Here, we adapt the
radiative transfer model implemented in the Water Color Simulator (WASI) [59] for processing the
PRISMA level 2D products. The WASI processor is publicly available, sensor-independent, and flexible
in adapting to different bio-optical conditions [28,59–61]. The primary goal of this study is to assess the
consistency of the PRISMA-derived Rrs and water quality products with those of synthesized and real
Sentinel-2 imagery. This cross-sensor comparison allows us to understand the agreement of standard
aquatic products derived from hyperspectral and multispectral observations from space. This serves as
a quality assessment approach for the first experience in mapping lake water quality parameters using
PRISMA data. Moreover, this cross-sensor comparison provides insight into the continuity between
multispectral Sentinel-2 and hyperspectral PRISMA data (and forthcoming hyperspectral missions),
as well as the synergic use of multi-sensor products. Given the importance of high-quality surface
reflectance data for reliable retrieval of constituents based on the physics-based modeling, comparing
the results of inversion from two independent sources of data can serve as an indication of the quality
of PRISMA level 2D images for aquatic applications. On the other hand, direct comparisons of Rrs data
from the two sensors provide more evidence on the quality of the PRISMA level 2D data.

2. Study Area and Dataset

The Lake Trasimeno in Central Italy is selected as our case study (Figure 1). It is the fourth
largest Italian lake (124 km2) which is shallow (<6 m), turbid (mean Secchi depth 1.1 m), and counts
as a eutrophic lake [9]. There is an open bay colonized by aquatic vegetation in the southeast of the
lake [9,62]. We exclude the inversion results over this region to avoid uncertain retrievals through
statistical analyses. The lake is subject to the occurrence of seasonal algal blooms including toxic
cyanobacteria mostly from July to September. The agricultural activities, tourism, and recreation along
with climate change are the main stressors of the lake [9,62].

We use hyperspectral imagery from the PRISMA satellite to map the in-water constituents.
PRISMA was launched in March 2019. After a commissioning phase, access to the data has been
granted to the users in early June 2020. PRISMA is an on-demand mission and the available data in the
archive are limited. It carries an imaging spectrometer that captures images in a continuum of spectral
bands within 400 to 2500 nm at a spatial resolution of 30 m. In total, 66 bands are located in the visible
near-infrared (VNIR) portion of the spectrum (400–1010 nm) and 173 bands in the shortwave infrared
(SWIR) within 920–2500 nm. The spectral sampling intervals and widths are ≤12 nm. A panchromatic
camera is also onboard PRISMA that provides a single band (400–700 nm) image at 5 m spatial
resolution. Here, we rely on VNIR bands only as the water-leaving signal over SWIR bands is negligible
with no useful information on the biophysical parameters [63]. We consider four level 2D products from
the PRISMA archive with minimal cloud cover. The atmospheric correction of the level 2D products is
based upon inverting the radiative transfer model, i.e., minimizing a cost function representing the
difference between the simulated spectrum and the measured one. The simulations are performed
by the MODTRAN model and they are stored as a lookup-table (LUT) to speed up the inversion.
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Further details about the mission and products are available in the PRISMA products specification
document [50].Remote Sens. 2020, 12, x FOR PEER REVIEW 5 of 21 
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Applicativa (PRISMA) (641.55 nm, 546.66 nm, 471.12, nm), (b) PRISMA resampled to Sentinel-2B 
(664.9 nm 559 nm, 492.1 nm), and (c) Sentinel-2B (664.9 nm 559 nm, 492.1 nm) acquired on 23 April 
2020. The in-situ stations (St1, St2) are located on the left image. The open bay colonized by aquatic 
vegetation is highlighted by a red box [9]. 

