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Abstract: After a major earthquake, the rapid identification and mapping of co-seismic landslides in
the whole affected area is of great significance for emergency rescue and loss assessment of seismic
hazards. In recent years, researchers have achieved good results in research on a small scale and
single environment characteristics of this issue. However, for the whole earthquake-affected area with
large scale and complex environments, the correct rate of extracting co-seismic landslides remains
low, and there is no ideal method to solve this problem. In this paper, Planet Satellite images with a
spatial resolution of 3 m are used to train a seismic landslide recognition model based on the deep
learning method to carry out rapid and automatic extraction of landslides triggered by the 2018 Iburi
earthquake, Japan. The study area is about 671.87 km2, of which 60% is used to train the model,
and the remaining 40% is used to verify the accuracy of the model. The results show that most of the
co-seismic landslides can be identified by this method. In this experiment, the verification precision
of the model is 0.7965 and the F1 score is 0.8288. This method can intelligently identify and map
landslides triggered by earthquakes from Planet images. It has strong practicability and high accuracy.
It can provide assistance for earthquake emergency rescue and rapid disaster assessment.

Keywords: automatic extraction of landslides; deep learning; 2018 Iburi earthquake; landslides catalog
map; earthquake emergency and rapid assessment

1. Introduction

Co-seismic landslides are a major secondary effect of earthquakes, of which the loss usually
accounts for a large proportion of the total loss of an earthquake disaster [1,2]. Co-seismic landslides
can cause road damage, river blockage, house burial and bridge collapse, making emergency rescue and
on-site investigation difficult. This will seriously affect life rescue and earthquake disaster assessment.
Therefore, it is of great significance to obtain information on the location, scope and size of co-seismic
landslides quickly and accurately to guide earthquake emergency rescue, disaster assessment and
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reconstruction [3]. In recent years, researchers have carried out some research work in this field.
Most of their work focused on small-scale issues and in a single environment. They have achieved
good results [4–6]. However, for the whole earthquake-affected area with a large scale and complex
environment, the extraction accuracy of co-seismic landslides is low, and there is no ideal method to
solve this problem [7,8].

After a major earthquake, the rapid acquisition of satellite remote sensing images and UAV
photos permits investigation and cataloging of co-seismic landslides. The commonly used landslide
identification methods mainly rely on the visual interpretation of such images. This method has high
accuracy. Interpreters are required to have high professional knowledge and experience. For images
of large-scale areas and a large number of earthquake-triggered landslides, this method cannot meet
the timeliness of earthquake emergency and rapid assessment. To tackle this problem, one possible
approach is to develop automatic identification of co-seismic landslides.

To realize automatic identification of landslides, automatic classification of remote sensing images
is a first step, which is divided into pixel-based and object-oriented methods. The traditional pixel-based
methods include supervised classification, unsupervised classification and decision tree classification
based on expert knowledge. Some researchers have done much work on these classification methods [9].
Most of them conduct research based on traditional statistical analysis and machine learning methods,
including maximum likelihood [10], principal component transformation [11], word bag feature [12],
support vector machine [13], transfer learning [14,15] and so on. When images of different time phases
after the earthquake are available, some experts use the method of changing detection to identify
landslides [16–19]. These methods are capable of automatic or semiautomatic classification in a certain
sense, but the samples cannot be reused. They analyze pixels according to the relevant characteristics
of the remote sensing image, and the effect of landslide recognition in different regions and situations
are different. At the same time, they have limitations for high-resolution images. There exists the
problem of a foreign object with the same spectrum or different spectra of the same object. The result of
extraction has the phenomenon of a “pepper and salt” appearance, similar to the black and white noise
of TV snowflakes. Most machine learning algorithms only perform nonlinear mapping for the internal
features of the data. Due to the multiple-source detection data, explosive growth of data and other
problems, the traditional machine learning cannot extract the complex features from high-dimensional
data [20].

Object-oriented classification technology segments homogeneous images and collects adjacent
pixels as analysis objects, and uses high-resolution and multiple-spectral data to conduct high-precision
classification [21]. Many scholars used the object-oriented classification method to extract landslides
automatically, and the accuracy is higher than the traditional statistical analysis and machine
learning methods [5,22–30]. In order to improve the accuracy of automatic extraction, some
scholars combined traditional statistical analysis and machine learning methods to optimize the
object-oriented method [31–36]. The multiple-level landslide identification method established by
object-oriented classification requires experience and parameter adjustment in the process of setting
segmentation parameters and classification rules, which spends much time and cannot meet the needs
of an earthquake emergency [5]. Moreover, this method is more suitable for Unmanned Aerial Vehicle
(UAV) images with high spatial resolution, and its applicability still needs to be improved for satellite
remote sensing images over larger areas with relatively low spatial resolution.

