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Abstract: In recent years, with the development of compressed sensing theory, sparse representation
methods have been concerned by many researchers. Sparse representation can approximate the
original image information with less space storage. Sparse representation has been investigated for
hyperspectral imagery (HSI) detection, where approximation of testing pixel can be obtained by
solving l1-norm minimization. However, l1-norm minimization does not always yield a sufficiently
sparse solution when a dictionary is not large enough or atoms present a certain level of coherence.
Comparatively, non-convex minimization problems, such as the lp penalties, need much weaker
incoherence constraint conditions and may achieve more accurate approximation. Hence, we propose
a novel detection algorithm utilizing sparse representation with lp-norm and propose adaptive
iterated shrinkage thresholding method (AISTM) for lp-norm non-convex sparse coding. Target
detection is implemented by representation of the all pixels employing homogeneous target dictionary
(HTD), and the output is generated according to the representation residual. Experimental results
for four real hyperspectral datasets show that the detection performance of the proposed method is
improved by about 10% to 30% than methods mentioned in the paper, such as matched filter (MF),
sparse and low-rank matrix decomposition (SLMD), adaptive cosine estimation (ACE), constrained
energy minimization (CEM), one-class support vector machine (OC-SVM), the original sparse
representation detector with l1-norm, and combined sparse and collaborative representation (CSCR).

Keywords: hyperspectral imagery (HSI); target detection; sparse representation; lp-norm;
homogeneous target dictionary; adaptive iterated shrinkage thresholding method (AISTM)

1. Introduction

Hyperspectral images consist of both spectral and spatial information. Spectral information of
hyperspectral images is of great abundance. Due to the advantage of rich spectral information,
the spectral characteristics of hyperspectral imagery (HSI) can be used to differentiate similar
substances from each other. With the development of sensor technology, hyperspectral target detection
techniques have been used in a wide range of aspects of mineral exploration, agriculture, environmental
monitoring, and information reporting [1,2]. Target detection is to search the desired targets, such
as man-made targets, which popularly have different spectral signatures from natural background
targets [3,4]. Hyperspectral target detection issue is equal to a binary hypothesis theory that contains
two hypotheses: the H1 (target is subsistent) and H0 (target is absent) intrinsically.

Many traditional target detection algorithms have been proposed [5–7]. Constrained energy
minimization (CEM) method is to design a filter that can output the smallest amount of information
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under the constraints of target spectrum. It can enhance target information and suppress the
background information [8–10]. The CEM has better detection effect on the small objects in the image
except for the large objects. There is no need to qualify that the data belongs to a particular distribution,
spectral angle mapper (SAM) [11], which does not need any information distribution assumption,
can be seen as one of the most simplest target detectors. Spectral matched filter (MF) [12,13] is also
a well-known detector in maximizing signal-to-background ratio and estimating the background
covariance matrix to acquire targets of necessary from background. Regularized spectral matched
filter, which is the extension of SMF, has been recently investigated in Reference [14]. The generalized
likelihood ratio test (GLRT) is considered when the covariance of background pixel is the same but
the mean value is different [15]. With the progress of machine learning and pattern recognition,
many information-driven target detection algorithms, such as kernel method and sparse expression
method, have gradually attracted researchers’ attention on hyperspectral target detection. Kernel-based
detectors include kernel RX, support vector data description (SVDD), and one-class support vector
machine (OC-SVM) [16]. In addition, some linear combinations-based detectors have been developed
to find objects in a minimum-residual manner [17,18].

In Reference [19,20], sparse representation detector (SRD) was proposed for target detection.
For example, sparse representation with a binary hypothesis testing model was developed in
Reference [21,22]. The approximate results can be calculated by samples from individual background
dictionary or target and background mixed basis under different hypothesis [23]. Two approaches,
called GPN and MPN, are designed to automatically detect targets from the hyperspectral remote
sensing data [24]. Both methods are improved versions of NMF. The GPN uses an iterative projected
gradient descent methods, while the iterative multiplicative gradient-based method is used in the
MPN. Sparse and Low-Rank Matrix Decomposition (SLMD) is proposed to effectively detect targets in
hyperspectral imagery with homogeneous representation [25]. The paper consists of two core modules.
The first one involved with building an accurate background dictionary to help reduce the heterogeneous
interference, and the second one is to build a target dictionary to further detect targets. A strategy of
combining sparse and collaborative representations (CSCR) is introduced in Reference [26,27]. For each
testing pixel, priori target signatures’s sparse representation is implemented by using the l1-norm
minimization, while background pixel’s collaborative representation is implemented by using the
l2-norm minimization. All target detection results are calculated by using the consequence from
above two representation residuals. These methods fully exploited the fact the pixel from HSI can
be approximated by a sparse linear representation based on specific observation basis. Sparsest
representation coefficients can be obtained by solving an l0-norm optimization, which is NP-hard [28].
Alternatively, the l1-minimization [29] has been employed in SRD, providing excellent performance.

Nevertheless, one of the drawbacks in the l1-minimization is that solutions are often less sparse
than those in the l0-minimization. In SRD, the sparser the coding coefficients are, the easier the
decision is. Based on this consideration, we attempt to develop a novel sparse representation detector
with an alternative lp minimization which has a sparser solution than the l1-minimization. Hence,
a non-convex lp-norm-based sparse representation detector (Lp-SRD) is proposed, which can recover a
testing pixel by solving an lp-norm minimization issue with requirements of much feeble incoherence
conditions and lower signal to background ratio for a stable solution [30].

The lp-norm sparse coding problem has been applied to a lot of fields of machine learning and
computer vision tasks. Some people have studied the construction of dictionaries. The traditional
complete dictionary contains target and background, which has certain influence on the performance
of target detection. Moreover, some dictionaries are acquired by double-window method, which is low
performance and less efficiency. Therefore, the method of constructing homogeneous target dictionary
is proposed and used in Lp-SRD.

