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Abstract: Benthic habitats are structurally complex and ecologically diverse ecosystems that are
severely vulnerable to human stressors. Consequently, marine habitats must be mapped and monitored
to provide the information necessary to understand ecological processes and lead management actions.
In this study, we propose a semiautomated framework for the detection and mapping of benthic
habitats and seagrass species using convolutional neural networks (CNNs). Benthic habitat field data
from a geo-located towed camera and high-resolution satellite images were integrated to evaluate the
proposed framework. Features extracted from pre-trained CNNs and a “bagging of features” (BOF)
algorithm was used for benthic habitat and seagrass species detection. Furthermore, the resultant
correctly detected images were used as ground truth samples for training and validating CNNs with
simple architectures. These CNNs were evaluated for their accuracy in benthic habitat and seagrass
species mapping using high-resolution satellite images. Two study areas, Shiraho and Fukido (located
on Ishigaki Island, Japan), were used to evaluate the proposed model because seven benthic habitats
were classified in the Shiraho area and four seagrass species were mapped in Fukido cove. Analysis
showed that the overall accuracy of benthic habitat detection in Shiraho and seagrass species detection
in Fukido was 91.5% (7 classes) and 90.4% (4 species), respectively, while the overall accuracy of
benthic habitat and seagrass mapping in Shiraho and Fukido was 89.9% and 91.2%, respectively.

Keywords: convolutional neural networks; benthic habitats mapping; seagrass spices mapping;
shallow-water ecosystems

1. Introduction

Recently, high-resolution underwater video systems have enabled scientific discoveries of the
seafloor related to marine studies, environmental management, and species monitoring. In particular,
towed underwater video cameras play an important role in detecting benthic habitats [1,2] by facilitating
detailed observations and field sampling of unexplored marine ecosystems. Furthermore, towed video
cameras are low cost, have fast processing, and are environmentally sustainable, i.e., they do not harm
the environment. However, these video systems produce low light, increased turbidity, and images
with high noise, which all pose challenges for underwater video analysis. Firstly, low illumination and
turbid conditions produce weak descriptors and confuse object detection techniques. Secondly, benthic
habitats are frequently altered by waves and currents and may appear to be different from various
camera angles. Thirdly, the images produced by towed video cameras usually have low contrast
and low saturation; consequently, these often provide insufficient information for the recognition
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and discrimination of species. Finally, the captured images often consist of an assemblage of benthic
habitats with irregular shapes and sizes [3].

Previous studies [4–6] have provided precedence for applying computer vision-based techniques
to benthic image classification. Such research has used multiple combinations of shape, color,
and texture features as the most important discriminating factors for datasets. For example,
Shihavuddin et al. [6] tested a combination of color and texture feature descriptors (such as completed
local binary patterns, Gabor filter responses, hue channel color histograms, and gray level co-occurrence
matrices) for underwater image classification. They proposed using several combinations of machine
learning classifiers, e.g., k-nearest neighbors, neural networks, and support vector machines (SVMs).
Three benthic datasets, EILAT, RSMAS, and Moorea labeled corals (MLC), were used to evaluate
the proposed methods. The results of the study showed that a combination of various feature
extraction descriptors and classifiers outperformed a single method across various datasets with at
least a 5% overall improvement in classification accuracy. In addition, Gauci et al. [7] assessed three
red-green-blue channels and three LAB color dimensions representing the lightness and the four
unique colors of human vision extracted manually as classifiers of two benthic habitats: Sand and
maerl. They used images captured by cameras mounted on remote operated vehicles (ROVs) and
evaluated the accuracy and efficiency of three machine learning algorithms (i.e., random forest, neural
network, and classification trees); each of the tested algorithms achieved state-of-the-art classification
accuracies. In another study, Raj and Murugan [8] used bagging of features (BOF) descriptors with
an SVM algorithm to classify seven benthic classes. Around 11000 underwater images captured by a
camera on an ROV device were used to evaluate the process: 80% for training and 20% for testing.
The proposed method resulted in 93% overall accuracy (OA).

Recently, convolutional neural networks (CNNs) have been successfully used in numerous
classification tasks [9]. The production of new CNN architectures such as AlexNet [10], VGGNet [11],
ResNet [12], and GoogleNet [13] has improved the resultant classification accuracy in several computer
vision problems. Furthermore, automation of the classification of benthic habitat images captured by
towed underwater cameras has now been investigated [14,15]. Raphael et al. [16] reviewed the recent
developments in CNNs for coral classification, and they highlighted the current limitations and future
research directions of this technology.