Consistency analyses and cross-sensor comparisons are performed by considering images from 
PRISMA and Sentinel-2 overpasses with a maximum time gap of ±1 day (Table 1). A thematic 
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The atmospheric correction of Sentinel-2 images is performed using the Case-2 Regional/Coast 
Colour (C2RCC) processor which provided highly accurate estimates of surface reflectance in 
previous studies [64–66]. The quality flags produced by the C2RCC processor are investigated to 
assure the reliability of the input data to the inversion model [64]: (i) Rtosa_OOS: the input spectrum 
out of the scope of the training range of the neural net associated with the atmospheric correction, (ii) 
Rtosa_OOR: the input spectrum out of training range of the atmospheric correction neural net, (iii) 
Rhow_OOS: the Rhow input spectrum to the inherent optical properties (IOP) neural net is probably 
not within the training range of the neural net and the inversion is likely to be wrong, (iv) Rhow_OOS: 
one of the inputs to the IOP retrieval neural net is out of training range, and (v) Cloud risk: high 

Figure 1. True color images of Lake Trasimeno (a) PRecursore IperSpettrale della Missione Applicativa
(PRISMA) (641.55 nm, 546.66 nm, 471.12, nm), (b) PRISMA resampled to Sentinel-2B (664.9 nm, 559 nm,
492.1 nm), and (c) Sentinel-2B (664.9 nm, 559 nm, 492.1 nm) acquired on 23 April 2020. The in-situ
stations (St1, St2) are located on the left image. The open bay colonized by aquatic vegetation is
highlighted by a red box [9].

Consistency analyses and cross-sensor comparisons are performed by considering images from
PRISMA and Sentinel-2 overpasses with a maximum time gap of ±1 day (Table 1). A thematic
illustration of the PRISMA and Sentinel-2 spectral bands and spatial resolutions are shown in Figure 2.

Table 1. PRISMA and Sentinel-2 acquisitions over Lake Trasimeno.

PRISMA 4 June 2019 26 July 2019 23 April 2020 3 June 2020

Sentinel-2 5 June 2019 25 July 2019 23 April 2020 2 June 2020
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Figure 2. Thematic representation of the PRISMA and Sentinel-2 spectral bands and spatial resolutions.

The atmospheric correction of Sentinel-2 images is performed using the Case-2 Regional/Coast
Colour (C2RCC) processor which provided highly accurate estimates of surface reflectance in previous
studies [64–66]. The quality flags produced by the C2RCC processor are investigated to assure the
reliability of the input data to the inversion model [64]: (i) Rtosa_OOS: the input spectrum out of the
scope of the training range of the neural net associated with the atmospheric correction, (ii) Rtosa_OOR:
the input spectrum out of training range of the atmospheric correction neural net, (iii) Rhow_OOS:
the Rhow input spectrum to the inherent optical properties (IOP) neural net is probably not within the
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training range of the neural net and the inversion is likely to be wrong, (iv) Rhow_OOS: one of the
inputs to the IOP retrieval neural net is out of training range, and (v) Cloud risk: high downwelling
transmission indicates cloudy conditions. None of the first four flags are raised for the analyzed images
indicating no issue identified by the processor regarding the quality of inputs to the atmospheric
correction and IOP retrieval neural networks. We exclude the pixels with the cloud risk flagged and
employ the C2RCC outputs, i.e., VNIR bands of Sentinel-2 for inverting the water quality parameters.

There are two stations (St1 and St2 in Figure 1a) in the lake for measuring the Chl-a concentration
almost every two months by the local environmental agency. The integrated water samples [67] are
considered for measuring in-situ Chl-a concentrations based on spectrophotometric analysis [68].
The long-term Chl-a variation is recorded from 2 mg/m3 to 40 mg/m3 in the two stations. The mean TSM
in the lake is about 10 g/m3 [9] and an average value of 0.3 m−1 can be considered for the absorption of
CDOM at 440 nm [62]. The magnitudes of the parameters indicate a relatively high level of turbidity in
the lake.

3. Method

In this study, we perform the physics-based inversion using a Water Color Simulator (WASI)
processor [59]. The core of the WASI inversion is built upon the simulation (forward modeling) of
a set of water-leaving spectra in a range of variable/fit parameters and finding the best match with
the measured spectrum. Then, the inversion retrievals are the values of the fit parameters associated
with the optimal simulated spectrum. In the next subsection, we summarize the main physical
models and the parametrization considered for retrieval of in-water constituents from PRISMA and
Sentinel-2 imagery using the WASI processor. More details on the models can be found in the WASI
manual [52,59].