Some papers have made some efforts in solving the sparse coefficient. A few typical algorithms
solving this problem include iteratively reweighted l1-minimization method (IRL1) [31], general
iteratively reweight least squares method (GIRLS), iterative reweight least squares method (IRLS) [32],
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Look-Up Table method (LUT) [33], iteratively thresholding method (ITM) [34], and the generalized
iterated shrinkage algorithm (GISA) [35]. Among these methods, IRLS, IRL1, and ITM usually cannot
converge to global optimal solution, even for lp-minimization problem. LUT can employ look-up
tables to reserve the solutions, e.g., different values for the same variable and regularization parameter,
which requires high memory and computational costs to construct and reserve the look-up table.
The convergence rate is slow to GISA. Thus, adaptive iterated shrinkage thresholding method (AISTM)
is proposed and used to Lp-SRD.

The contributions of our research include: first, lp-minimization-based sparse representation is
proposed for hyperspectral target detection; second, homogeneous target dictionary and adaptive
iterated shrinkage thresholding method (AISTM) are proposed to solve the lp-minimization problem.
Due to this overall design and optimization, higher purity reconstruction endmember will be obtained,
thus resulting in smaller residuals for the correctly detected items of our method. The membership of
y (y ∈ RL are testing pixels, and L is the number of bands in the hyperspectral.) can be calculated by
contrasting the final residual with the prescribed threshold η. Experimental results indicate that our
Lp-SRD method is supreme to other counterparts with p (0 < p < 1).

The remaining part of our paper is arranged as follows. Existing sparse representation detector
with L1-norm is introduced in Section 2. The Lp-SRD target detection architecture is given in Section 3.
The hyperspectral datasets, parameters analysis and detection performance of correlative methods are
displayed in Section 4. Last, the conclusion is summarized in Section 5.

2. Sparse Representation Detector with L1-norm

The basic idea of sparse representation is that all or most of the original signals can be sparsely
reconstructed by the linear combination of elements from the dictionary. In Reference [36,37], SRD
was designed to detect one (target) classes and reject other background classes. In our work, training
data consist of target signatures. Background samples are not assumed to be known a priori. This is
useful in practical applications to detect targets from unknown background.

Consider hyperspectral data with known target signatures X ∈ RL×N . The N denotes the number
of atoms, and each atom has L dimensional features. The y ∈ RL being a testing pixel. Then, y can be
approximately represented as,

y ≈ α1x1 + α2x2 + · · ·+ αN xN

=
[

x1 x2 · · · xN

] [
α1 α2 · · · αN

]T

= Xα,

(1)

where α is weight vector and asked to be as sparse as possible. With a sparser α, it is easier to
properly determine which category member the pixel y belongs to. Sparse vector α can be calculated
by deducing the following equation,

α = arg min ‖α‖ 0 s.t. y = Xα. (2)

The solving of Equation (2) is NP-hard problem and its computational is quite large for solving
large-scale problems [38]. Many researchers find it is strenuous to use above method to solve large-scale
calculations. The l1-norm can replace l0-norm [39] in Equation (2) under certain conditions. Moreover,
y = Xα cannot hold precisely since the testing pixel may include noise. Equation (2) would be
described as:

α = arg min ‖α‖1 + λ‖y− Xα‖2
2, (3)
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where λ is Lagrange multiplier (λ > 0), can have a balance between sparsity and data reconstruction
error. For this optimization process, a few techniques can be used to estimate the solution [40].
When the sparse vector α is acquired, the residual of the pixel is described as:

rSRD(y) =
∥∥y− Xα

∥∥
2. (4)

In SRD, once the representation process is finished, target can be determined based on the
residuals. And the residuals can be obtained by directly subtracting the reconstruction element from
the original input. If rSRD(y) is smaller than the predetermined threshold, y would be identified as
target pixel; otherwise, y would be decided as background pixel.

3. Proposed Target Detection Framework

The sparse representation was originally designed for high-dimensional image data analysis.
The idea is that the detected pixels can be expressed linearly by a very few atoms in the over-complete
dictionary. The target detection algorithm by sparse representation in this paper mainly includes
three aspects: (1) homogeneous target dictionary construction; (2) sparse coefficient solution; and (3)
decision function design. The general flowchart for target detection method is shown in Figure 1.
First, the dictionary matrix is constructed by calculating the mean of target spectrum and its
four-neighborhood spectrum. Then, lp-norm is used to acquire the sparse coefficient, in which AISTM
is used to acquire the sparse coefficient iteratively. Finally, an appropriate decision function is designed
to judge the results.

Sparse coefficient

×
Hyperspectral 

data 

Sparse representation with 

Lp-norm

Weight vector

The dictionary 

matrix

 Target signatures

a

Xy
2|| ||y Xa  

Hyperspectral 

vector

Target map

Adaptive iterated

shrinkage thresholding method



The mean for target 

four neighborhood 

Figure 1. Schematic of the proposed sparse representation with lp-norm framework.

3.1. Homogeneous Target Dictionary Construction

Target detection has been studied by many researchers in the area of HSI processing. At present,
sparse representation algorithm has achieved good detection effect in this aspect. However,
dictionaries in traditional sparse representation algorithms contain both target and background pixels,
and the proportion of target information and background information is uncertain [41,42]. Different
proportions of target and background will produce different detection results. In addition, the spectral
curve of some pixels may be incorrect due to measurement errors or other reasons, so the dictionary
cannot be accurately constructed. To overcome these shortcomings, the homogeneous target dictionary
construction scheme is proposed. In our work, training data consist of target signatures. Each target
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spectral feature is obtained by the mean of its spectrum and its four-neighborhood spectrum. This is
useful in practical applications to detect targets from an unknown background.

Consider hyperspectral data with known target signatures X ∈ RL×N , where L denotes the
number of dimensional features for each atom. The N denotes the number of obtained target atoms.
Dictionary X can be denoted as:

X = {x1, x2, . . . , xi, . . . , xN}, (5)

where xi is a priori target spectrum.
The position coordinates of xi is denoted as (i, j). Then, mean xi can be expressed as

xi =
xi(i, j) + xi(i− 1, j) + xi(i + 1, j) + xi(i, j− 1) + xi(i, j + 1)

5
. (6)

3.2. Sparse Representation Detector with Lp-norm

The lp-norm is a function that has the concept of “length” [5]. It is denoted as

‖α‖p =

(
N

∑
i=1
|αi|p

)1/p

. (7)

In order to clearly show the process for methods of different norm, we use the graphics in 2-D
space to display the solutions for the l1-norm minimization in Figure 2a and lp-norm minimization in
Figure 2b. S = {α∗ : y = Xα} expresses a line in the 2-D space, but, in the higher dimensions, it will
be a hyperplane. The line of S covers all possible solution α∗. Therefore, the sparse solutions for these
methods are the intersection points of line S and the graphs of l1 and lp. We can estimate whether
the solutions are sparse by calculating the number of intersection points. Assume that we change the
lp-ball from original condition until it touches the collection of S for some point. So, the solutions for
the lp-norm minimization issue are above mentioned intersection points. When the sparse solutions
are localized on the coordinate axis, they will be sparse enough. For the scenograph of Figure 2, we can
clearly find out that the solutions for lp-norm minimization are sparser than l1-norm.

y X



y

1|| ||

(a)

y X
y



p
a|| ||

(b)

Figure 2. The scenograph of solutions for different norm minimization in 2-D space. (a) The scenograph
of the solutions for l1-norm minimization. (b) The scenograph of the solutions for lp-norm minimization.