Elawady [17] was the first to propose the use of CNNs for coral classification; the raw input
images used in the study were first enhanced using color correction and smoothing filtering. A LeNet-5
CNN was then trained with an input layer containing three basic channels of color images, texture,
and shape descriptors. Two datasets were used to evaluate the proposed method: The MLC dataset [18],
which included 2000 images and 9 classes, and the Atlantic Deep-Sea dataset [19], which had 55 images
and 5 classes. Overall, the model resulted in 55% OA. Asma et al. [20] also proposed a coral classification
model for detecting damaged and healthy corals using a CNN. These authors collected 1200 images of
damaged and healthy corals from the Persian Gulf, fusion tables, Google searches, coral reef image
bank.org, and Australian and Florida corals datasets. From these images, 90% were used for training
and 10% for evaluating the model. The final model predicted diseased and healthy corals with 95%
classification accuracy. In another study, Andrew et al. [21] compared CNN and fully CNN (FCNN)
architectures using multi-view underwater images to improve coral reef ecosystem classification
accuracy. These authors proposed a patch-based CNN that could process multiple-viewpoint images as
inputs while also creating 3D semantic segmentation of diverse coral reef batches. They also evaluated a
combination of voting- and logit pooling-based methods with these patch-based CNNs. To validate the
method, 2391 stereo image pairs were divided into 2 subsets, an 80% training set, and a 20% testing set,
in order to classify 10 classes. They reported an OA of 94%. In a study by Anabel et al. [22], the authors
evaluated three powerful CNNs (Inception v3, ResNet, and DenseNet) with data augmentation
techniques for classifying underwater coral images. Three datasets (MLC, ELAT, and RSMAS) were
used for evaluating these models. Furthermore, Alessandra et al. [15] exploited the diversity of various
CNN ensembles to study plankton and coral classification. These ensembles were evaluated using five
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datasets (WHOI, ZooScan, Kaggle plankton datasets, EILAT, and RSMAS coral datasets). In these latter
two studies, the evaluated CNN models accomplished state-of-the-art accuracies that outperformed
classical methods.

Although these aforementioned approaches achieved high recognition accuracies, they each
required substantial computation and memory requirements, which are not available to most users.
Moreover, the available underwater image datasets were inadequate for training CNNs for benthic
habitats feature extraction from scratch. As a result, the authors of these studies used pre-trained CNNs
as feature extractors for classifying machine learning algorithms. In nearly all image detection and
classification applications, the image descriptors extracted from pre-trained CNNs have been superior
to hand-crafted features [23]. These learned descriptors are also transferable to other domains, such as
underwater image detection, which saves time and reduces labor relative to end-to-end network
training. Thus, researchers have recently begun to solve underwater classification problems using
pre-trained CNNs as feature extractors [24].

For example, the authors in [25] applied extracted CNN attributes from a pre-trained VGGNet
first fully connected layer for coral reef classification. These authors trained a multilayer perceptron
(MLP) network with the extracted attributes using 4750 images in which 237,500 points had been
annotated by an expert. These images were a subset from the Benthoz15 dataset [26]; they were
divided into 70% training and 30% testing images. The model classified the images into coral and
noncoral, achieving 97% OA. In another study, Ammar et al. [27] combined VGGNet learned features
with hand-crafted features for coral reef classification using a two-layer MLP classifier to exploit the
diversity of the representation attributes, which included 4096 dimensional features extracted from a
fully connected layer of VGGNet and 540 dimensional color and texture descriptors [18]. The proposed
method was evaluated using 2055 images with 400.000 expert pixel annotations from the MLC dataset
labeled to four noncoral labels and five coral genera. This combination of features outperformed the
use of individual attributes with an average 3% increase in classification accuracy. Lian et al. [28]
combined fully connected features and convolutional features extracted from VGGNet network layers
in a coral classification process. The principal component analysis dimensionality reduction method
was used to compress these attributes, while the EFC dataset, consisting of 212 images with 42.400 point
annotations categorized into 10 classes, was used for model evaluation. Two-thirds of these samples
were used for training and one-third was used for testing. The authors achieved 91.4% OA using a
linear SVM algorithm. In a separate study [29], the authors introduced features extracted from deep
residual networks [12] for underwater classification using four benthic datasets (MLC, Benthoz15,
EILAT, and RSMAS). They showed that features extracted from deeper convolutional layers were
superior to those from shallower layers. Moreover, combining these features resulted in more powerful
image descriptors. Finally, Ammar et al. [24] tested the same deep residual network features for
recognizing kelp in underwater images; these features were found to outperform both CNNs and
hand-crafted features.

