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Abstract: Airborne target tracking in infrared imagery remains a challenging task. The airborne target
usually has a low signal-to-noise ratio and shows different visual patterns. The features adopted
in the visual tracking algorithm are usually deep features pre-trained on ImageNet, which are not
tightly coupled with the current video domain and therefore might not be optimal for infrared target
tracking. To this end, we propose a new approach to learn the domain-specific features, which can be
adapted to the current video online without pre-training on a large datasets. Considering that only a
few samples of the initial frame can be used for online training, general feature representations are
encoded to the network for a better initialization. The feature learning module is flexible and can
be integrated into tracking frameworks based on correlation filters to improve the baseline method.
Experiments on airborne infrared imagery are conducted to demonstrate the effectiveness of our
tracking algorithm.
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1. Introduction

Thermal infrared technology can work under all types of weather conditions and has been
widely used for rescue, surveillance, and automatic target recognition. Besides, tracking based on
thermal infrared technology is not sensitive to illumination variations and can track the target in total
darkness [1,2]. Airborne target tracking, which plays an important role in infrared imaging guidance,
remains a challenging task [3,4]. Compared with visual tracking, the imagery generated by infrared
imaging guidance has low resolution and lacks texture information [5]. Moreover, both aircraft and
infrared imaging platforms are highly maneuverable, leading to strong ego-motion and severe image
jittering [6]. When an aircraft passes through a cloud, the aircraft would be partly occluded by the
cloud. At the same time, the infrared decoy can also lead to occlusion and radiate a stronger signal
than the aircraft. The change in aircraft attitude will give rise to the difference of imaging, which is
also a challenge for aircraft tracking, as seen in Figure 1.

Wang et al. [7] broke a tracker down into several parts and observed that the feature extractor
plays the most important role. Thus, a robust feature representation of the aircraft is crucial to the
overall performance of the tracker. Recently, trackers based on correlation filters have achieved
great success [8–11], which can be effectively trained in the Fourier domain and generate dense
response scores over all searching locations. With the adoption of multi-channel features [12,13]
instead of single-channel gray-scale features [14], the tracking performance has been greatly improved.
The progress in convolutional neural networks (CNN) inspired more research to focus on the
combination of CNN features and correlation filters [15,16], which provide a further performance
boost. However, the CNN features pre-trained on ImageNet are not discriminative enough for
domain-specific target tracking and incur a high computational cost.
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Figure 1. The challenge of airborne infrared target tracking. The aircraft is partly occluded by the
cloud and the infrared decoy. Meanwhile, the appearance of the aircraft will frequently change due to
pose variation.

By implicitly including dense samples, the correlation filters are able to make full use of limited
training data [17]. Motivated by the training mechanism of correlation filters [12,18], we explicitly
construct shifted versions of the aircraft in the initial frame as the training data without requiring
additional training data. To ensure a better tracking performance, we integrate handcrafted features
that encode general representation into the network. The learned domain-specific features and
handcrafted features can co-adapt and cooperate to achieve an objective.

The main contributions of this work are summarized as follows:

• We propose a new approach to automatically learn features online that can be adapted to the
current video domain without pre-training on large datasets.

• The general feature representations and the domain-specific features learned online are integrated
into a unified framework to ensure the tracking performance.

• The proposed method can be embedded in a framework based on correlation filters as a flexible
module to improve the performance.

• We carry out experiments on airborne infrared imagery to demonstrate that the proposed tracking
algorithm achieves competitive performance compared with benchmark trackers.

2. Related Work

Bolme et al. [14] first introduced correlation filters to visual tracking, which take single-channel
gray-scale features as the input. Tracking based on the Minimum Output Sum of Squared Error
(MOSSE) filters achieves competitive performance compared with the more complex trackers and runs
at 669 frames per second. Henriques et al. [18] explored the circulant structure of dense samples and
derived closed-form solutions with polynomial and Gaussian kernels. The introduction of the kernel
trick and the exploiting of the circulant structure of the samples enable efficient training in the frequency
domain, achieving orders of magnitude faster than standard methods. The Kernelized Correlation
Filter (KCF) [12], which can be seen as a kernelized version of a linear correlation filter, extended the
work of [18] by replacing single-channel features with Histograms of Oriented Gradients (HOGs)
features [19]. The KCF [12] and the multi-channel extension of correlation filters improve the tracking
performance significantly and run at hundreds of frames per second. The aforementioned trackers
cannot handle scale variations well. To address the problem of scale estimation, Danelljan et al. [20]
proposed to learn separate filters for scale estimation and target translation. After finding the optimal
translation, scale estimation is achieved by training a classifier based on a scale pyramid. Similarly,
Li et al. [13] proposed a scale adaptive scheme by defining a scaling pool. The multiple scale searching
strategy and the multiple feature integration scheme work together to boost the tracking performance.