As we mentioned earlier, the matrix X is required to be less coherent [39] to ensure the equivalence
between l0-minimization in Equation (2) and l1-minimization in Equation (3). Otherwise, the solution
(weight vector) in the l1-minimization is less sparse than the one in the l0 minimization [35]. Fortunately,
the lp-minimization has been proven that it can recover a sparser signal from linear measurements
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than the l1-minimization [43], which can be confirmed by both theoretical analysis and numerical
simulations [44]. The objective function of the lp optimization in our paper can be denoted as

min
α

1
2
‖y− Xα‖q

q + λ ‖α‖p
p . (8)

Better results can be achieved by setting the value of q (0 < q < 2) as an open solution to the
reconstruction. This is a non-convex minimization issue as 0 < p < 1, and ‖·‖p

p is not sub-additive and
violates the triangle inequality. Inspired by soft-thresholding, we propose adaptive iterated shrinkage
thresholding method (AISTM) to obtain the lp-minimization solution in Equation (8) by two steps:
(1) modifying the thresholding and (2) modifying the shrinkage means.

When y > 0, solutions for Equation (8) would satisfy the range of [0, y]. Otherwise, solutions
for Equation (8) will fall into the range of [y, 0]. Specifically, we focus on the situation of y > 0 in the
following. We can construct a function g(α) as

g(α) =
1
2
(α− y)2 + λ|α|p. (9)

First, it is found that, when we obtain λ and p, there is a specific threshold τAISTM
p (λ). If y <

τAISTM
p (λ), α = 0 would be the global minimum. Otherwise, the nonzero solution would be the

optimal. Considering for any y ∈
(

τAISTM
p (λ),+∞

)
, g(α) has one unique minimum α∗p in the scope

of (α(λ,p)
0 ,+∞). We can get the following equation as

α∗p − y + λp
(

α∗p

)p−1
= 0. (10)

For any y ∈
(

τAISTM
p (λ),+∞

)
, we let α∗p become the unique minimum for g(α) in the scope of

(α∗p,+∞). Accordingly, we can get the following equation as

g(0) > g(α∗p). (11)

Further, to generalize soft threshold, we would solve the following equation set to acquire the
appropriate thresholding τAISTM

p (λ) and α∗p corresponding with thresholding as

α∗p − τAISTM
p (λ) + λp

(
α∗p

)p−1
= 0

1
2

(
α∗p − τAISTM

p (λ)
)2

+ λ
(

α∗p

)p
= 1

2

(
τAISTM

p (λ)
)2

,
(12)

where the only solution for α∗p is

α∗p = (2λ(1− p))
1

2−p , (13)

and the thresholding value τAISTM
p (λ) is

τAISTM
p (λ) = (2λ(1− p))

1
2−p + λp(2λ(1− p))

p−1
2−p . (14)

Secondly, in order to shorten the time of finding the non-zero solution, the following gradient
descent method is adopted:

αk = αk−1 − λm̂k/(
√

ŝk + ε), (15)
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where λ is the stepsize, and ε is equal to 1× 10−8 to prevent zeros from occurring in the implementation.
And m̂k and ŝk can be obtained as

gk = λp (αk−1)
p−1

mk = β1mk−1 + (1− β1) gk
sk = β2sk−1 + (1− β2) g2

k

m̂k = mk/
(

1− βk
1

)
ŝk = sk/

(
1− βk

2

)
,

(16)

where gk is gradient. The λ is learning rate. The mk is biased first moment estimate, and sk is biased
second raw moment estimate. The m̂k and ŝk are bias-corrected. The β1 is exponential decay rate of first
order moment estimation. The β2 is exponential decay rate of the second moment estimation. We assign
the value of β1 and β2 to 0.1 and 0.2, respectively. The iterative algorithm AISTM (y, λ, β1, β2, ε, J, u) is
summarized in Algorithm 1.

Algorithm 1 (AISTM): TAISTM
u (y; λ) = AISTM(y, λ, β1, β2, ε, J, u)

Input: y, λ, β1, β2, ε, J, u

1. Calculating the thresholding value τAISTM
u by Equation (14);

2. If |y| ≤ τAISTM
u (λ);

3. TAISTM
u (y; λ) = 0;

4. Else

5. k = 0, α(k) = |y|;
6. k = 0, mk = 0, sk = 0;

7. Iterate on k = 0, 1, 2, ..., J;

8. Calculating the corresponding α∗u by Equation (15);

9. TAISTM
u (y; λ) = sgn(y)α∗u;

10. End

Output: TAISTM
u (y; λ).

AISTM is an improvement for iterative shrinkage thresholding. It has been proven the ITM
algrithm would converge to stationary point in Reference [45], while any thresholding T(y; λ) satisfied
with 0 ≤ λ < +∞ and −∞ < y < +∞, if T(y; λ) has the following characteristics:

(i) T(y; λ) ≤ −T (y′; λ) if y ≤ y′;
(ii) T(−y; λ) = −T(y; λ);
(iii) limy→∞ T(y; λ) = ∞; and
(iv) 0 ≤ T(y; λ) ≤ y for 0 ≤ y < ∞.

We can easily find that AISTM satisfies above four characteristics. So, the ability of convergence
for AISTM method would be guaranteed.