Based on these collected studies, benthic cover recognition approaches using underwater images
can be placed into two categories, each of which has numerous disadvantages. The first approach
depends on classifying underwater images using manually labeled points in each image and
saved-in-state, off-the-shelf datasets; however, this approach is ill-suited to mapping large tracts
of coastline [30]. The second approach involves classifying underwater images individually based on
hand-crafted methods, which largely rely on human annotators; thus, this approach can be cumbersome
and inefficient [31]. The automatic classification of towed underwater images, therefore, remains
challenging and requires further innovative [31]. The classic alternative is to produce benthic habitat
maps of large-scale coastal areas from multispectral satellite images [32–34]. However, this process
requires sufficient ground truth data to train the classification algorithms every time a classification is
performed. Consequently, the classification of largely inaccessible benthic habitat is rare. Therefore,
it remains necessary to develop a benthic habitat mapping framework that can be applied to various
areas with reliable cost, speed, and accuracy [35]: This is the focus of the present study.
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Here, we present a semiautomated framework for benthic habitat and seagrass species detection
and mapping. Specifically, we investigated a combination of shape and CNN descriptors in an
underwater image detection process. Furthermore, we classified high-resolution satellite images for
benthic habitat mapping using CNNs with simple architectures. The main achievements described
here are summarized as follows: (i) We combined CNN attributes, i.e., image features extracted from
pre-trained CNNs, and BOF attributes to exploit their diversity; (ii) we demonstrated that our proposed
method outperforms single CNN and BOF algorithms using two diverse underwater image recognition
datasets; (iii) we exploited this combination to create ground truth samples for high-resolution satellite
image classification; and (iv) we used CNNs with simple architectures for benthic habitat and seagrass
species mapping and accomplished a superior classification accuracy relative to those produce by
machine learning algorithms.

2. Materials and Methods

2.1. Study Areas

Ishigaki Island, located in the south of Japan in the Pacific Ocean, was the overall study area
chosen for this framework assessment (Figure 1). It is a subtropical island with abundant biodiversity,
shallow coastal areas, and a maximum water depth of 3.5 m. Two smaller areas on either side of
the island were selected to evaluate the framework: The Shiraho coastal area and Fukido cove area.
The Shiraho area was a heterogeneous ecosystem with numerous reefscapes, including complex hard
corals, such as Acropora and Porites, and soft corals, such as Heliopora coerulea. Furthermore, a wide
range of sediments exists along the coastline (e.g., soft sand, cobble, and boulders), as well as both
brown and other algae. Moreover, a dense Thalassia hemprichii seagrass grows on the sandy-bottom
seafloor. The Fukido area is a seagrass bed with turbid waters located in a tidal flat with sand, silt,
and clay bottom coverage near the mouth of the Fukido River. A T. hemprichii seagrass meadow
dominates the area: Leaves are 8–15 cm high, and seagrass extends along the shoreline (300 m wide
and 1000 m long). In addition, long leaves of Enhalus acoroides seagrass with 30–150 cm in length,
which is classified as vulnerable species, have been found in the Fukido area [36]. The seagrasses in the
Fukido area can, therefore, be placed into 4 categories: E. acoroides, tall T. hemprichii, short T. hemprichii,
and areas in which seagrass are sparse (Figure 2).
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Figure 2. Examples of towed images that were used for benthic habitats and seagrass identification.
(a) Corals, (b) blue corals, (c) soft sand, (d) sediments, (e) brown algae, (f) algae, (g) seagrass,
(h) E. acoroides, (i) tall T. hemprichii, (j) small T. hemprichii, (k) seagrass sparse areas.