The periodic assumption of the samples implied in correlation filters enables efficient training
using the Fast Fourier Transform (FFT). However, the periodic assumption also introduces undesired
boundary effects, making the tracking model inaccurate. Galoogahi et al. [21] addressed the
issue for single-channel discriminative correlation filters by proposing a new objective, which can
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reduce the samples affected by the boundary effect and can be optimized by using the Augmented
Lagrangian Method (ALM). The approach limits boundary effects and preserves computational
efficiency. Danelljan et al. [17] exploited a spatial regularization component to penalize correlation filter
coefficients near the background to alleviate the boundary effects. The spatial regularization mitigates
the attention on the background region and enhances the emphasis on the target region. The introduced
component can be used for multi-dimensional features, leading to a more discriminative tracking
model. Instead of learning from the circular samples, which are plagued by boundary effects,
Background-Aware Correlation Filters (BACFs) [22] emphasize the learning of the tracking model
from real negative samples extracted from the background. The optimization process based on
the Alternating Direction Method of Multipliers (ADMM) and Sherman–Morrison lemma achieves
real-time performance while maintaining competitive accuracy. Li et al. [11] incorporated temporal
regularization with Spatially-Regularized Discriminative Correlation Filters (SRDCFs) [17] to handle
the appearance variations of the target during the tracking process. The introduction of the temporal
regularizer to SRDCF with a single sample can approximate the training of SRDCF with multiple
samples, and the training can be optimized efficiently via ADMM. Dai et al. [8] proposed an adaptive
spatial regularization component to obtain object-aware spatial weight. The approach can be seen as a
general extension of SRDCF [17] and BACF [22]. To accelerate the tracking process, the CF model with
shallow features is exploited to estimate the scale. The other correlation filters model equipped with
complicated features are responsible for accurate localization.

Feature representation is a critical part of visual tracking [7,23]. Recently, convolutional
neural networks have achieved great success in various vision tasks. With the adoption of CNN
features, trackers based on correlation filters began to show improving performance [15,16,24].
Ma et al. [15,25] exploited the hierarchical convolutional features as target representations for visual
tracking. The learned correlation filters on each layer cooperate to infer the target location in
a coarse-to-fine manner. Danelljan et al. [16] extended SRDCF [17] by using CNN features and
demonstrated superior performance compared to handcrafted feature representations. Further,
they proposed to learn continuous convolution operators [26]. With the integration of multi-resolution
feature maps in the continuous spatial domain, the tracking performance was improved. Efficient
Convolution Operators (ECOs) [24] introduce a factorized convolution operator and a compact
generative model of samples to the C-COT (Continuous Convolution Operators Tracking) [26] tracker,
which simultaneously improves computational efficiency and tracking accuracy. He et al. [27]
investigated the multi-resolution CNN features and proposed the weight sum operation of the
response maps based on the ECO [24] tracker. The adoption of the first convolution layer and the
final convolution layer of the VGG (Visual Geometry Group)network [28] achieves the best tracking
performance. Xu et al. [29] exploited the relevance of multi-channel features and presented group
feature selection in the channel and spatial dimensions. With the use of group-sparse regularization
and the low-rank temporal constraint, the combination of correlation filters and CNN features provides
superior tracking performance.

3. Proposed Algorithm

In this section, we first introduce feature learning via convolutional regression. Second, we detail
the architecture of the network. Finally, we introduce the proposed tracking algorithm. Algorithm 1
depicts the whole process.
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Algorithm 1: Proposed tracking algorithm.
Input: Initial position and size of the aircraft [x0 y0 w0 h0].
Output: Estimated aircraft states [xi yi wi hi].