3.1. Adaptation of WASI for Processing PRISMA and Sentinel-2 Imagery

The level 2D products of PRISMA are atmospherically corrected and provided in units of
reflectance. Therefore, we perform all WASI analyses in terms of reflectance. The image recorded
reflectance Rrs(λ) can be decomposed into two components upwelling from water called remote
sensing reflectance rrs and another one reflected from the water surface Rsur f

rs (λ):

Rrs(λ) =
ζ·rrs(λ)

1− Γ·rrs(λ)
+ Rsur f

rs (λ). (1)

where rrs is defined as the ratio of upwelling radiance to downwelling irradiance just below the water
surface [51,52]. The water-to-air radiance divergence is accounted for by the factor ζ ≈ 0.52. The factor
Γ ≈ 1.6 represents the reflection of upwelling radiance at the water surface.

Given the turbid condition in the study area (~1.1 m Secchi depth), the bottom-reflected radiance
is negligible over a large part of the lake. Therefore, the forward modeling, i.e., simulation, of rrs(λ) is
performed for optically deep waters [69,70]:

rdeep
rs (λ) =

0.0512·u(λ)·
(
1 + 4.6659·u(λ) − 7.8387·u(λ)2 + 5.4571·u(λ)3

)
·(

1 +
0.1098

cosθ′sun

)
·

(
1 +

0.4021
cosθ′v

)
·(1− 0.0044 vw).

(2)

where the solar zenith angle in water and the viewing zenith angle in water are denoted by θ′sun and
θ′v, respectively. vw stands for the wind speed which can be assumed negligible (vw = 0 ms−1) due
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to its insignificant effect on rrs. The wavelength-dependent function u(λ) characterizes the in-water
absorption a(λ) and backscattering properties bb(λ):

u(λ) =
bb(λ)

a(λ) + bb(λ)
. (3)

Both a(λ) and bb(λ) can be decomposed into the contributions of pure water and different in-water
constituents which are optically active:

a(λ) = aw(λ) + aCDOM(λ0)· exp
{
−SCDOM·(λ− λ0)

}
+ Cphy·a∗phy(λ)

+ CNAP·a∗NAP(λ0)· exp
{
−SNAP·(λ− λ0)

}
,

(4)

bb(λ) = bb,w(λ) + Cphy·b∗b,phy(λ) + CNAP·b∗b,NAP(λ). (5)

The absorption [71,72] and backscattering [73] coefficients of pure water are given by aw(λ) and
bb,w(λ), respectively. Colored dissolved organic matter (CDOM), phytoplankton (phy), and non-algal
particles (NAPs) are optically active constituents and their absorption and backscattering properties
are considered in Equations (4) and (5). The equations are based on specific inherent optical properties
(SIOPs) that indicate absorption and backscattering properties normalized by the concentration of the
given constituent. Here, we use the SIOPs (denoted by asterisks) available for Lake Trasimeno [62].
Phytoplankton concentration Cphy, NAP concentration CNAP, the absorption coefficient of CDOM at the
wavelength λ0 = 440 nm, aCDOM(440), are considered as fit parameters through the inverse modeling.
The spectral slope of NAP in Lake Trasimeno is considered as SNAP = 0.011 nm−1 [62]. We also use
the specific absorption spectrum of phytoplankton a∗phy(λ) measured in Lake Trasimeno (Figure 3).

We consider a∗NAP(440) = 0.0248 m2 g−1 [62], which represents the specific absorption coefficient
of NAP at λ0 = 440 nm. The spectral slope of CDOM is considered as SCDOM = 0.016 nm−1 [62].
The specific backscattering coefficient of NAP is considered as a wavelength-independent function for
which b∗b,NAP(λ) = 0.01271 m2 g−1 [62].
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Figure 3. The specific absorption spectrum of phytoplankton a∗phy(λ) measured in Lake Trasimeno [62].

Then, the forward model simulates the reflections at the water surface based on a three-component
model for the sky radiance Lsky(λ) reflected in the viewing direction [59,74]:

Rsur f
rs (λ) = ρL(θv) ×

Lsky(λ)

Edd(λ) + Edsr(λ) + Edsa(λ)
,

Lsky(λ) = gddEdd(λ) + gdsrEdsr(λ) + gdsaEdsa(λ).
(6)

where ρL(θv) is the Fresnel reflection for a viewing angle of θv [75]. Direct downwelling irradiance from
the sun disk, diffuse downwelling irradiance caused by Rayleigh scattering, and diffuse downwelling
irradiance caused by aerosol scattering are indicated by Edd(λ), Edsr(λ), and Edsa(λ), respectively.
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These three components can be parametrized in terms of aerosols, water vapor, and ozone [76,77].
The intensities of these irradiance components reflected in the sensor direction are given by the
weighting factors gdd, gdsr and gdsa. The weights can be variable on a pixel-by-pixel basis depending
on the water surface status (roughness of the surface). We assume fractions of sky radiance due to
molecule and aerosol scattering gdsr = gdsa = 1/π as per a hypothetic isotropic sky. The fraction of sky
radiance due to direct solar radiation gdd is treated as a fit parameter.