2.2. Field Data Collection

Field data from the Shiraho benthic habitats and Fukido seagrass species were collected during
the typhoon season on 21 and 28 August 2016, respectively. Moreover, the rainfall acquired prior
to the data acquisition times increased the outflows from the major tributaries, Todoroki River for
Shiraho reef and Fukido River for Fukido cove. However, the turbidity level was higher in Fukido
cove than the Shiraho area. The Fukido cove muddy substrate and that it is near to the Fukido River
mouth explain the high turbidity level. Two field surveys were performed to collect underwater
images using a high-resolution towed video camera (GoPro HERO3 Black Edition) [37] (Figure 3),
which was attached with a wooden stand to a motorboat side, thus that it was placed directly beneath
the water surface. In addition, the coordinates of the surveyed underwater images were recorded
using a differential global positioning system (DGPS) mounted vertically above the camera (Figure 4).
At each site, about 4 h of recordings were collected; these were then converted to underwater images
using free video-to-image converter software. The extracted images had 1 second time intervals that
were synchronized with the DGPS observations. Finally, 3000 benthic habitat images were labeled as
7 classes, while 1500 seagrass images were labeled as 4 categories. The images were labeled manually
to construct benthic habitat- and seagrass species-detection schemes.
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2.3. Satellite Data

Two high-resolution satellite images were used for benthic habitat and seagrass mapping at the
2 study areas: A Quickbird satellite image for the Shiraho area and a Geoeye-1 satellite image for
Fukido cove with 0.6 m and 0.5 m spatial resolutions, respectively. Both platforms had the same number
of bands, i.e., one panchromatic band and red, green, and blue multispectral bands. The Quickbird
image was acquired on 20 July 2007, and the Geoeye-1 image was acquired on the 23 June 2017. On both
dates, the weather was calm, and cloud coverage was low. Although there was a time gap between the
satellite image collection and field data surveys, neither study area experienced significant changes
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during this time [38]. A radiometric calibration process was performed for both images using the
values presented in the images metadata files.

2.4. Methodology

The framework proposed in this study has 2 successive processes. First, benthic habitats and
seagrasses were detected by SVM [39,40] classifier using attributes extracted from pre-trained CNNs and
a BOF [41,42] approach. Second, the correctly detected images were used as field samples for training
a CNN with a simple architecture in order to map benthic habitats and seagrasses. These processes
were conducted in the MATLAB environment.

2.4.1. Benthic Habitat and Seagrass Detection

Detection of benthic cover and seagrass species in each study area was established using the
following steps:

1. For the Shiraho area, 7 benthic cover categories were labeled individually by a human annotator
using 3000 underwater images: T. hemprichii seagrass, soft sand, hard sediments (pebbles, cobbles,
and boulders), brown algae, other algae, corals (Acropora and Porites), and blue corals (H. coerulea).

2. For Fukido cove, 4 seagrass categories were also labeled as E. acoroides, tall T. hemprichii,
short T. hemprichii, and seagrass sparse areas using 1500 underwater images.

3. All these labeled georeferenced images were used as inputs for the pre-trained VGG16 CNN and
BOF approach in order to create the descriptors for use in the semiautomatic recognition process.

4. Extracted attributes from the fully connected layer (FC6) of the VGG16 CNN and BOF approach
were used as the inputs for training the SVM classifier; the outputs were image labels.

5. Validation of the SVM classifier was conducted using 75% randomly-sampled independent
images for training and 25% for testing.

6. More images were categorized using the validated SVM classifier and checked individually.

For benthic habitat and seagrass species categorization, 4096 descriptors were extracted from the
input images using the fully connected layer (FC6) of VGG16 CNN. In addition, 250 BOF attributes
were extracted with a block width of 32, grid step of 16, the strongest feature percentage from each
category set to 80%, and by using the grid point selection method. Subsequently, the SVM classifier
with the third-order polynomial kernel function was used for the categorization process.

2.4.2. Benthic Habitat and Seagrass Mapping

Correctly categorized underwater images were used as ground truth samples for benthic cover
and seagrass species mapping as follows:

1. A number of image patches were extracted around each correctly categorized image location
with 2 pixel dimensions in horizontal and vertical directions.

2. The image patch size was 2 × 2 × 3 pixels; 1500 image patches were each extracted from the
Quickbird imagery for benthic habitat mapping and the Geoeye-1 imagery for seagrasses mapping.

3. These image patches were used as inputs for evaluating CNNs with a simple architecture for
benthic habitat and seagrass mapping; they were divided into 75% training images and 25%
testing images.