In recent years, with the development of deep learning technology, many researchers applied
this tool to automate the extraction of landslides [37–41]. For example, Zhang et al. proposed to
develop a new pattern of early rapid intelligent recognition of geological hazards, which includes
image recognition, deformation recognition, displacement recognition, internal cause recognition,
inducement recognition and comprehensive recognition, using the mature technology of rule-based,
traditional machine learning, expression learning and partial deep learning [42]. Some scholars have
explored the automatic extraction of landslides based on convolution neural networks and proposed
some improved schemes [4,43–46]. In this aspect, the U-Net model is an improved Fully Convolutional
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Networks (FCN) structure, which combines the characteristics of the encoding–decoding structure
and the skip network [47], which is more elegant and clever in the model structure and can get more
accurate classification results with fewer training samples. Therefore, many scholars carried out the
research of automatic landslide identification by improving the U-Net model [6,48,49]. Compared with
traditional machine learning methods, deep learning algorithms can automatically extract the most
effective features by using deep convolution layers in large data sets [50]. Although models with more
convolution layers have better separability than models with fewer convolution layers, deep neural
networks are more difficult to train samples and require a large number of annotated training samples.
The ENVI Deep Learning Module used in this paper is a U-Net model developed based on the
TensorFlow framework, which can classify remote sensing images. Compared with other approaches,
this method is more convenient. ENVI deep learning requires no programming, is simple to operate
and has a low error rate. In addition, it can be applied to the identification of landslides in large areas
with complex environments.

In view of the urgency of disasters and in order to improve the timeliness of the application of
remote sensing to earthquake emergency, this work attempts to quickly and accurately extract the
distribution information of landslides from images. Based on the high-resolution satellite images
(3 m) acquired before and after an earthquake, the spatial distribution of landslides can be accurately
determined using this tool in the detailed investigation of a post-earthquake disaster. It permits
establishing a high-precision identification model of a landslide disaster in a short time after the
earthquake, and realizing the automatic identification of the spatial distribution of landslides. Its core
is through the training of a large number of landslide samples to improve the accuracy and efficiency of
landslide recognition, and improving the working mode of visual interpretation of post-disaster data.

2. Study Area

The study area of this work is located in the Iburi–Tobu district, Hokkaido, Japan (Figure 1).
At 03:08 a.m. on 6 September 2018 (Japan Time), an Mw 6.6 earthquake occurred in the Oshima Belt
region, east of Tomakomai on the island of Hokkaido, Japan, with epicenter at 42.72 ◦N, 142.0 ◦E.
This shock induced at least 9295 landslides [51], which were widely distributed, leading to strong
destruction. According to reports, this earthquake caused 44 deaths, of which 36 died of landslides
triggered by seismic ground motion [52].

Figure 2 is a group of aerial photos of landslides caused by the Iburi earthquake in 2018.
Apparently the density of landslides triggered by this earthquake is relatively high, most of which
are shallow slope failures with continuous distribution. The affected area has extensive vegetation
and a large number of houses, roads, farms and other features. The study area of this work is a
large-scale, complex environment in the entire earthquake-affected area. The co-seismic landslides
destroyed the ridges, many houses, and farmland, blocked roads and valleys, and changed the terrain.
At the same time, this hazard resulted in a large number of uprooted trees over the disaster-stricken
mountainous areas. After the landslide occurred, the mountain collapsed, and a lot of rocks and soil
were mixed together and piled up on the foot of the slope and the flat ground. This changed the
original landform features.
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3. Data

This study uses the high-resolution (3 m) Planet Satellite images obtained five days after the
earthquake [54]. The spectral bands of Planet satellite remote sensing images include blue (455–515 nm),
green (500–590 nm), red (590–670 nm) and near infrared (780–860 nm). Its spatial resolution is 3 m.
The Planet remote sensing image level used is 3B, which is an orthographic image after sensor,
radiometric calibration and orthorectification. Finally, a true color image combined with three bands of
red, green and blue is used for mosaicking. These images cover the entire affected area and with a
low cloud cover. High-resolution (3 m) Planet Satellite images, taken shortly before the earthquake,
are also employed to ensure that landslides existing before the earthquake would not be identified as
co-seismic landslides. The study area is a regular rectangular area with an area of about 671.87 km2,
longitudes 141◦50’24.25”–142◦8’18.93”E and latitudes 42◦38’21.29”–42◦53’15.72”N. Figure 3A,B shows
remote sensing images before the earthquake and after the earthquake, respectively.