1: Construct shifted versions of the aircraft as training samples.
2: Train the network according to Equation (1).
3: Train the correlation filters using features extracted from the network.
4: for i = 2 to n (length of sequence) do

5: Extract features of the search patch.
6: Generate a response map based on the extracted features and the trained filters.
7: Calculate the displacement from the response map to estimate the state of the aircraft.
8: Update the correlation filters.
9: end for

3.1. Learning via Convolutional Regression

In the typical formulation of the correlation filters, the correlation filters are trained by solving a
linear least-squares problem. The training samples are implicitly generated by performing a circular
sliding window operation and exploiting the fast Fourier transform [12,18]. The adopted features in
the correlation filters are usually handcrafted features or CNN features pre-trained on large datasets,
which are not tightly bound to the current video domain. Inspired by the training mechanism of
correlation filters, we explicitly construct shifted versions of the aircraft in the initial frame as the
training data and try to obtain features for the current domain in a convolutional regression network.
The training of the network is consistent with the training of correlation filters. Therefore, the features
obtained from the network are tightly coupled with both the current video domain and the tracking
frameworks based on correlation filters. Learning the weights w of the network is to minimize the
following loss function,

L(w) =
1
N

N

∑
i=1

`(ϕ(si, w), gi) + λr(w) (1)

where N is the number of shifted samples, `(ϕ(si, w), gi) denotes the loss of the i-th training sample si,
λ is a regularization parameter, and r(w) represents the weight decay term. The desired output gi for
si is a scalar value sampled from the Gaussian function according to its shifted position, which can be
written as,

gi(xi, yi) = exp(−( (xi − x0)
2

2σ2
x

+
(yi − y0)

2

2σ2
y

)) (2)

where (x0, y0) stands for the initial position of the aircraft, (xi, yi) represents the shifted position of the
aircraft in the sample si, and the variances σx and σy are proportional to the width and height of the
aircraft. The correspondence between the sample si and the label gi is shown in Figure 2.

...
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.

..
.
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Figure 2. The correspondence between samples and labels. The labels are sampled from the
Gaussian function.
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Specifically, `(ϕ(si, w), gi) can be defined as the error term between the network output ϕ(si, w)

and the label gi, which is given by,

`(ϕ(si, w), gi) = ||ϕ(si, w)− gi||2 (3)

The weights w can be effectively calculated via gradient descent [23,30], which can be written as,

wt = wt−1 − η
∂L
∂w

(4)

where η is the learning rate and L(w) is the loss function defined in Equation (1). We iteratively
optimize w by minimizing the loss function L(w).

3.2. Network Architecture

Since only a few samples extracted from the initial frame can be used as training data, to ensure
better tracking performance, we incorporate general feature representations into the network.
HOG features have been widely used to represent the information of the target and gain excellent
performance in visual tracking [27]. To this end, we propose to combine HOG features that encode
general feature representations and domain-specific features learned online into the framework.
Instead of directly concatenating the HOG features and the CNN features, the way of encoding the
HOG features into the network is to co-adapt and cooperate to achieve an objective. We follow the
work of [31,32], which implemented the HOG features in a CNN framework. The implementation
mainly includes the calculation of the gradient, the assignment of the gradient, and the normalization
of the block. Firstly, the gradient along the direction uk is calculated using a directional filter. The k-th
directional filter Gk can be written as,

Gk = u1kGx + u2kGy (5)

uk =

[
cos 2πk

K
sin 2πk

K

]
, Gx =

 0 0 0
−1 0 1
0 0 0

 , Gy = GT
x (6)

where K is the number of orientations. Then, the gradients are assigned to histogram hk by using an
approximated bilinear binning, which is given by,

hk ≈ ||g||max{0,
< g, uk > /||g|| − cos2π/K

1− cos2π/K
} (7)

where < g, uk > is the projection of the gradient g along direction uk. The cell histogram is calculated
in 8 × 8 pixels and normalized in a block composed of 2 × 2 cells. The network architecture is shown
in Figure 3. The norm layer is a special case of the Local Response Normalization (LRN) layer [33],
and the clamp implements the function,

y = min{x, τ} (8)

where τ is a positive threshold. Clipping the values can avoid too much influence of very large
gradients [34].
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Figure 3. The architecture of the network. The parameter settings of the convolutional layers are shown
in Table 1. The offset layer and the Rectified Linear Unit (ReLU) layer are implemented according
to Equation (7). The norm layer normalizes the values to reduce the effect of changes in contrast.
The layer of the clamp limits the maximum values to τ.