4. Benthic habitat and seagrass mapping was performed by the trained CNNs using high-resolution
satellite images.

The proposed CNN for benthic habitat and seagrass species mapping had 7 layers (Figure 5);
the classification layer number was 7 for benthic habitat mapping and 4 for seagrasses mapping.
The results of the CNN were obtained using a stochastic gradient descent optimizer with an initial
learning rate of 0.0001. Finally, the highest classification accuracy was achieved for benthic habitats using
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a maximum of 25 epochs and 7 iterations per epoch; for seagrass species classification, classification
accuracy was maximized using at most 65 epochs and 2 iterations per epoch. The methodology steps
for benthic habitat and seagrass recognition and mapping are shown in Figure 6.Remote Sens. 2020, 12, x 8 of 17 
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3. Results

3.1. Benthic Habitat and Seagrass Detection

The overall accuracies for each benthic habitat and seagrass species categorized from the SVM
classifier using BOF and VGG16 attributes are shown in Figures 7 and 8, respectively. In addition,
Tables 1–3 summarizes the corresponding recognition OA and kappa values for each of the tested
methods. Furthermore, Tables 2–4 present the confusion matrices for the detection of benthic habitats
and seagrass species using the BOF and VGG16 descriptors along with the SVM classifier.
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Shiraho area. AL: Algae, BA: Brown Algae, CO: Corals, BC: Blue Corals, SD: Sediments, SS: Soft Sand,
and SG: Seagrass.

Table 1. The overall accuracy (OA) and Kappa results of all tested methods for benthic habitat detection
for the Shiraho area.

Methodology BOF VGG16 VGG16&RES50 BOF&VGG16

OA% 85.2 87.5 89.9 91.5
Kappa 0.82 0.85 0.88 0.90

Table 2. The resulted confusion matrix for benthic habitat detection using BOF&VGG16 descriptors
and SVM classifier. UA: User Accuracy, PA: Producer Accuracy.

Predicted Class
Validated Class

Row. Total UA
AL BA CO BC SD SS SG

AL 128 4 2 1 1 0 1 137 0.93
BA 3 47 0 0 0 0 0 50 0.94
CO 4 0 131 4 3 0 0 142 0.92
BC 4 2 6 31 2 0 1 46 0.67
SD 4 0 1 1 128 2 1 137 0.93
SS 0 0 0 0 7 43 0 50 0.86
SG 6 0 0 0 4 0 178 188 0.95

Col. Total 149 53 140 37 145 45 181 OA = 91.5%
PA 0.86 0.89 0.94 0.84 0.88 0.96 0.98 Kappa val. = 0.90
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Figure 8. The resulted overall accuracy of each seagrass species of all tested methods for Fukido area.
SSA: Seagrass sparse areas, STH: Tall T. hemprichii, TTH: Small T. hemprichii, and EA: E. acoroides.

Table 3. The overall accuracy (OA) and Kappa results of all tested methods for seagrass species
detection for the Fukido area.

Methodology BOF VGG16 VGG16&RES50 BOF&VGG16

OA% 84.0 86.0 87.7 90.4
Kappa 0.77 0.80 0.83 0.86

Table 4. The resulted confusion matrix for seagrass species detection using BOF&VGG16 descriptors
and SVM classifier. UA: User Accuracy, PA: Producer Accuracy.

Predicted Class
Validated Class

Row. Total UA
EA TTH STH SSA

EA 85 0 2 2 89 0.96
TTH 0 131 3 4 138 0.95
STH 4 4 98 0 106 0.93
SSA 0 1 16 25 42 0.60

Col. Total 89 136 119 31 OA = 90.4%
PA 0.96 0.87 0.82 0.81 Kappa val. = 0.86

3.2. Benthic Habitat and Seagrass Mapping

The training and validation accuracy progress of the proposed CNN for the Shiraho benthic habitats
and Fukido seagrass species is shown in Figures 9 and 10, respectively. In addition, Tables 5 and 6
show the resultant confusion matrices from benthic habitat and seagrass species classification using
the proposed CNN. Finally, the resultant classified maps for the Shiraho benthic habitats and Fukido
seagrass species are presented in Figure 11.
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Figure 10. The training and validation accuracy progress of the proposed CNN for Fukido cove
seagrasses classification.