The Iburi earthquake’s landslide inventory map (Figure 3B) was prepared by our visual
interpretation to the Planet Satellite images. Figure 4 shows the comparison of remote sensing
images and artificial visual interpretation of landslides before and after the earthquake in some areas.
We can observe that the earthquake caused a large number of co-seismic landslides. The areas with
flowing texture, light hue and damaged vegetation coverage can be considered as co-seismic landslides.
Due to the thick vegetation cover in the study area, the hue of nonseismic landslides is usually darker
than that of co-seismic landslides. In the study area, visual interpretation shows that there are at least
9314 landslides that were triggered by the 2018 Iburi earthquake.

In order to enable the model to extract co-seismic landslides, a group of labeled raster cells,
which can indicate the characteristics of landslides, must be used to train the model. The landslide
vector data are derived into polygonal ROIs (ROI is the region of interest, it refers to the landslide
sample area in this article) of the corresponding region, which contains a variety of shape, color and
texture feature targets, permitting improvements in the final classification accuracy. In general, the more
ROIs drawn, the higher the classification accuracy. ROIs are used to create the label raster of the
landslide training area and verification area (Figure 5). The size of the image in the study area is
8034 × 9292 pixels. The image of the study area is cropped from the northern 60% of the area to create
the training raster (Figure 5A) with a size of 8034 × 5576 pixels and containing 7019 landslide samples.
The total number of pixels in the landslide area is 2,851,789. The remaining 40% of the southern
part of the image is used to create the validation raster (Figure 5B) with a size of 8034 × 3717 pixels
and containing 2349 landslide samples. The total number of pixels in the landslide area is 925,134.
The label raster contains the original band of the input image and a mask band. The original band of
the experimental image is set to red, green and blue. The DN value of the mask band indicates the
probability that the pixel is a landslide. A pixel with a DN value of 1 represents a landslide, and a value
of 0 represents a nonlandslide pixel. Figure 5 displays the 3 bands as mask bands combined into RGB.
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Iburi earthquake (3 August 2018) and (B) after Iburi earthquake (11 September 2018). Red polygons
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Figure 5. Label raster of the training area (A) and verification area (B).

4. Method

4.1. ENVINet5 Network Architecture

The TensorFlow model is an open source software library that uses data flow diagrams for
numerical calculation [55]. The nodes in the data flow graph represent mathematical operations,
and the edges represent multiple-dimensional data groups, namely the tensors, which are related to
each other between the nodes. The TensorFlow model is characterized by high flexibility, portability and
performance optimization. ENVI deep learning relies on the TensorFlow model to perform classification,
which is the core of the whole process.

The ENVINet5 architecture used by the ENVI Deep Learning Module is based on the U-Net
architecture developed by Ronneberger et al. [47]. Like U-Net, ENVINet5 is a mask-based and
encoder–decoder architecture, which can be used to classify each pixel on remote sensing images.

Figure 6 shows the network architecture of ENVINet5, which has 5 levels and 23 convolutional
layers. Each level represents a different pixel resolution in the model. Downsampling can increase
the robustness to some small disturbances of the input image, such as image translation and rotation,
reducing the risk of overfitting, reducing the amount of computation and increasing the size of the
receptive field. Upsampling can restore and decode the abstract features to the size of the original
image, and finally get the segmentation result. The shallow network can retain obvious content
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information. The deeper the network layer, the less content and more features. The merge can add
content information to the deep network.

Figure 6. Envinet5 architecture (image from ENVI Deep Learning 1.1.1 Help). The yellow box represents
Input Patch, the green box represents Feature Map, the blue arrow indicates 3 × 3 Convolution for
feature extraction, the purple arrow indicates Merge for feature fusion, the green arrow indicates Max
Pooling for dimensionality reduction, the red arrow represents Co-convolution for dimension recovery
and the yellow arrow represents 1 × 1 Convolution for output results.