The forward modeling (i.e., simulation of Rrs(λ) using Equation (1) is performed in an iterative
process by varying the fit parameters. At each iteration, the agreement between the simulated spectrum
Rsimulated

rs (λ) and the measured spectrum Rmeasured
rs (λ) is assessed using a cost function. The process

stops when the cost function reaches a minimum. Thus, the fit parameters minimizing the cost function
are considered as output retrievals. Here, a least-square cost function (∆) is considered to minimize the
difference between the simulated and observed spectrum:

∆ =
1
N

N∑
i=1

∣∣∣Rmeasured
rs (λi) −Rsimulated

rs (λi)
∣∣∣2. (7)

where λi is the central wavelength of band number i. and N is the total number of spectral bands.
WASI is flexible in parametrization and a variety of parameters can be iterated through the

inversion. However, it is necessary to limit the number of fit parameters as much as possible to enhance
the reliability of the retrievals by reducing spectral ambiguities. This is because some combinations
of parameters may exhibit similar spectral characteristics. Thus, only the parameters with major
impacts on the water-leaving spectra should be iterated. The choice of parameters and their initial
values can be assisted by a pre-knowledge about the study area and/or a pre-fit analysis. The pre-fit
analysis can be done by performing the inversion for a few representative pixels with different
parametrization/initialization [78].

3.2. Parametrization of WASI

The deep-water inversion and the fit parameters are associated with the water column and surface
properties (Table 2). In this context, Cphy, CNAP, aCDOM(440), and gdd are considered as fit parameters
for processing the Lake Trasimeno data. The initial values of the constituents, i.e., Cphy, CNAP, and
aCDOM(440), are determined based on a pre-fit analysis. The standard value is considered for the initial
value of gdd = 0.02 sr−1. We use the same parameterization for inversion of PRISMA, synthesized
Sentinel-2 (PRISMA resampled), and Sentinel-2 images. Note that, hereafter, we report CNAP and Cphy
as equivalent parameters of TSM and Chl-a, respectively.

Table 2. Fit parameters and associated initial values for water quality inversion using Water Color
Simulator (WASI).

Fit Parameter Initial Value Min Max Units Description

CNAP 7 0 100 g m−3 Concentration of NAP

Cphy 5 0 1000 mg m−3 Concentration of phytoplankton

aCDOM(440) 0.2 0 50 m−1 Absorption coefficient of CDOM at
440 nm

gdd 0.02 −1 10 sr−1 Fraction of sky radiance due to direct
solar radiation

3.3. Sentinel-2 Consistency Analyses

Since the launch of the first MSI onboard Sentinel-2A (2015), there has been significant interest in
analyzing water quality parameters in inland waters due to its suitable spatial (10–20 m), temporal
(2–3 days with twin MSIs), spectral (13 bands), and radiometric (12 bit) characteristics. In this
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context, we perform consistency analyses to gain more insights into the agreement between the water
quality products (Rrs and constituents) derived from Sentinel-2 images with those derived from the
newly available hyperspectral images from PRISMA. In this context, we synthesize Sentinel-2 images
by spectral convolution of the hyperspectral PRISMA images with MSI spectral response function.
Therefore, the PRISMA and synthesized Sentinel-2 images differ only in terms of the spectral resolution.
We use also real Sentinel-2 images with the closest overpasses for the agreement analyses. We perform
a spatial resampling (from 20 m to 30 m) of the Sentinel-2 images and co-registered them with those
derived from PRISMA to enable the comparison. The comparisons of the Rrs or constituent products
are performed based on averaging the values within windows of 10 × 10 pixels. This averaging
reduces the effect of co-registration mismatches and the noise [28]. The extracted values from two
corresponding constituent maps or Rrs images are regressed against each other to compute agreement
statistics. The agreement analyses are performed based on several metrics including the correlation
coefficient (R), root mean square difference (RMSD), bias, and mean absolute difference (MAD) [79]:

RMSD =


∑n

i=1

(
Ei

h
− Ei

k
)2

n


1/2

(8)

bias = 10
∑n

i=1 (log10(Ei
Sens−1)−log10(Ei

Sens−2))
n (9)

MAD = 10
∑n

i=1 |log10(Ei
Sens−1)−log10(Ei

Sens−2)|
n (10)

Ei
h and Ei

k are the estimates obtained from sensors h and k. h and k can be PRISMA, synthesized
Sentinel-2, and Sentinel-2 in different combinations. n is the number of image samples. Note that
aquatic products are log-transformed for estimation of bias and MAD and these two metrics are
dimensionless [79]. For instance, a bias of 1.3 indicates that the estimates of h are 30% greater than
those of k on average. MAD always exceeds unity and indicates a relative difference of the estimates
from two sensors (e.g., MAD = 1.5 indicates a relative difference of 50% between the estimates of h
and k). Note that the retrievals over the open bay (Figure 1a), i.e., affected by the aquatic vegetations,
shoreline pixels, and cloud-shadow pixels are excluded from the statistical analyses since they are less
reliable. Boxplots are used to compare the distribution and range of the parameters.

4. Results

4.1. Cross-Sensor Comparison of Rrs Products

Examples of cross-sensor comparison of the Rrs spectra are shown in Figure 4 for the two stations
(St1 and St2) in Lake Trasimeno (averaged within 5 × 5 windows). In both stations, the PRISMA and
synthesized Sentinel-2 spectra are in good agreement with those of Sentinel-2 in terms of both shape
and magnitude. However, the PRISMA-based spectra are brighter than those of Sentinel-2 within the
short wavelengths (<500 nm).

We quantify the cross-sensor agreement of the entire image by performing regression analyses
between PRISMA-based (synthesized Sentinel-2) and Sentinel-2 data of Rrs at different wavelengths
(Figure 5, Table 3). The comparisons are made for the date that the PRISMA and Sentinel-2 acquisitions
are almost simultaneous (23 April 2020 that there is a time gap of one minute and 21 s only).
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Figure 4. Rrs spectra for the stations St1 (a) and St2 (b) in Lake Trasimeno based on PRISMA and
Sentinel-2 acquisitions on 23 April 2020.
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Sentinel-2 bands) and Sentinel-2 (acquired on 23 April 2020).

Table 3. The agreement statistics for the cross-sensor comparison of Rrs at different wavelengths derived
from PRISMA and Sentinel-2 data.

442 nm 492 nm 559 nm 664 nm 704 nm 740 nm 781 nm 864 nm

R 0.83 0.84 0.91 0.89 0.90 0.88 0.87 0.88

RMSD (sr−1) 4 × 10−3 7 × 10−3 10−3 2 × 10−3 10−3 6 × 10−3 8 × 10−3 4 × 10−3

MAD 1.51 1.53 1.04 1.13 1.09 1.18 1.19 1.42

Bias 1.51 1.53 1.03 1.12 1.06 0.96 1.13 0.83

4.2. Cross-Sensor Comparison of Water Quality Products

The multitemporal TSM maps derived from PRISMA, synthesized Sentinel-2, and Sentinel-2
images are shown in Figure 6. The visual inspection of the maps conveys an intuitively good agreement
among the associated TSM maps. Note that the retrievals for 23 April 2020 exhibit higher values of
TSM compared to the other dates and the maps for this date are shown with a different color bar to
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enhance the visualization. Figures 7 and 8 illustrate the retrievals of Chl-a and CDOM derived from
the same images, respectively. The corresponding maps derived from PRISMA, synthesized Sentinel-2,
and Sentinel-2 are in good agreement but with a lower degree compared to those of TSM.Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 21 
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Distribution of the retrieved constituents is investigated using boxplots in Figure 9. The bottom
and top edges of boxes indicate the 25th and 75th percentiles whereas the central line and dot symbols
show the median and average values, respectively. The extreme values are represented by the
extensions of the boxes. These statistical indications further confirm a good cross-sensor agreement
among the retrievals, particularly for TSM. The plots in Figure 9 indicate a quite high variability of the
constituents over time. For instance, the PRISMA-derived average concentration of TSM on 23 April
2020 is about 2.6 times of that retrieved for 3 June 2020 (16.4 g/m3 vs. 6.2 g/m3). The multitemporal
average values of TSM, Chl-a, and CDOM derived from PRISMA images are on the order of 9.1 g/m3,
4.9 mg/m3, and 0.34 m−1, respectively.