Table 1. Detailed configurations of the convolutional layers. The first column is the name of each layer.
The next four columns indicate the parameter settings of the corresponding layer.

Layer Kernel Size Channel Stride Padding

Conv1 3×3 18 1 1
Conv2 8×8 18 4 2
Conv3 2×2 108 1 0
Conv4 2×2 27 1 1

3.3. Tracking Algorithm

The initialization parameters of the network are obtained from the HOG features, as shown in
Figure 4, and we further train the network by using Equation (1). The training process of the network
is consistent with the training mechanism of correlation filters, as we mentioned in Section 3.1. After
the network is trained, the feature maps from the network are integrated into the correlation filters for
aircraft tracking. We denote the input image by x, and the corresponding feature is ϕ(x, w). Similarly,
a correlation filter f is then learned by solving the following objective function:

f ∗ = arg min
f
|| f ∗ ϕ(x, w)− y||2 + γ|| f ||22 (9)

where y is a Gaussian function peaked at the target center, ∗ means circular correlation, and γ is a
regularization parameter. After, we crop a search patch and obtain the features z in the new frame.
The correlation response map m can be given as,

m = F−1( f̂ � ẑ) = F−1(
ŷ� ϕ̂∗

ϕ̂� ϕ̂∗ + γ
� ẑ) (10)

where the hat denotes the Fourier transform, the operator F−1 denotes the inverse fast Fourier
transform, � is the element-wise product, and ϕ̂∗ is the complex conjugate of ϕ̂. Thus, the translation
of the target from the previous frame can be estimated by searching for the maximum value of the
correlation response map. The overall procedure of the algorithm is shown in Figure 5. We summarize
the main steps of the proposed tracking algorithm in Algorithm 1.
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(a) Convolutional Layer 1 (b) Convolutional Layer 2

Figure 4. Visualization of the initial parameters of the convolutional layers.
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Figure 5. The procedure of the proposed tracker. The process of feature learning is achieved by training
the network based on Equation (1). The learned features are integrated into the correlation filter
tracking framework.

4. Experiments

We validate the proposed method by conducting experiments on both synthetic infrared imagery
and real infrared imagery. We first introduce the parameter settings of the experiments. Then,
we conduct ablation studies to verify the most important part of the proposal. Finally, we compare its
performance with trackers based on the tracking benchmark library.

4.1. Experimental Setup

We construct shifted versions of the aircraft in the initial frame to obtain 256 training samples
as the training data. The corresponding labels are assigned according to Equation (2). We follow the
initial parameter settings of the network. The number of orientations is set to 18, and the threshold
value τ in Equation (8) is 0.2. We iteratively apply the Stochastic Gradient Descent (SGD) optimizer
with a batch size of 16. The setting of the learning rate is highly related to the loss curve. Therefore,
we conduct learning rate experiments of different orders of magnitude and randomly select 30 percent
of the samples from the training set as the validation set. The corresponding loss curves are shown
in Figure 6. If the learning rate is set to 0.01, it is difficult for the loss function to converge. The loss
function will converge slowly with a learning rate of 0.0001. To this end, we set the learning rate to 0.001
to make the loss function converge more smoothly and quickly. The training is stopped after 10 epochs
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since the loss value decreases little after that, as shown in Figure 6b. After the network is trained,
the features from the network are integrated into the correlation filter tracking framework [12,24,25].
The experiments were performed on a PC with an Intel i3-4030U 1.9 GHz CPU, and 4 GB of RAM.

(a) 0.01 (b) 0.001 (c) 0.0001

Figure 6. The loss curves with different learning rates.

4.2. Ablation Studies

The features adopted in the correlation filter tracking framework play a critical role. We perform
quantitative analysis to evaluate the use of features from different layers. We follow the evaluation
metrics used in [35,36], which include the precision metric and the success metric, and follow the
One-Pass Evaluation (OPE) protocol. The success metric is presented with plots, which show the ratios
of successful frames changed with the overlap ratio between the tracked and ground-truth bounding
boxes. The precision metric calculates the percentage of frames within a range of the center location
error thresholds. Given tracking bounding box Bt and ground-truth bounding box Bgt, precision P
and overlap ratio R are defined as follows:

P =
√
(xt − xgt)

2 + (yt − ygt)
2 (11)