In the proposed method, alternating direction method of multipliers (ADMM) is taken to settle
SRD framework. We replace the soft-thresholding operator of ADMM by using AISTM operator
method. By choosing the appropriate value of u (q or p) for AISTM, we can get good detection results.
The AISTM is an iterative algorithm, and the gradient descent method for X or y in iteration process is
involved as

α(k) = TAISTM
u (α(k−1) − ‖X‖

−2XT(Xα− y); ‖X‖−2λ), (17)

where ‖X‖ is the spectral norm of X.
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Empirically, we find that satisfactory results can be acquired by choosing the number of iterations
J as 2 or 3. When α is obtained, membership of y can be determined by comparing final residual with
prescribed threshold η:

DLp-SRD(y) =

{
1 if

∥∥y− Xα
∥∥

2 <= η

0 if
∥∥y− Xα

∥∥
2 > η

, (18)

where 1 means that y is a target, and 0 means that y belongs to the background [46].
To illustrate the advantages of the proposed Lp-SRD, Figure 3 depicts an example of different

methods in reconstruction residuals between a target or background pixel and its estimation using the
HyMap data to be introduced in Section 4. The target spectrum represents a pixel of yellow nylon,
and the background spectrum represents a mixture of grass and building. From comparative results
shown in Figure 3a, the reconstruction residual of the proposed Lp-SRD between a chosen target pixel
and its estimation is relatively small, which indicates the reconstructed spectrum of Lp-SRD is closer
to that of a real target pixel. The residual is closely correlated with detection results, and the smaller
the reconstruction residual is, the more likely the pixel will be claimed as a target one. On the other
hand, in Figure 3b, the reconstruction residual of the proposed Lp-SRD between a chosen background
pixel and its estimate is relatively large; this makes it convenient to distinguish the target from its
background. In this way, the solution for lp-norm minimization would become more stable, resulting
in better detection ability.
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Figure 3. Comparison of lp-norm and l1-norm target-based representation residuals of a target pixel
(yellow nylon) and a background pixel (mixture of grass and building) in the HyMap data. It is desired
that the target pixel has a small residual, and the background pixel has a large residual. (a) Target pixel.
(b) Background pixel.

4. Experiments and Discussion

4.1. Hyperspectral Datasets

The first dataset is the scene diagram of Gulfport area. The image was obtained by Airborne
Infrared or Visible Image Spectrometer (AVIRIS) sensor [47]. The image is made up of 100× 100 pixels,
and the image’s spatial resolution is about 3.4 m. Gulfport contains 191 spectral bands after removing
corresponding bands. The targets are the three airplanes. The false color and ground-truth map for
targets are displayed in Figure 4.

The second dataset is the scene diagram of Cooke City area, Montanta, on 4 July 2006. The image
was obtained by HyMap hyperspectral imagery sensor [48]. The image is made up of 200× 800 pixels,
and the HyMap’s spatial resolution is about 3 m. HyMap contains 126 spectral bands meet wavelength
interval 0.4–2.5 µm. In order to compare quickly, we tailor a subgraph for the size 100× 300 in the
paper. Experimental results are satisfactory. Seven targets’ signatures are used for training, which
includes 4 fabric panel targets (Yellow Nylon, Red Nylon, Red Cotton, and Blue Cotton) and 3 vehicle
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targets (Chevy Blazer, Subaru GL Wagon, and Toyota T100). Vehicle targets are located in the right half
of the false color map. Panel targets are located in the left half of the false color map. The false color
and ground-truth map for targets are displayed in Figure 5.

The third dataset is comes from Rochester experiment. The image was obtained by SpecTIR
hyperspectral sensor. The image is made up of 180× 180× 120 pixels, and SpecTIR’s spatial resolution
is about 1 m. The noisy and useless bands have been deleted in this image. Targets contain man-made
colorful square fabrics [49]. The false color and ground-truth map for targets are displayed in Figure 6.

The fourth dataset is the scene diagram of San Diego. The image was obtained by AVIRIS sensor.
The image is made up of 200× 200× 189 pixels, and San Diego’s spatial resolution is about 3.5 m.
The noisy and useless bands have been deleted in this image. Targets consist of airplanes containing
fifty-eight pixels [50]. The false color and ground-truth map for targets are displayed in Figure 7.

(a) (b)

Figure 4. Illustration of the Gulfport dataset: (a) false color (RGB: 60, 30, 20); (b) the ground-truth map.

(a)

(b)

Figure 5. Illustration of the HyMap dataset: (a) false color (RGB: 60, 30, 20); (b) the ground-truth map.
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(a) (b)

Figure 6. Illustration of the SpecTIR dataset: (a) false color (RGB: 60, 30, 20); (b) the ground-truth map.

(a) (b)

Figure 7. Illustration of the San Diego dataset: (a) false color (RGB: 60, 30, 20); (b) the ground-truth map.

4.2. Parameters Analysis

For the proposed Lp-SRD, the value of dictionary samples for the Gulfport dataset, the HyMap
dataset, the SpecTIR dataset and the San Diego dataset are 3, 7, 5, and 3. The values of u (q) are 0.9,
1.2, 1.2, and 1, respectively. Two parameters (p and λ) are studied. These two parameters are very
important for the proposed algorithm, and only by choosing the right parameters can the best detection
performance be obtained. By fixing λ as {1× 10−6, 1× 10−5, 1× 10−4, 1× 10−3, 1× 10−2, 1× 10−1} as
suggested in Reference [35], and varying p from 0.1 to 1.0 at intervals of 0.1, the detection performance
of Lp-SRD under different parameters are collected. Figures 8–11 can be used to analysis the detection
performance with different parameters.