Table 5. The resulted confusion matrix for benthic habitat classification using proposed CNN.
UA: User Accuracy, PA: Producer Accuracy.

Predicted Class
Validated Class

Row. Total UA
SG SS AL CO BC BA SD

SG 37 0 2 0 13 0 1 53 0.70
SS 0 52 2 0 0 0 0 54 0.96
AL 0 5 49 0 0 0 0 54 0.91
CO 0 0 0 48 3 2 0 53 0.91
BC 3 0 0 2 49 0 0 54 0.91
BA 0 0 0 1 1 50 1 53 0.94
SD 0 0 0 0 2 0 52 54 0.96

Col. Total 40 57 53 51 68 52 54 OA = 89.9%
PA 0.93 0.91 0.92 0.94 0.72 0.96 0.96 Kappa val. = 0.88

Table 6. The resulted confusion matrix for seagrass spices classification using proposed CNN.
UA: User Accuracy, PA: Producer Accuracy.

Predicted Class
Validated Class

Row. Total UA
TTH SSA EA STH

TTH 84 3 0 7 94 0.89
SSA 0 80 10 3 93 0.86
EA 0 2 88 4 94 0.94

STH 4 0 0 90 94 0.96
Col. Total 88 85 91 111 OA = 91.2%

PA 0.95 0.94 0.97 0.81 Kappa val. = 0.88



Remote Sens. 2020, 12, 4002 12 of 18Remote Sens. 2020, 12, x 12 of 17 

 

 
 

(a) (b) 
Figure 11. The resulted CNNs classified maps in Ishigaki Island, Japan: (a) Shiraho area benthic habitats 
map (b) Fukido cove seagrasses maps. 

4. Discussion 

The use of towed cameras with motorboats to survey benthic habitats has allowed scientists to 
investigate larger areas than could be assessed by traditional SCUBA diving. However, the efficiency 
of image collection is in contrast to the inefficiency of data processing in ecosystem analysis: Image 
classification is usually performed manually by marine experts, which is time-consuming and costly 
[24]. As a result, developing an automated analysis of underwater images is essential if the 
advantages of remote surveying technologies are to be exploited. In the present study, we proposed 
a semiautomated framework for benthic cover and seagrass species detection and mapping using 
CNNs. Our framework provides alternative solutions for the recognition and mapping of benthic 
habitats and seagrasses worldwide and could ultimately support the conservation of these important 
ecosystems. 

For benthic habitats and seagrass species detection, numerous layers from various CNNs with 
different architectures, including FC7 and FC8 layers from VGG19 or AlexNet, and loss3-classifier 
layer from GoogleNet, were tested for all detection classes, but these yielded relatively low OA 
values. Indeed, the FC6 layer from VGG16 and the FC1000 layer from Resnet50 produced 
significantly better results than these CNNs layers when used to recognize benthic habitats and 
seagrass spices. Furthermore, various additional attributes were tested such as the Hue Saturation 
Value (HSV) color descriptors and the Gray Level Co-occurrence Matrix (GLCM) texture descriptors. 
However, these descriptors yielded significantly lower OA, and their addition to the BOF and VGG 
16 attributes did not improve the resulted overall detection accuracy. We also applied principal 
components analysis in our study to remove redundant features; however, this reduced the OA in all 
experiments. Moreover, the powerful and generic features extracted from CNNs have already shown 
superior performance over BOF features [43] and conventional hand-crafted features [27,44]. In 
addition, various classifiers, such as Bagging trees, K-nearest neighbor, and neural network, were 
assessed for benthic habitats and seagrasses detection but yielded lower OA results. On the other 
hand, SVM produced the highest OA for all benthic cover and seagrasses species’ classification 
compared to all tested classifiers. 

Figure 11. The resulted CNNs classified maps in Ishigaki Island, Japan: (a) Shiraho area benthic
habitats map (b) Fukido cove seagrasses maps.

4. Discussion

The use of towed cameras with motorboats to survey benthic habitats has allowed scientists to
investigate larger areas than could be assessed by traditional SCUBA diving. However, the efficiency
of image collection is in contrast to the inefficiency of data processing in ecosystem analysis: Image
classification is usually performed manually by marine experts, which is time-consuming and costly [24].
As a result, developing an automated analysis of underwater images is essential if the advantages of
remote surveying technologies are to be exploited. In the present study, we proposed a semiautomated
framework for benthic cover and seagrass species detection and mapping using CNNs. Our framework
provides alternative solutions for the recognition and mapping of benthic habitats and seagrasses
worldwide and could ultimately support the conservation of these important ecosystems.