4.2. Initializing TensorFlow Model

Before starting the training, we needed to set an initialized TensorFlow model. Patch is a small
picture that is introduced into this model for training, which cannot be larger than the minimum
number of edge-length pixels in the clipped subregion. The number of bands is set as the number of
bands of the raster image. According to this principle, the patch size of the initial model used in this
work is defined as 572 × 572 pixels and 3 bands. Both the initialization model and the trained model in
ENVI are data in HDF5 (.h5) format.

4.3. Training TensorFlow Models

The established landslide training raster is used to train the initialization model. Model training
is to expose training raster to the model repeatedly. As the training progresses, the model learns to
convert the spectral and spatial information in the training raster into a class activation map/raster
(CAM), and highlighting the target to be extracted. In the first training process, the model tries to
guess initially and generates a random CAM grayscale image, which is compared with the mask band
in the training raster. Through the goodness-of-fit function (also known as loss function), the model
can know where its random guess results are wrong. Then the internal parameters or weights of the
model are adjusted to make it more accurate.



Remote Sens. 2020, 12, 3992 9 of 22

ENVINet5 refers to the binary cross–entropy loss function with the weighted map used by
U-Net [47]:

E =
∑
x∈Ω

ω(x) log
(
pl(x)(x)

)
, (1)

where pl(x)(x) is the softmax loss function; l : Ω→ {1, · · · , K} is the label value of the pixel and ω : ΩεR
is the weight of the pixel that gives a higher weight to the pixel close to the boundary point in the image.

The optimizer used in this experiment is stochastic gradient descent (SGD) and a momentum
coefficient of 0.99. The class weight is used to highlight feature pixels at the beginning of training.
The value of the class weight is approximately 0.8022. The loss weight is used to highlight feature pixels
when checking the training effect. The value of the loss weight is approximately 0.70. The blur distance
is to blur the label ROI with the maximum distance at the beginning of training to help the model find
the target edge and reduce it to the minimum. The value of the blur distance is approximately 3.8566.

To prevent overfitting, data augmentation is used. Data augmentation is a technique commonly
used with deep learning to supplement the original training data. By having more information to
extract from the training data, the trainer and classifier can more effectively learn the appearance of
features of interest. During each epoch, ENVI creates a new training dataset with a randomly assigned
angle per training example. Likewise, it creates a new training dataset with a randomly assigned scale
factor per training example.

In traditional deep learning, an epoch represents the period in which all data sets are passed into
the training model. However, it is different in the ENVI Deep Learning Module, which intelligently
extracts patches from the training raster, so high-brightness characteristic pixel areas are more often
encountered than low-brightness regions at the beginning of training. At the end of the training,
all areas look more uniform. Because there is bias determination in patch extraction, an epoch in ENVI
deep learning refers to the number of patches trained before bias decision adjustment.

In order to get a better model, multiple epochs are needed to fully train the model. The number of
epochs and the number of patches per epoch depend on the diversity of feature sets to be learned,
which has no exact value. In general, enough epochs are needed to adjust the weight to ensure
smooth progress. The number of epochs is set to 30 in this work. The number of patches per epoch
determines the amount of training. The settings are lower for small datasets and higher for large
datasets. The number of patches per epoch is set to 500 in this work. The number of patches per
batch system is automatically set to 1. The rest of the parameters are default or ENVI automatically
determines the appropriate values.

4.4. Model Training and Validation Indexes

After training, the evaluation indexes of the deep learning model include loss, accuracy, precision,
recall and F-measure (F1) of each batch, training data set and verification data set. The loss is a
unitless number, which indicates the degree of matching between the classifier and the verification
training data. Its value of 0 indicates a perfect fit; the further the value from 0, the lower the fit
accuracy. The accuracy represents the ratio of samples to total samples that are predicted to match
the landslide label. The precision indicates the proportion of correct predicted positive samples to
the actual predicted positive samples. The recall means to correctly predict the proportion of positive
samples to positive samples. The F-measure, also known as F1 scores, is the harmonic average of
precision and call values, ranging from 0 to 1; the larger the F1, the better the prediction. These indexes
are expressed as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, (2)

Precision =
TP

TP + FP
, (3)

Recall =
TP

TP + FN
, (4)
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F1 =
2

1
Precision + 1

Recall

= 2·
Precision·Recall

Precision + Recall
, (5)

where TP is true positive, which means correctly predicting positive samples to be positive; FN is
false negative, which means correctly predicting positive samples to be negative; FP is false positive,
which means predicting negative samples wrongly to be positive; and TN is true negative, which means
correctly predicting negative samples to be negative.