Figures 8–11 show the area under curve (AUC) performance of our proposed Lp-SRD by varying p,
as well as λ. According to Equation (9), p can affect the performance of the detector. Here, p is changed
from 0.1 to 1.0. In the Gulfport dataset, one can observe the detection performance in Figure 8 when
the parameter λ = 1× 10−2 and the parameter p is varied. For example, when p = 0.9, the proposed
Lp-SRD achieves the highest detection accuracy, i.e., AUC = 99.65%, and drops around 97.58% as p =
0.1. In the HyMap dataset, one can observe the detection performance in Figure 9 when the parameter
λ = 1× 10−4 and the parameter p is varied. For example, when p = 0.1, the proposed Lp-SRD achieves
the highest detection accuracy, i.e., AUC = 94.48%, and drops around 93.84% as p = 1.0. In the SpecTIR
dataset, one can observe the detection performance in Figure 10 when the parameter λ = 1× 10−1

and the parameter p is varied. For example, when p = 0.1, the proposed Lp-SRD achieves the highest
detection accuracy, i.e., AUC = 99.70%, and drops around 96.50% as p = 0.5. In the San Diego dataset,
one can observe the detection performance in Figure 11 when the parameter λ = 1× 10−1 and the
parameter p is varied. For example, when p = 0.4, the proposed Lp-SRD achieves the highest detection
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accuracy, i.e., AUC = 98.99%, and drops around 98.84% as p = 1. These figures also show the detection
performance versus varying λ. A wide range of λ is from {1× 10−6, 1× 10−5, . . . , 1× 10−1}. We notice
that the detection performance is relatively excellent if the parameter p and λ are fixed. Therefore, p
and λ can be set to corresponding values to improve the detection performance of this method.
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Figure 8. Area under curve (AUC) values of different varying p, as well as lambda (λ), in the
Gulfport dataset.
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Figure 9. AUC values of different varying p, as well as lambda (λ), in the HyMap dataset.
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Figure 10. AUC values of different varying p, as well as lambda (λ), in the SpecTIR dataset.
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Figure 11. AUC values of different varying p, as well as lambda (λ), in the San Diego dataset.

4.3. Detection Performance

We contrast the detection performance between Lp-SRD method and other detection methods,
such as CEM, OC-SVM, SRD, etc. For qualitative and quantitative comparison, detection maps,
statistical separability analysis, receiver operate characteristic (ROC), and area under the curve (AUC)
metric are introduced for main criteria for evaluation. ROC curves have been far and wide employed
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as the performance estimate means for target detection situations, where it indicates the comparison
between target detection probability pd and false alarm rate p f . The computational equation of pd and
p f can be denoted as

pd = Ndetected
Nt

p f =
Nmiss

N ,
(19)

where Ndetected denotes the number of detected right target pixels under threshold η, Nmiss denotes the
number of background are mistaken for targets, Nt denotes the number of practical target pixels in
HSI, and N is the number of all pixels in HSI.

Figures 12–15 denote the detection maps under p f is fixed to a appropriate value (e.g., 0.1 or 0.15)
and pd is the corresponding value. The pd for proposed Lp-SRD from Figures 12–15 are 1.00, 0.94, 1.00,
and 1.00, respectively. The proposed Lp-SRD reflects the best detection results with the largest pd.
When p f is set to a appropriate value, a suitable threshold η can be acquired.

Figures 16–19 illustrate the statistical separability analysis and ROC of the aforementioned
detectors. Figures 16a–19a stand for box diagrama, and Figures 16b–19b stand for ROC for 4 real
hypserspectral datasets. Next, we discuss the detection performance for the proposed method through
box diagram and ROC curve, respectively.

First, the box diagrama is analyzed. The red box represents a range of targets, and the green box
represents range of background. The interval between the green and red boxes shows separability
between target and background. As shown in Figure 16a, the interval between the red and green boxes
of Lp-SRD method is larger than other mentioned methods. It shows that Lp-SRD can easily separate
targets from the background more useful. As shown in Figures 17a–19a, the box diagrams of the other
three data also show that our proposed method can also easily separate the target from background.

Second, we analyzed the ROC. For generating ROC, detection output results are normalized to
[0, 1] as the value of threshold are gradually altered for 0 to 1. By calculating the owned ground-truth
map, ROC curve is acquired by drawing results probability of detection against the probability of false
alarms at various threshold settings. The proposed Lp-SRD is validated with four real hyperspectral
scenarios. Specifically, Lp-SRD yields a higher probability of detection with false alarm rate varies
under a big range for Gulfport data, as shown in Figure 16b. For example, when p f is about (0.1), pd of
Lp-SRD achieves approximately 1.0. The CEM, ACE, MF, SLMD, OC-SVM, SRD, and CSCR are are
below 0.98. We can find the proposed Lp-SRD also provides the best performance for the other three
data from Figures 17b–19b.

Table 1 further lists the AUC values for eight aforementioned detectors. For the four hyperspectral
datasets, the AUC values for the proposed method are 0.9960, 0.9468, 0.9970, and 0.9899, respectively.
The maximum AUC values of other methods for the four hyperspectral datasets are 0.9908, 0.9303,
0.9932, and 0.9805, which are all lower than that of the proposed method. Table 2 provides the execution
time for various detection methods. For the four hyperspectral datasets, the execution time of the
proposed method are 0.8816, 4.8677, 2.1889, and 3.6604, respectively. The execution time of the baseline
method basically does not exceed 1 s. The detection time of the proposed method is between 1 and 5 s,
which takes longer time than other baseline methods. It is apparent that we proposed Lp-SRD can
realize the outstanding performance, although execution time is relatively larger than other traditional
detection methods, except SLMD and CSCR. All experiments were implemented in MATLAB on
an Intel Core i7-8700H CPU computer with 8 GB of RAM. Because OC-SVM code is used, we used
MEX function that called C program for MATLAB. The proposed method has not yet been integrated
into the toolkit and will be accelerated in the future. There is great potential for improvement in the
computing efficiency.