For benthic habitats and seagrass species detection, numerous layers from various CNNs with
different architectures, including FC7 and FC8 layers from VGG19 or AlexNet, and loss3-classifier
layer from GoogleNet, were tested for all detection classes, but these yielded relatively low OA
values. Indeed, the FC6 layer from VGG16 and the FC1000 layer from Resnet50 produced significantly
better results than these CNNs layers when used to recognize benthic habitats and seagrass spices.
Furthermore, various additional attributes were tested such as the Hue Saturation Value (HSV)
color descriptors and the Gray Level Co-occurrence Matrix (GLCM) texture descriptors. However,
these descriptors yielded significantly lower OA, and their addition to the BOF and VGG 16 attributes
did not improve the resulted overall detection accuracy. We also applied principal components analysis
in our study to remove redundant features; however, this reduced the OA in all experiments. Moreover,
the powerful and generic features extracted from CNNs have already shown superior performance
over BOF features [43] and conventional hand-crafted features [27,44]. In addition, various classifiers,
such as Bagging trees, K-nearest neighbor, and neural network, were assessed for benthic habitats and
seagrasses detection but yielded lower OA results. On the other hand, SVM produced the highest OA
for all benthic cover and seagrasses species’ classification compared to all tested classifiers.
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In the majority of benthic images, blue corals and corals were in the same location, while sediments
and soft sand were mixed, all of which confused all classifiers. Furthermore, distinguishing between
sparse seagrass areas and short T. hemprichii areas was the most challenging part of seagrass detection.
Considering the poor quality of the towed images, water turbidity, and the mix of substrates in the
studied areas, the resultant OAs can be considered reliable for both benthic habitats and seagrass
species detection. Thus, we have demonstrated that transfer learning with pre-trained VGG16 networks
combined with BOF significantly improves the detection of seagrass meadows and benthic habitats at
various locations.

Previous studies have presented various techniques for benthic cover and seagrass mapping.
For instance, several studies have demonstrated the effectiveness of an object-based image analysis
approach for seabed mapping using high-resolution satellite images [45–47]. These studies reported
accuracies of 61.6% (9 classes) [45], 82.0% (11 classes) [46], and 92% (4 classes) [47] for mapping benthic
habitats using Quickbird-2, Planet Dove, and Worldview-2, respectively. Other studies have integrated
bathymetry data with Worldview-2 sensor bands as inputs for machine learning classifiers [35,48].
Consequently, Luis et al. [48] achieved 89.5% for classifying seven classes using a maximum likelihood
classifier, whereas Pramaditya et al. [35] reached a maximum OA of 88.5% for 14 classes using a random
forest classifier. Alternative studies proposed unsupervised classification of high-resolution satellite
images and labeling classes based on field observations for seabed mapping [2,49,50]. These studies
showed that unsupervised classification labeled with field data achieved overall accuracies comparable
to those produced by machine learning classifiers. However, all of these studies used field samples
extracted manually with small sample sizes, which involved substantial labor and processing time.
Moreover, unsupervised approaches require adequate field samples for validation and calibration.
Our proposed semiautomated framework can overcome such problems to create field samples
automatically for subsequent benthic habitat and seagrass mapping.

After several experiments, we conclude that the best patch size is 2× 2× 3 pixels for benthic habitat
and seagrass mapping. Additionally, the optimum CNN models have the architecture illustrated
in Figure 5. However, the proposed CNN became confused between short and tall T. hemprichii in
some areas. Moreover, discriminating sparse seagrass areas from specific seagrass species, especially
E. acoroides, was also a challenging task. E. acoroides leaves are generally located in submerged areas;
they are usually projected vertically and do not lie flat on the substrate. As a result, E. acoroides is
difficult to classify by remote sensing methods [51]. In benthic habitats, the seagrass areas had the
lowest overall classification accuracy as they were misclassified with blue coral areas and other classes.
However, other classes were classified with significantly higher overall accuracies and our benthic
habitat mapping results were superior to those of similar studies that used high-resolution satellite
images for large-scale mapping of the seabed. It must be noted that it is difficult to compare our
accuracies with those of previous studies due to differences in the satellite sensors used, water turbidity,
and diversity of substrate.