R =

∣∣∣∣Bt ∩ Bgt

Bt ∪ Bgt

∣∣∣∣ (12)

where (xt, yt) and (xgt, ygt) are the center coordinates of the tracking bounding box Bt and ground-truth
bounding box Bgt, respectively. For each frame, we can calculate the precision P and overlap ratio R.
Given a precision threshold Pth, the percentage of frames within the threshold Pth can be computed.
We change the threshold Pth to calculate the corresponding percentage of frames. Thus, we can plot
the percentage of frames varying with the threshold Pth, which is called the precision plot. Similarly,
we can plot the percentage of frames changing with the threshold Rth to obtain the success plots.
The precision score and the overlap score adopt thresholds Pth and Rth with 20 pixels and 0.5 to
measure the percentage of the frames, which is consistent with the parameter settings in [35].

We extract features from each layer of the network to analyze the tracking performance.
The experiments are performed based on the Hierarchical Convolutional Features Tracking (HCFT)
framework [25]. The corresponding precision plots and success plots are shown in Figure 7. The results
are obtained based on synthetic infrared imagery, composing of simulated aircraft and a real cloud
background. The dataset is collected by the Institute of Flight Control and Simulation Technology.
The features from the latter layers achieve better performance. Therefore, the features of the last layer
are adopted in our subsequent experiments.
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Figure 7. Performance comparison using features from different layers. OPE, One-Pass Evaluation.
CFOL: Convolutional Features with Online Learning.

To evaluate the effect of the initialization of the weights with the computation of the HOG
features, we perform experiments including random initialization of all the convolutional layers
and initialize the weights of the first to fourth convolutional layer with the HOG features in turn.
The performance comparisons with different initialization parameters are shown in Figure 8. As we
can see, the initialization of the second convolutional layer with the HOG features improves the
performance greatly. For better analysis of the weights after training, we visualize the changes of
the first and second convolutional layer after training with initialization parameters obtained from
the HOG features. As shown in Figure 9, the second convolutional layer shows slight changes,
which also proves the importance of its initialization. Its main distribution is kept after training.
The training process with parameters from the HOG features acts like the fine-tuning parameters for
the current video domain. The best results are achieved by initializing all layers with the HOG features.
The tracking results using the HOG features (tracking boxes with green borders) and the features after
training (tracking boxes with red borders) are shown in Figure 10. If we adopt the HOG features
alone, the tracker begins to drift to the suspected region, caused by decoy interference. After training
the network for the current video domain with the initialization parameters of the HOG features,
the tracker learns more discriminative features. As shown in Figure 10, the maximum value of the
response maps points to the target region. Thus, the combination of the training with the parameters
of the HOG features achieves better performance.

Figure 8. Performance comparison with different initialization parameters.
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(a) Convolutional Layer 1 (b) Convolutional Layer 2

Figure 9. The changes of the first and second convolutional layers.

Figure 10. Visualization of the tracking results.

Furthermore, we conduct experiments with different networks to verify the effect of the
architecture. We manually remove different layers from the original network and adopt the features of
the last layer for comparison. The performance degrades after removing layers, as shown in Figure 11.
The performance boost benefits from the combination of the network architecture and the initialization
parameters obtained from the HOG features.

Figure 11. Performance comparison with different network architectures.

To further analyze the effectiveness of the feature learning module, we integrate the module
into different frameworks based on the correlation filters and compare the tracking performance
with different baselines. The experiments are conducted based on the KCF framework [12], HCFT
framework [25], and ECO framework [24]. Then, these trackers with the online learning modules
are named KCFOL (Kernelized Correlation Filter with Online Learning), CFOL (Convolutional
Features with Online Learning), and ECOOL (Efficient Convolution Operator with Online Learning),
respectively. On the basis of the experimental results stated above, KCFOL, CFOL, and ECOOL are
equipped with features of the fourth convolutional layer. The evaluation includes the features learned
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online (ECOOL, CFOL, KCFOL), the features extracted from VGG-Net [28] (HCFT, ECO), and the
HOG features (ECO-HC KCF, HCFT-HOG). As seen from Figure 12, the ECO tracker benefits greatly
from the integration of the online learning module (ECOOL), while the KCF tracker does not gain
many benefits from the embedding module. We visualize the tracking result of the ECOOL tracker and
KCFOL tracker. As the target approaches, there exist changes in the scale of the target. Since the KCF
tracker has no scale estimation module, the tracking results focus on the local region of the target and
cannot achieve a good feature representation of the target model. The tracking bounding box easily
drifts to the suspected area. The scale estimation method adopted in the ECO tracker can handle the
challenge of scale change, leading to a better feature representation of the target model and superior
tracking performance, as seen from Figure 13.