4.5. Work Flow of Landslide Extraction

In order to realize automatic identification of co-seismic landslides, the following preparatory
work is made: (1) establishing co-seismic landslide database—visual interpretation and cataloging of
landslides for the 2018 Iburi earthquake; (2) model construction—some areas in the study area are
selected to establish samples for training the deep learning landslide classification model and to train
the model, and (3) image classification—the trained model is applied to the recognition of earthquake
landslides in the whole study area to complete the classification, and the accuracy of the model is
evaluated with reference to the results of visual interpretation.

TensorFlow is the second generation of a Google open source software library for digital
computing [55]. ENVI uses it to perform deep learning. Its framework is based on the convolution
neural network (CNN), which looks for spatial and spectral patterns that match the training data
provided in the image pixels. Figure 7 shows the workflow of using the ENVI Deep Learning Module,
from model building to training and then to landslide extraction.

Figure 7. Workflow of extracting landslides based on the ENVI Deep Learning Module.
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5. Results

5.1. Model Training and Validation

The device model used in this work is a DELL Precision 7920 Tower, on NVIDIA GeForce GTX
1080 GPU (8GB memory) in the Windows system. The training time of the model is 1 h, 40 min and 41
s. The curves of training accuracy, training loss, training precision and training recall are shown in
Figure 8. Ideally, the value of training loss should rapidly decrease in the first few epochs, and then
converge to 0 as the number of epochs increases.

Figure 8. Line chart of the accuracy, loss, precision and recall in the training data set experiment.

Similarly, the verification accuracy, verification loss, verification precision and verification recall
curves of this work are shown in Figure 9. ENVI generates a model based on the lowest point of the
validation loss value, that is, the epoch with the best match between the classifier and the verification
data. If smoothing is set to 0, it can be seen from Figure 9 that the loss value of the fifth training is the
lowest, so the loss of the trained model is 0.1507, accuracy is 0.8815, precision is 0.7965, recall is 0.8638
and F1 is 0.8288.
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Figure 9. Line chart of the accuracy, loss, precision and recall in the validation data set experiment.

5.2. Image Classification

The trained model can be used to identify landslides in other images. The model obtained in
this work re-recognizes the image of the whole study area. The process of using the DELL Precision
7920 Tower device on the NVIDIA GeForce GTX 1080 GPU (8GB memory) in the Windows system to
recognize the image takes 1 minute and 33.40 seconds. After the recognition, we get a class activation
raster (Figure 10). Each pixel in the grayscale image roughly represents the probability of belonging to
the landslide, and the threshold ranges from 0 to 1. The white area in the class activated grayscale
image represents the area with high probability, which means it is identified as a landslide. The result
identified by the trained model is a landslide probability map; the larger the values in this probability
map, the more confident the identified landslides.
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Figure 10. Image class activation raster.

The classification results can be output as polygon shapefile for analysis and evaluation and
other related work. In order to prepare a final landslide identification map, a threshold must be set.
The threshold should be set to the minimum value in the class activation raster that will be used to
differentiate feature pixels from background pixels. If the highest feature class value for a given pixel is
greater than or equal to the threshold value, the pixel will be designated as that feature class. Pixels with
probability values greater than the defined threshold are determined as landslides. Generally speaking,
a lower threshold may identify more real landslides, but it will lead to lower accuracy and increase
misjudgment. Therefore, choosing an appropriate threshold is important. The threshold for this work
is set as 0.56.
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This work adopts the Otsu automatic threshold method [56], which is based on discriminant
analysis and uses zero-order and first-order cumulative moments of the histogram to calculate the
value of the threshold level. The threshold is used to set the minimum value in the class activation
raster, which is then used to distinguish between feature pixels and background pixels. If the highest
feature class value of a given pixel is greater than or equal to the threshold, the pixel is designated as a
landslide. Otherwise, it will be specified as the background.