In general, seagrasses are vital blue carbon ecosystems that are suffering from global decline [51,52];
however, these declines are not well-documented in tropical regions [53]. This global decline
is a consequence of human activities, causing seagrass degradation through eutrophication and
sedimentation [54]. Thus, obtaining seagrass species distributions and percentage coverage is vital for
developing protection and monitoring systems of these threatened areas. However, applying optical
remote sensing techniques for the large-scale mapping of seagrasses is challenging [55] for many
reasons. First, seagrasses usually grow in turbid waters, and the signal to noise ratio of the processed
images is exceptionally low. Second, seagrass meadows show significant seasonal variation and are
frequently moved by waves and currents. Third, seagrass areas are usually heterogeneous with mixed
seagrass species.

While high-resolution satellite images are generally available, reliable seagrass labeling and
mapping using machine learning algorithms is usually difficult for the reasons mentioned above.
Nevertheless, recent studies have tested machine learning algorithms for seagrass mapping.
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For instance, Eva et al. [56] compared WorldView-3, Ziyuan-3A, Sentinel-2, and Landsat 8 sensors for
mapping of seagrass meadows in shallow waters, all of which were suitable for seagrass mapping.
Moreover, an object-based image analysis model classified five seagrass species with 69% maximum OA
using WorldView-3 imagery. Pramaditya and Wahyu [55] showed that a classification trees algorithm
outperforms SVM and maximum likelihood for seagrass species mapping using PlanetScope satellite
image; the classification trees algorithm classified five seagrass meadows with 74% OA. Nam et al. [57]
compared ensemble machine learning algorithms for seagrass monitoring using data from Sentinel–2
imagery; they demonstrated the effectiveness of a rotation forests ensemble for classifying dense and
sparse seagrass areas with 88% OA. On the other hand, Daniel et al. [58] proposed deep capsule
network and deep CNN models for the quantification of seagrass distribution through regression.
Their proposed models were evaluated with WorldView-2 satellite images and achieved better results
than traditional regression methods. Overall, the results of our study show that detection and mapping
of seagrasses using the proposed CNN model is a better option than using traditional machine
learning algorithms.

Our proposed framework has several advantages. First, the system used for collecting in situ
data is not harmful to the environment and can be performed annually to monitor ecosystem changes.
Second, the pre-trained CNNs calibrated by ground truth observations can be adapted for use in other
areas. Third, the proposed framework is semiautomatic, accurate, cost-effective, and consistent with
simple classification schemes that can be widely applied. Finally, the presented approach achieved high
accuracies with simple logistics, short processing time, and small amounts of training data. However,
our proposed framework has limitations: Accuracy decreased in areas with mixed substrates and
turbid waters such as Fukido cove [59], and the system was tested only in shallow water environments.
Moreover, the field observations were collected by motorboats, which require appropriate weather
conditions for surveying. These limitations may be overcome in future studies, which will focus on
enhancing the towed underwater images and reducing the turbidity effects. Moreover, the emerging
NASA multispectral cameras [60] will be tested; these cameras can produce sub centimeters resolution
multispectral underwater images, which will increase the discriminating power of the applied classifiers.
Finally, testing the proposed framework using ROVs, which can produce higher quality underwater
images and survey deep seafloor areas.

5. Conclusions

In this study, we proposed a simple, fast, and cost-effective system for seabed substrate
categorization and mapping using CNNs. Our results attest to the superior performance of a
combination of pre-trained CNNs and BOF descriptors for benthic cover and seagrass detection.
Moreover, our model incorporating CNNs with simple architectures shows promise for the mapping of
seabed benthos and, therefore, merits further testing using various case studies. Using the Shiraho area
and Fukido cove as validation sites, we found that integrating CNNs and a BOF approach achieved the
highest OAs of 91.5% and 90.4% for benthic habitat and seagrasses detection, respectively. Furthermore,
applying CNNs with simple architecture for seabed mapping significantly improved our results,
with 89.9% and 91.2% OA for benthic habitat and seagrasses mapping, respectively. Thus, by using
our framework, seabed substrates and seagrasses can be accurately categorized and mapped with
minimum-workforce field observations.
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