Figure 12. Baseline comparison using different features. ECO, Efficient Convolution Operator; HCFT,
Hierarchical Convolutional Features Tracking; KCF, Kernelized Correlation Filter. ECOOL, Efficient
Convolution Operator with Online Learning. CFOL, Convolutional Features with Online Learning.
KCFOL, Kernelized Correlation Filter with Online Learning.

Figure 13. Visualization of the tracking results between the ECOOL tracker and KCFOL tracker.

4.3. Evaluating the Tracking Benchmark

The former experiments were conducted on synthetic infrared imagery, composed of simulated
aircraft and a real cloud background. The aircraft was simulated based on the OpenScene-Graph (OSG)
toolkit and was rendered according to its infrared signatures [37–40]. The generation of the simulated
image was integrated with the navigation and guidance processes of the missile. The image of the
real cloud was captured by an IRCAM Equus 327 KM. The infrared camera worked in the band of
3–5 µm, with a resolution of 640 × 512 pixels. To demonstrate the effectiveness of our aircraft-tracking
algorithm, we conducted the following experiments on both synthetic infrared imagery and real
infrared imagery based on the tracking benchmark library [35]. The comparison includes ECO [24],
HCFT [15], SiamRPN (Siamese Region Proposal Network) [41], SiamFC (Fully-Convolutional Siamese
Networks) [42], and the trackers in the tracking benchmark library [35]. The relevant methods for
comparison are summarized as follows.

CF based trackers are trained by solving a linear least-squares problem. The periodic assumption
of the samples implied by correlation filters enables efficient training using the fast Fourier transform
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and can generate a dense response. In the process of implementation, KCF [12] adopts HOG features,
while HCFT [15] and ECO [24] adopt CNN features pre-trained from VGG-Net [28]. KCF, HCFT,
and ECO are implemented using MATLAB.

Boosting based trackers consider tracking as a binary classification problem and combine
weak classifiers into a strong classifier. OAB (Online Adaptive Boosting) [43] adopts Haar features,
orientation histograms, and local binary patterns to generate weak classifiers. To alleviate the drift
problem introduced by the online update of the ensemble of classifiers, SemiT (Semi-supervised
Tracking) [44] formulates the update process in a semi-supervised fashion, which utilizes both label
data and unlabeled samples collected during tracking. The implementations of OAB and SemiT are
achieved by using the C language.

TLD (Tracking-Learning-Detection) [45] uses positive and negative constraints to restrict the
labeling of the unlabeled samples, which in turn guides the training of the binary classifier.
The constraints are implemented via Lucas–Kanade and the Normalized Cross-Correlation (NCC).
To reduce the dependence on generating training samples from unlabeled data, Struck [46] uses a
kernelized structured output support vector machine to directly predict the change in object location.
The features adopted in TLD and Struck are binary patterns and Haar features, respectively. Besides,
TLD is implemented using MATLAB and the C language, while Struck is carried out using the
C language.

The trackers adopt features with sparse representation expressing a target by a sparse linear
combination of a few trivial templates. In this category, the L1APG (L1 Accelerated Proximal
Gradient) [47] tracker adopts the holistic representation and tracks the object by solving the L1
minimization problem. ASLA (Adaptive Structural Local Appearance) [48] utilizes a structural local
sparse model and alignment-pooling method across the local patches to measure the similarity between
the candidate regions and the target model. They are implemented within the particle filter framework,
and the optimal state can be computed by the maximum a posteriori estimation. In the implementation,
L1APG and ASLA are conducted via the MATLAB platform.

The Siamese network consists of two branches, and the parameters between the two branches
are tied to apply an identical transformation to the exemplar image and the candidate image.
SiamFC [42] formulates tracking as learning similarity functions. In a more specific implementation,
the similarity functions are trained from ImageNet Video with the convolutional features of
AlexNet [33]. SiamRPN [41] adopts the region proposal network instead of the multi-scale test
adopted in SiamFC to obtain a better estimation of the scale. The training set of SiamRPN includes
ImageNet Video and YouTube-BB (Youtube Bounding Boxes)[49]. The implementations of SiamFC
and SiamRPN are performed through MatConvNet (MATLAB toolbox implementing Convolutional
Networks)and Pytorch, respectively. The codes of KCF, OAB, SemiT, TLD, Struck, L1APG, and ASLA
are provided in the tracking benchmark library [35], and the codes of HCFT, ECO, SiamFC, and
SiamRPN are provided by the authors.