From qualitative and quantitative analysis of the detection results, the proposed Lp-SRD is
always superior to the CEM, ACE, MF, SLMD, OC-SVM, SRD, and CSCR. It can be confirmed that the
non-convex lp-norm sparse coding solved by homogeneous target dictionary construction and adaptive
iterated shrinkage thresholding method requires much weaker incoherence constraint conditions to
acquire a good recovery.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12. Detection maps for the Gulfport dataset when p f is fixed to 0.1: (a) Constrained energy
minimization (CEM) pd = 0.84. (b) adaptive cosine estimation (ACE) pd = 0.81. (c) matched filter (MF)
pd = 0.90. (d) Sparse and Low-Rank Matrix Decomposition (SLMD) pd = 0.98. (e) one-class support
vector machine (OC-SVM) pd = 0.95. (f) sparse representation detector (SRD) pd = 0.94. (g) combining
sparse and collaborative representations (CSCR) pd = 0.99. (h) lp-norm-based sparse representation
detector (Lp-SRD) pd = 1.00.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 13. Detection maps for the HyMap dataset when p f is fixed to 0.15: (a) CEM pd = 0.55. (b) ACE
pd = 0.59. (c) MF pd = 0.71. (d) SLMD pd = 0.80. (e) OC-SVM pd = 0.79. (f) SRD pd = 0.86. (g) CSCR
pd = 0.62. (h) Lp-SRD pd = 0.94.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 14. Detection maps for the SpecTIR dataset p f is fixed to 0.1: (a) CEM pd = 0.84. (b) ACE pd =
0.72. (c) MF pd = 0.84. (d) SLMD pd = 0.98. (e) OC-SVM pd = 0.79. (f) SRD pd = 0.95. (g) CSCR pd = 0.98.
(h) Lp-SRD pd = 1.00.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 15. Detection maps for the San Diego dataset p f is fixed to 0.1: (a) CEM pd = 0.85. (b) ACE pd =
0.72. (c) MF pd = 0.80. (d) SLMD pd = 0.52. (e) OC-SVM pd = 0.90. (f) SRD pd = 0.73. (g) CSCR pd = 0.92.
(h) Lp-SRD pd = 1.00.
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Figure 16. Detection performance using the Gulfport dataset: (a) Statistical separability analysis.
(b) Receiver operate characteristic (ROC) curves.
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Figure 17. Detection performance using the HyMap dataset: (a) Statistical separability analysis.
(b) ROC curves.
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Figure 18. Detection performance using the SpecTIR dataset: (a) Statistical separability analysis.
(b) ROC curves.
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Figure 19. Detection performance using the San Diego dataset: (a) Statistical separability analysis.
(b) ROC curves.

Table 1. AUC values of different target detectors using four experimental datasets.

Methods CEM ACE MF SLMD OC-SVM SRD CSCR Lp-SRD

Gulfport 0.9154 0.9184 0.9371 0.9871 0.9852 0.9848 0.9908 0.9960
HyMap 0.7082 0.7554 0.7359 0.8182 0.8835 0.9303 0.8393 0.9468
SpecTIR 0.9124 0.8392 0.9115 0.9854 0.8757 0.9625 0.9932 0.9970

San Diego 0.9417 0.8961 0.9385 0.7880 0.7510 0.9590 0.9805 0.9899

Table 2. Execution time of different target detectors using four experimental datasets (unit: seconds).

Methods CEM ACE MF SLMD OC-SVM SRD CSCR Lp-SRD

Gulfport 0.1132 0.1538 0.1004 6.6481 0.0660 0.8232 3.0266 0.8816
HyMap 0.1715 0.3647 0.2236 6.5967 0.2423 2.3381 17.9000 4.8677
SpecTIR 0.1905 0.3688 0.2507 7.3971 0.1051 2.0856 8.0912 2.1889

San Diego 0.2916 0.6121 0.4352 12.2467 0.1522 2.8855 11.8767 3.6604

5. Conclusions

For this paper, we presented an HSI target detection method named Lp-SRD. The method
effectively investigated the minimum coefficient and made it possible to reach high detection accuracy
with only limited hyperspectral priori information. Specifically, we designed a dictionary construction
method based on homogeneous target dictionary. There were no background samples, libraries, nor
local window involved in the operation procedure. Then, we proposed adaptive iterated shrinkage
thresholding method to solve the lp-minimization problem. The algorithm contains two parts:
modifying the thresholding and modifying the shrinkage rules. Last, target detection was achieved
according to representation residual. Four real hyperspectral datasets were used to check detection
performance for our proposed Lp-SRD method. Experimental results demonstrated the detection
performance of the proposed method is improved by about 10% to 30% than methods mentioned in
the paper.

Author Contributions: All the authors designed and participated in the research. X.Z. implemented the
experiments. W.L. and M.Z. analyzed the overall construction of the draft. X.Z., W.L., and M.Z. completed
the first draft. R.T., W.L., and P.M. reviewed the manuscript. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by National Natural Science Foundation of China (NSFC-61922013, U1833203,
61421001), China Postdoctoral Science Fundation (2020M670163).

Acknowledgments: All the authors feel grateful the publicists of Gulfport hyperspectral dataset, HyMap
hyperspectral dataset, SpecTIR hyperspectral dataset, and San Diego hyperspectral dataset. In this paper, these
dataset are adopted to check the performance of our proposed Lp-SRD method. The authors also thank the all
authors of the baseline methods for contrast experiments.



Remote Sens. 2020, 12, 3991 18 of 20

Conflicts of Interest: All the authors state that there is no conflict of interest.

References

1. Schweizer, S.M.; Moura, J.M.F. Hyperspectral imagery: Clutter adaptation in anomaly detection. IEEE Trans.
Inf. Theory 2000, 46, 1855–1871. [CrossRef]

2. Datt, B.; McVicar, T.R.; Van Niel, T.G.; Jupp, D.L.; Pearlman, J.S. Preprocessing EO-1 Hyperion hyperspectral
data to support the application of agricultural indexes. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1246–1259.
[CrossRef]

3. Zhang, G.; Zhao, S.; Li, W.; Du, Q.; Ran, Q.; Tao, R. HTD-Net: A Deep Convolutional Neural Network for
Target Detection in Hyperspectral Imagery. Remote Sens. 2020, 12, 1489. [CrossRef]

4. Fu, X.; Shang, X.; Sun, X.; Yu, H.; Song, M.; Chang, C.-I. Underwater Hyperspectral Target Detection with
Band Selection. Remote Sens. 2020, 12, 1056. [CrossRef]

5. Zhang, Z.; Xu, Y.; Yang, J.; Li, X.; Zhang, D. A Survey of Sparse Representation: Algorithms and Applications.
IEEE Access 2015, 490–530. [CrossRef]

6. Zhang, L.; Zhang, L.; Tao, D.; Huang, X.; Du, B. Hyperspectral Remote Sensing Image Subpixel Target
Detection Based on Supervised Metric Learning. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4955–4965.
[CrossRef]

7. Zhang, Y.; Wu, K.; Du, B.; Zhang, L.; Hu, X. Hyperspectral Target Detection via Adaptive Joint Sparse
Representation and Multi-Task Learning with Locality Information. Remote Sens. 2017, 9, 482. [CrossRef]

8. Yang, S.; Shi, Z. SparseCEM and SparseACE for Hyperspectral Image Target Detection. IEEE Geosci. Remote
Sens. Lett. 2014, 11, 2135–2139. [CrossRef]