By trying different thresholds, the best threshold for extracting landslides is determined.
Figure 11 shows the result of post-earthquake image and visual interpretation of a selected area
within the study area. Figure 12 is the result of setting the threshold to 0.1–0.9. By comparing with the
results of visual interpretation, it can be found that the threshold between 0.5 and 0.6 (Figure 13) is
the classification result that gives a threshold set to 0.51–0.59. Although the comparison effect of the
results is not very obvious, the result with the threshold 0.56 is considered better, so the threshold of
shapefile conversion of the classification result in this work is set at 0.56 (Figure 14).
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Figure 13. Classification results with threshold 0.51–0.59 ((A). Results with a threshold of 0.51;
(B). Results with a threshold of 0.52; (C). Results with a threshold of 0.53; (D). Results with a threshold
of 0.54; (E). Results with a threshold of 0.55; (F). Results with a threshold of 0.56; (G). Results with
a threshold of 0.57; (H). Results with a threshold of 0.58; (I). Results with a threshold of 0.59.).
Yellow polygons show the result of automatic recognition and red polygons indicate manual
visual interpretation.
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Figure 14. Landslide automatic cataloging map with threshold 0.56.

In order to further illustrate the mapping results of the model in the study area, four typical regions
in the image are selected (Figure 15). Because the results of automatic identification of landslides
are not compared with the existing landslides before the earthquake, this work only analyzes the
effect of landslide identification in the image, regardless whether or not it is a landslide induced by
this earthquake. The results, shown in Figure 15A,B, indicate that in the areas with dense co-seismic
landslides and obvious characteristics, the effect of landslide identification is very good, and the
landslide boundaries can be accurately recognized with only a few omissions. Figure 15C shows that
for small landslides, which are difficult to distinguish by eye, the model also has a good recognition
degree and can extract the boundary accurately. Figure 15D shows that the characteristics of landslides
are not obvious when there are farmland and unpaved roads close to towns and villages. There are
some omissions and misjudgments, and some farmland and unpaved roads are also identified as
landslides. Some boundaries are not extracted accurately, and the landslides identified are smaller
than the actual landslides. Nevertheless, the overall effect is still good.



Remote Sens. 2020, 12, 3992 18 of 22

Remote Sens. 2020, 12, x FOR PEER REVIEW 20 of 25 

 

landslides identified are smaller than the actual landslides. Nevertheless, the overall effect is still 
good. 

 

Figure 15. The recognition effect of the model on the landslides identified by the model in four 
subregions. (A,B,C,D)(The red polygons represent the result of manual visual interpretation, and the 
yellow polygons represent the automatic extraction result). 

6. Discussion 

The deep learning method can extract deep hierarchical structure features from the data 
step-by-step and supports pixel classification. Because the deep learning model has self-learning 
ability, it can add learning samples at any time and can be used for different data. 

Much previous work focused on using the ENVI Deep Learning Module to extract buildings, 
roads, aircraft, glaciers and so on [57], while applied rarely in the extraction of co-seismic landslides. 
This research shows that the deep learning model trained by ENVI can be used to extract co-seismic 
landslides in the whole earthquake area with a complex environment and with good precision, 
which will be helpful to emergency rescue and disaster investigation. 

In traditional machine learning classification, feature selection (such as NDVI and texture 
information) is the key to identifying landslides [58,59]. The selection of the most effective features 
as the input of the machine learning model largely depends on the experience of experts. The deep 
learning model is developed on the basis of large data sets and high computing power. When 
training the deep learning model, the model input is the label raster that can automatically generate 
semantic features, which are used to identify landslides. Compared with the traditional machine 
learning model, the main advantage of the deep learning model is to transform low-level (spectral) 
features into high-level (semantic) features. 

In the process from the creation of the initialization model to the training of the landslide 
extraction model, the selection of parameters has a certain impact on the final training model. The 
training deep learning model involves some random processes and has a certain degree of 
randomness. Even if the same parameters are used for training, different models will be constructed. 
This is related to the way the algorithm attempts to converge, and is a fundamental part of the 
training process. 

Figure 15. The recognition effect of the model on the landslides identified by the model in four
subregions. (A,B,C,D) (The red polygons represent the result of manual visual interpretation, and the
yellow polygons represent the automatic extraction result).

6. Discussion

The deep learning method can extract deep hierarchical structure features from the data
step-by-step and supports pixel classification. Because the deep learning model has self-learning
ability, it can add learning samples at any time and can be used for different data.

Much previous work focused on using the ENVI Deep Learning Module to extract buildings,
roads, aircraft, glaciers and so on [57], while applied rarely in the extraction of co-seismic landslides.
This research shows that the deep learning model trained by ENVI can be used to extract co-seismic
landslides in the whole earthquake area with a complex environment and with good precision,
which will be helpful to emergency rescue and disaster investigation.