The evaluation follows the OPE protocol used in [35], and the details of the dataset used in the
experiments are listed in Table 2. The evaluated tracking algorithms are summarized in Table 3. Trackers
with dense sampling (TLD, Struck) provide a large search range and achieve better performance. Among
the evaluation results, discriminative trackers (ECO [24], TLD [45], Struck [46]) perform better than
trackers based on generative models (L1APG [47], ASLA [48]). Discriminative trackers employ the
information from both the target and background and train a classifier to distinguish the target from the
background [7]. For generative model based trackers, it is difficult to learn the generative appearance
model of the target in the complex background. For aircraft tracking in infrared imagery, the aircraft
may be frequently occluded by a cloud or an infrared decoy, resulting in inaccurate target models.
As seen from Figure 14, ASLA and L1APG drift to the decoy and the cloud in Frame 75. The online
update of the ensemble of weak classifiers helps distinguish the target from the background, but it
also introduces errors due to frequent updates. SiamRPN and SiamFC benefit from the large training
dataset to learn similarity functions. However, they lack an efficient model update mechanism to
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handle the appearance change, leading to model drift problems. Notice that in Frame 107, TLD lost
the target. However, in Frame 108, TLD is re-initialized by its detector and successfully locks onto the
target again. Both HCFT and ECO adopt CNN features to improve the performance. Instead of simply
resampling all feature channels at the same resolution, ECO adopts continuous convolution operators
to integrate feature channels, which enables more accurate localization. After replacing the pre-trained
CNN feature with online learning features (CFOL, ECOOL), the performance of the baseline methods
are improved. The overall performance is summarized by precision plots and success plots. For clarity,
only the top 10 trackers are presented, as shown in Figure 15. Qualitative comparisons with the
top-performing trackers are shown in Figure 16.

Table 2. Details of the dataset.

Datasets Number of Sequences Max Frames Min Frames Total Frames Bit Depth Resolution

Synthetic imagery 6 450 316 2304 8 128 × 128
Real imagery 4 2831 821 8832 8 640 × 512

Table 3. Evaluation of the tracking results. (DM: Discriminative Model, GM: Generative Model,
CF: Correlation Filter, BP: Binary Pattern, OH: Orientation Histogram, DS: Dense Sampling, PF: Particle
Filter, MU: Model Update, Y: Yes, N: No. We refer to [35] for more details).

Tracker Feature Search MU Precision Overlap

DM

CF based

KCF HOG DS Y 0.668 0.348
HCFT Pretrained CNN DS Y 0.741 0.377
CFOL CNN Learned online DS Y 0.748 0.439
ECO Pretrained CNN DS Y 0.898 0.764

ECOOL CNN Learned online DS Y 0.932 0.834

Boosting based OAB Haar, BP, OH DS Y 0.701 0.408
SemiT Haar DS Y 0.652 0.359

Struck Haar DS Y 0.749 0.471
TLD BP DS Y 0.841 0.434

GM ASLA Sparse PF Y 0.489 0.384
L1APG Sparse PF Y 0.515 0.356

Siamese SiamRPN Pretrained CNN DS N 0.638 0.448
SiamFC Pretrained CNN DS N 0.643 0.471

Figure 14. Qualitative comparisons of the tracking results.
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Figure 15. Quantitative comparison of the tracking performance.

(a) Real infrared sequences.

Figure 16. Cont.
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(b) Synthetic infrared sequences.

Figure 16. Sample tracking results of ECOOL, ECO, TLD, Struck, OAB, and SiamFC.

5. Conclusions

In this paper, we propose an effective algorithm for aircraft tracking in infrared imagery.
We integrate domain-specific features learned online and general feature representations in a unified
convolutional network. The training of the network is consistent with the training mechanism of
the correlation filters. Therefore, the features learned are closely related to both the current video
domain and the trackers based on correlation filters. The introduced feature learning method can
be integrated into the tracking framework as a flexible module to improve the baseline method.
Experimental results show that the proposed algorithm achieves competitive performance in terms of
accuracy and robustness.
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