9. Wang, Y.; Lee, L C.; Xue, B.; Wang, L.; Song, M.; Yu, C.; Li, S.; Chang, C.I. A Posteriori Hyperspectral
Anomaly Detection for Unlabeled Classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3091–3106.
[CrossRef]

10. Chang, C.I.; Li, H.C.; Song, M.; Liu, C.; Zhang, L. Real-Time Constrained Energy Minimization for Subpixel
Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2545–2559. [CrossRef]

11. Li, W.; Du, Q. A survey on representation-based classification and detection in hyperspectral remote sensing
imagery. Pattern Recognit. Lett. 2016, 83P2, 115–123. [CrossRef]

12. Tao, R.; Zhao, X.D.; Li, W.; Li, H.C.; Du, Q. Hyperspectral anomaly detection by fractional fourier entropy.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4920–4929. [CrossRef]

13. Funk, C.C.; Theiler, J.; Roberts, D.A.; Borel, C.C. Clustering to improve matched filter detection of weak gas
plumes in hyperspectral thermal imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1410–1420. [CrossRef]

14. Scharf, L.L.; Friedlander, B. Matched subspace detectors. IEEE Trans. Signal Process. 1994, 42, 2146–2157.
[CrossRef]

15. Theiler J.; Foy B.R. EC-GLRT: Detecting Weak Plumes in Non-Gaussian Hyperspectral Clutter Using an
Elliptically-Contoured Generalized Likelihood Ratio Test. In Proceedings of the IGARSS 2008—2008 IEEE
International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008. [CrossRef]

16. Li, W.; Du, Q. Collaborative representation for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote
Sens. 2014, 53, 1463–1474. [CrossRef]

17. Lo, E. Partitioned correlation model for hyperspectral anomaly detection. Opt. Eng. 2015, 54, 123114.
[CrossRef]

18. Jablonski, J.A.; Bihl, T.J.; Bauer, K.W. Principal component reconstruction error for hyperspectral anomaly
detection. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1725–1729. [CrossRef]

19. Chen, Y.; Nasrabadi, N.M.; Tran, T.D. Simultaneous joint sparsity model for target detection in hyperspectral
imagery. IEEE Geosci. Remote Sens. Lett. 2011, 8, 676–680. [CrossRef]

20. Chen, Y.; Nasrabadi, N.M.; Tran, T.D. Sparse representation for target detection in hyperspectral imagery.
IEEE J. Sel. Top. Signal Process. 2011, 5, 629–640. [CrossRef]

21. Zhang, Y.; Du, B.; Zhang, L. A sparse representation-based binary hypothesis model for target detection in
hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2014, 53, 1346–1354. [CrossRef]

22. Du, B.; Zhang, Y.; Zhang, L.; Tao, D. Beyond the Sparsity-Based Target Detector: A Hybrid Sparsity and
Statistics-Based Detector for Hyperspectral Images. IEEE Trans. Image Process. 2016, 25, 5345–5357 [CrossRef]
[PubMed]

http://dx.doi.org/10.1109/18.857796
http://dx.doi.org/10.1109/TGRS.2003.813206
http://dx.doi.org/10.3390/rs12091489
http://dx.doi.org/10.3390/rs12071056
http://dx.doi.org/10.1109/ACCESS.2015.2430359
http://dx.doi.org/10.1109/TGRS.2013.2286195
http://dx.doi.org/10.3390/rs9050482
http://dx.doi.org/10.1109/LGRS.2014.2321556
http://dx.doi.org/10.1109/TGRS.2018.2790583
http://dx.doi.org/10.1109/JSTARS.2015.2425417
http://dx.doi.org/10.1016/j.patrec.2015.09.010
http://dx.doi.org/10.1109/JSTARS.2019.2940278
http://dx.doi.org/10.1109/36.934073
http://dx.doi.org/10.1109/78.301849
http://dx.doi.org/10.1109/IGARSS.2008.4778833
http://dx.doi.org/10.1109/TGRS.2014.2343955
http://dx.doi.org/10.1117/1.OE.54.12.123114
http://dx.doi.org/10.1109/LGRS.2015.2421813
http://dx.doi.org/10.1109/LGRS.2010.2099640
http://dx.doi.org/10.1109/JSTSP.2011.2113170
http://dx.doi.org/10.1109/TGRS.2014.2337883
http://dx.doi.org/10.1109/TIP.2016.2601268
http://www.ncbi.nlm.nih.gov/pubmed/27552753


Remote Sens. 2020, 12, 3991 19 of 20

23. Cui, M.; Prasad, S. Class-Dependent Sparse Representation Classifier for Robust Hyperspectral Image
Classification. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2683–2695. [CrossRef]

24. Karoui, M.S.; Benhalouche, F.Z.; Deville, Y.; Djerriri, K.; Weber, C. Partial Linear NMF-Based Unmixing
Methods for Detection and Area Estimation of Photovoltaic Panels in Urban Hyperspectral Remote Sensing
Data. Remote Sens. 2019, 11, 2164. [CrossRef]

25. Bitar, A.W.; Cheong, L.F.; Ovarlez, J.P. Sparse and Low-Rank Matrix Decomposition for Automatic Target
Detection in Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5239–5251. [CrossRef]

26. Li, W.; Du, Q.; Zhang, B. Combined sparse and collaborative representation for hyperspectral target detection.
Pattern Recognit. 2015, 48, 3904–3916. [CrossRef]

27. Tan, K.; Hou, Z.; Wu, F.; Du, Q.; Chen, Y. Anomaly Detection for Hyperspectral Imagery Based on the
Regularized Subspace Method and Collaborative Representation. Remote Sens. 2019, 11, 1318. [CrossRef]

28. Wright, J.; Yang, A.Y.; Ganesh, A.; Sastry, S.S.; Ma, Y. Robust face recognition via sparse representation.
IEEE Trans. Pattern Anal. Mach. Intell. 2008, 31, 210–227. [CrossRef]

29. Charles, A.S.; Olshausen, B.A.; Rozell, C.J. Learning sparse codes for hyperspectral imagery. IEEE J. Sel. Top.
Signal Process. 2011, 5, 963–978. [CrossRef]

30. Qin, L.Y.; Lin, Z.; She, Y.; Zhang, C. A comparison of typical lp minimization algorithms. Neurocomputing
2013, 119, 413–424.