The agreements of the retrieved constituents are further examined by regressing the values
extracted from the maps against each other (described in Section 3.3). The image-based matchup
analyses are shown for TSM retrievals in Figure 10.
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The matchup plots for Chl-a and CDOM retrievals are shown only for PRISMA vs. Sentinel-2
(Figures 11 and 12) for brevity whereas the average R and RMSD values are reported in Table 4. For TSM
retrievals, the average R values are 0.85, 0.97, and 0.85 with average RMSD of 1.2, 0.6, and 1.2 g/m3 for
PRISMA vs. Sentinel-2, PRISMA vs. synthesized Sentinel-2, and synthesized Sentinel-2 vs. Sentinel-2,
respectively. Moreover, the biases are close to unity. Note that CDOM retrievals from either PRISMA
or Sentinel-2 images were not successful for June 2020 and the estimates converged to zero values for
most of the pixels. This might be related to a very low (and therefore hardly detectable) concentration
of CDOM. Thus, the results of CDOM retrievals for June 2020 are excluded from our analyses.
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Table 4. The agreement analyses among the retrieved constituents in terms of average R and RMSD.

PRISMA vs. Sentinel-2 PRISMA vs. Synthesized
Sentinel-2

Synthesized Sentinel-2 vs.
Sentinel-2

R RMSD MAD Bias R RMSD MAD Bias R RMSD MAD Bias

TSM 84.8 1.2 g/m3 1.26 1.12 97.5 0.6 g/m3 1.18 1.05 84.8 1.2 g/m3 1.21 1.09

Chl-a 64.5 1.2 mg/m3 1.39 0.83 84.6 0.8 mg/m3 1.31 0.81 67.3 1.3 mg/m3 1.27 0.93

CDOM 75.0 0.11 m−1 1.32 1.24 85.9 0.05 m−1 1.26 1.17 76.1 0.13 m−1 1.19 1.08

The average value of the compensating parameter for sun-glint and atmospheric artifacts (gdd)
and the residuals of spectrum matching through the inversion (∆) are reported in Table 5.

Table 5. Average gdd and ∆ derived through the inversion.

PRISMA Synthesized Sentinel-2 Sentinel-2

gdd (sr−1) 0.26 0.25 0.04

∆ (sr−2) 1.4 × 10−4 2.4 × 10−4 1.9 × 10−4
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5. Discussion

According to the results, there is a strong agreement (R > 0.83) between the Rrs data derived from
PRISMA and Sentinel-2. Nevertheless, the PRISMA-based Rrs at short-wavelength bands (442 nm and
492 nm) are overestimated with respect to those of Sentinel-2 (Figures 4 and 5, Table 3). More agreement
statistics including MAD and bias are reported in Table 3. The bias at blue bands (442 nm and 492 nm)
is up to 50% (overestimation of PRISMA with respect to Sentinel-2). These short-wavelength bands are
those having the most impact from the atmosphere. Thus, the cross-sensor bias in Rrs (442) and Rrs

(492) data can be attributed to the differences in the atmospheric correction. The other Rrs bands show
good agreement as the biases are close to unity.