In traditional machine learning classification, feature selection (such as NDVI and texture
information) is the key to identifying landslides [58,59]. The selection of the most effective features
as the input of the machine learning model largely depends on the experience of experts. The deep
learning model is developed on the basis of large data sets and high computing power. When training
the deep learning model, the model input is the label raster that can automatically generate semantic
features, which are used to identify landslides. Compared with the traditional machine learning
model, the main advantage of the deep learning model is to transform low-level (spectral) features into
high-level (semantic) features.

In the process from the creation of the initialization model to the training of the landslide extraction
model, the selection of parameters has a certain impact on the final training model. The training deep
learning model involves some random processes and has a certain degree of randomness. Even if the
same parameters are used for training, different models will be constructed. This is related to the way
the algorithm attempts to converge, and is a fundamental part of the training process.

The accuracy of landslide extraction in this study is very high, and the model can easily distinguish
landslides from dense vegetation. However, there is a small amount of bare land in the study area,
and its spectrum is similar to that of landslides. It is still difficult to accurately extract landslides from
exposed spectrum information. The image of the study area in this work is of good quality, there is
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no cloud interference, and few water systems or unpaved roads. However, a lot of vegetation covers
the study area, and the characteristics of landslides and vegetation are obvious. The trained model
can get good results, but there may be misjudgment when it is used to identify images with similar
spectral characteristics, such as water systems and unpaved roads. The amount of sample data in
this work is small, which can increase the training of the model by the landslide database caused
by other earthquake events, so as to improve the precision. This work uses three bands of remote
sensing images (red, green and blue). In future research, we can try the combination method of other
bands to train the model, and examine which model is more accurate in extracting seismic landslides.
For example, Qi et al. used near infrared, red and green bands for analysis and obtained relatively good
accuracy [49]. ENVI’s new version of the Deep Learning Module adds multiple-class architecture and
support for extracting multiple-category targets at once. We can train a model to extract multiple-class
ground features and extract landslides, clouds, unpaved roads and water systems at the same time
to improve the accuracy of landslide extraction. If we increase the feature extraction of damaged
buildings and roads, we can use the model to extract this disaster information very soon after the
earthquake to support emergency rescue. Eliminating the existing landslides before the earthquake
can be accomplished by combining NDVI and DEM data before and after the earthquake [60,61]. It is
also possible to secondarily develop ENVI by using IDL and other languages to improve the automatic
extraction model.

This work demonstrates that the automatic extraction method is effective in dealing with co-seismic
landslides in a whole earthquake area characterized by large-scale and complex environments. It can
also be used to identify other types of landslides, such as regional landslides triggered by heavy rainfall.
The purpose of this paper is to provide a scheme for quickly identifying landslides immediately after a
major earthquake to obtain landslide cataloging maps. It is also possible to consider the extraction of
landslides in different regions, integrate different environmental information and improve the accuracy
of model extraction. This method can also be used to analyze the sensitivity of landslide identification
and other related work. In future work, landslide samples of other earthquake events can be increased
to continue to train the model to improve its accuracy and applicability to different regions.

7. Conclusions

This paper uses the ENVI Deep Learning Module to train an automatic identification model for
co-seismic landslides. Based on this approach, our work shows a good extraction effect for landslides
triggered by the Hokkaido earthquake in Japan, which occurred in an area with complex environments.
In this work, the loss of the model verification data set is 0.1507, the accuracy is 0.8815, the precision is
0.7965, the recall is 0.8638 and the F1 is 0.8288. In the future, the landslide database of other earthquake
events can be used to train the model to improve its accuracy. We can try to apply the model to the
identification of rainfall landslides and other types of landslides. ENVI’s deep learning capability
has stronger learning and transfer ability than other methods, and it will be the trend and direction
of remote sensing image classification in the future. The ENVI deep learning training model has the
advantages of simple operation, low error probability and can be quickly put into use. The method and
results meet the needs of an earthquake emergency, meet the requirements of timeliness and provide
support for life rescue and rapid disaster assessment after the earthquake. It can also lay a foundation
for follow-up landslide risk assessment and disaster investigation.

At present, all kinds of methods have limitations in remote sensing image classification—none of
which is absolutely the best. According to the spectral features, texture features and required accuracy
of remote sensing images, a variety of classification algorithms can be combined to optimize the deep
learning training model. Through the improved method, we can improve the efficiency of classification
as much as possible on the premise of ensuring accuracy.
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