31. Candes, E.J.; Wakin, M.B.; Boyd, S.P. Enhancing sparsity by reweighted l1 minimization. J. Fourier Anal. Appl.
2008, 14, 877–905. [CrossRef]

32. Gorodnitsky, I.F.; Rao, B.D. Sparse signal reconstruction from limited data using FOCUSS: A re-weighted
minimum norm algorithm. IEEE Trans. Signal Process. 1997, 45, 600–616. [CrossRef]

33. Krishnan, D.; Fergus, R. Fast image deconvolution using hyper-Laplacian priors. In Advances in Neural
Information Processing Systems; 2009; pp. 1033–1041.

34. She, Y. Thresholding-based iterative selection procedures for model selection and shrinkage. Electron. J. Stat.
2009, 3, 384–415. [CrossRef]

35. Zuo, W.; Meng, D.; Zhang, L.; Feng, X.; Zhang, D. A generalized iterated shrinkage algorithm for non-convex
sparse coding. In Proceedings of the IEEE International Conference on Computer Vision, Sydney, NSW,
Australia, 1–8 December 2013; pp. 217–224.

36. Zhang, L.; Zhang, L.; Tao, D.; Huang, X. Sparse Transfer Manifold Embedding for Hyperspectral Target
Detection. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1030–1043. [CrossRef]

37. Zhao, C.; Li, X.; Ren, J.; Marshall, S. Improved sparse representation using adaptive spatial support for
effective target detection in hyperspectral imagery. J. Remote Sens. 2013, 34, 8669–8684. [CrossRef]

38. Elad, M. Sparse and Redundant Representations; Springer: New York, NY, USA, 2010.
39. Donoho, D.L. For most large underdetermined systems of linear equations the minimal l1-norm solution is

also the sparsest solution. Commun. Pure Appl. Math. A J. Issued Courant Inst. Math. Sci. 2006, 59, 797–829.
[CrossRef]

40. Hofleitner, A.; Rabbani, T.; Ghaoui, L.El.; Bayen, A. Online Homotopy Algorithm for a Generalization of the
LASSO. IEEE Trans. Autom. Control 2013, 58, 3175–3179. [CrossRef]

41. Chen, Y.; Nasrabadi, N.M.; Tran, T.D. Hyperspectral Image Classification Using Dictionary-Based Sparse
Representation. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3973–3985. [CrossRef]

42. Yuan, H. Robust patch-based sparse representation for hyperspectral image classification. Int. J. Wavelets
Multiresolution Inf. Process. 2017, 15, 1750028. [CrossRef]

43. Chartrand, R.; Staneva, V. Restricted isometry properties and nonconvex compressive sensing. Inverse Probl.
2008, 24, 035020. [CrossRef]

44. Chartrand, R. Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process. Lett.
2007, 14, 707–710. [CrossRef]

45. Daubechies, I.; Defrise, M.; De, M.C. An iterative thresholding algorithm for linear inverse problems with
a sparsity constraint. Commun. Pure Appl. Math. A J. Issued Courant Inst. Math. Sci. 2004, 57, 1413–1457.
[CrossRef]

46. Nasrabadi, N.M. Regularized spectral matched filter for target recognition in hyperspectral imagery.
IEEE Signal Process. Lett. 2008, 15, 317–320. [CrossRef]

47. Kang, X.; Zhang, X.; Li, S.; Li, K.; Li, J. Hyperspectral Anomaly Detection With Attribute and Edge-Preserving
Filters. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5600–5611. [CrossRef]

http://dx.doi.org/10.1109/TGRS.2014.2363582
http://dx.doi.org/10.3390/rs11182164
http://dx.doi.org/10.1109/TGRS.2019.2897635
http://dx.doi.org/10.1016/j.patcog.2015.05.024
http://dx.doi.org/10.3390/rs11111318
http://dx.doi.org/10.1109/TPAMI.2008.79
http://dx.doi.org/10.1109/JSTSP.2011.2149497
http://dx.doi.org/10.1007/s00041-008-9045-x
http://dx.doi.org/10.1109/78.558475
http://dx.doi.org/10.1214/08-EJS348
http://dx.doi.org/10.1109/TGRS.2013.2246837
http://dx.doi.org/10.1080/01431161.2013.845924
http://dx.doi.org/10.1002/cpa.20132
http://dx.doi.org/10.1109/TAC.2013.2259373
http://dx.doi.org/10.1109/TGRS.2011.2129595
http://dx.doi.org/10.1142/S021969131750028X
http://dx.doi.org/10.1088/0266-5611/24/3/035020
http://dx.doi.org/10.1109/LSP.2007.898300
http://dx.doi.org/10.1002/cpa.20042
http://dx.doi.org/10.1109/LSP.2008.917805
http://dx.doi.org/10.1109/TGRS.2017.2710145


Remote Sens. 2020, 12, 3991 20 of 20

48. Snyder, D.; Kerekes, J.; Fairweather, I.; Crabtree, R. Development of a Web-Based Application to Evaluate
Target Finding Algorithms. In Proceedings of the IGARSS 2008—2008 IEEE International Geoscience and
Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008; pp. II-915–II-918.

49. Herweg, J.A.; Kerekes, J.P.; Weatherbee, O.; Messinger, D.; van Aardt, J.; Ientilucci, E.; Ninkov, Z.; Faulring, J.;
Raqueño, N.; Meola, J. SpecTIR hyperspectral airborne rochester experiment data collection campaign.
In Proceedings of the Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral
Imagery XVIII, Baltimore, MD, USA, 23–27 April 2012; International Society for Optics and Photonics:
San Diego, CA, USA, 2012; p. 839028.

50. Zhao, R.; Du, B.; Zhang, L.P. Hyperspectral anomaly detection via a sparsity score estimation framework.
IEEE Trans. Geosci. Remote Sens. 2017, 55, 3208–3222. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TGRS.2017.2664658
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Sparse Representation Detector with L1-norm
	Proposed Target Detection Framework
	Homogeneous Target Dictionary Construction
	Sparse Representation Detector with Lp-norm

	Experiments and Discussion
	Hyperspectral Datasets
	Parameters Analysis
	Detection Performance 

	Conclusions
	References