The agreement statistics indicate a high consistency among the TSM retrievals from hyperspectral
PRISMA and multispectral Sentinel-2 images. The agreement is also relatively strong for Chl-a and
CDOM retrievals (Table 4). However, PRISMA vs. synthesized Sentinel-2 retrievals of Chl-a and
CDOM are stronger (R ≈ 0.8) than when comparing with those derived from real Sentinel-2 images
(R ≈ 0.7). Note that shorter wavelengths carry more information about CDOM and Chl-a than TSM
particularly in turbid waters [80]. The short wavelengths are more affected by the atmosphere and thus
the higher mismatches between PRISMA and Sentinel-2 derived Chl-a and CDOM can be attributed to
the differences in the atmospheric corrections. The PRISMA vs. synthesized Sentinel-2 agreements are
stronger than PRISMA vs. Sentinel-2 for Chl-a and CDOM. This can be attributed, to some extent, to the
one-day difference between PRISMA and Sentinel-2 overpasses as the distribution and magnitude of
the constituents can have some variations. The overpasses of PRISMA and Sentinel-2 are simultaneous
for 23 April 2020. For this date also, PRISMA vs. Sentinel-2 agreements of Chl-a and CDOM are not as
strong as those for PRISMA vs. synthesized Sentinel-2. Given the acquisitions being simultaneous
(23 April 2020), the synthesized Sentinel-2 vs. Sentinel-2 differences can be related to other factors
that affect all the cross-sensor comparisons: differences in the atmospheric correction, radiometric
sensitivity, and SNR of PRISMA and Sentinel-2 sensors. It is worth noting that the magnitudes of the
retrieved constituents are in accordance with the reported characteristics of the lake and the range of
parameters (Section 2). This is an important point that the PRISMA derived water quality parameters
are within the expected range for Trasimeno, which shows the potential of PRISMA for this application.

As is evident, gdd is significantly higher for PRISMA-based imagery than Sentinel-2. The high
value of gdd suggests that the atmospheric path radiance is underestimated in PRISMA level 2D
products. This is in line with the results derived from the cross-sensor agreement analyses among the
Rrs data. As mentioned above, the agreement analyses indicated that the Rrs at short-wavelength bands
(442 nm and 492 nm) of PRISMA are overestimated compared to Sentinel-2. The inversion residual
based on hyperspectral PRISMA data is slightly smaller than when using multispectral Sentinel-2.

6. Conclusions and Future Work

Spaceborne hyperspectral remote sensing is an emerging area for monitoring aquatic systems,
which requires a significant amount of investigation and development in terms of both methods and
applications. In this study, we examined a physics-based approach for inversion of water quality
parameters from the newly available hyperspectral PRISMA imagery at a turbid lake. In this context,
we conducted preliminary analyses on the quality and consistency of Rrs and water quality products
derived from PRISMA level 2D compared to those derived from Sentinel-2 images. The cross-sensor
comparison of Rrs data showed strong agreement at different wavelengths. The cross-sensor comparison
of Rrs data and gdd values suggested underestimation of path radiance for PRISMA data. The consistency
analyses revealed strong agreements between synthesized Sentinel-2 imagery (PRISMA resampled) and
those of PRISMA in terms of all the three types of retrieved constituents, i.e., TSM, Chl-a, and CDOM.
However, the TSM products showed stronger agreement than Chl-a and CDOM. Comparing the
PRISMA-derived products with those of Sentinel-2, the agreements slightly dropped for Chl-a and
CDOM. This can be attributed to the differences in the atmospheric corrections of PRISMA and
Sentinel-2 imagery. However, other factors such as the one-day time gap between the two satellites
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overpasses can, to some extent, contribute to these slight disagreements. The consistency of water
quality products derived from PRISMA level 2D and Sentinel-2 is in line with the findings of the
recent study [58] that demonstrated a high consistency between TOA radiance observed by the two
sensors. Thus, we demonstrated the high potential of PRISMA level 2D imagery in deriving in-water
constituents in a turbid lake based upon physics-based inversion modeling.

We performed the physics-based inversion using level 2D products of PRISMA which are
atmospherically corrected. However, the atmospheric correction is not developed for aquatic
applications. In this context, relatively large artifacts are compensated through the physics-based
inversion. The development of accurate atmospheric correction methods for processing PRISMA
imagery in the context of aquatic-oriented applications, particularly with leveraging the SWIR
bands [63], requires specific attention in future studies. Our analyses as first experiments in processing
PRISMA imagery demonstrated the high potential of this new source of spaceborne hyperspectral data
in retrieving water quality parameters, though retrieval of CDOM appeared challenging. Additional
studies are required to further examine the PRISMA data in the estimation of standard bio-optical
properties in different aquatic environments particularly in optically shallow waters which is not
addressed in this study. In future studies, the impact of noise reduction on hyperspectral PRISMA data
can be investigated as a pre-processing step before applying the inversion. Moreover, the extraction of
high-level products, such as the phytoplankton species and functional types, can potentially benefit
from the fine and continuous spectral information offered by PRISMA. Future studies can be conducted
in this direction to unlock the new opportunities of PRISMA data which can be expandable to the
upcoming hyperspectral satellite missions as well.
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