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Abstract: Topographic correction can reduce the influences of topographic factors and improve the
accuracy of forest tree species classification when using remote-sensing data to investigate forest
resources. In this study, the Mount Taishan forest farm is the research area. Based on Landsat 8
OLI data and field survey subcompartment data, four topographic correction models (cosine model,
C model, solar-canopy-sensor (SCS)+C model and empirical rotation model) were used on the
Google Earth Engine (GEE) platform to carry out algorithmic data correction. Then, the tree species
in the study area were classified by the random forest method. Combined with the tree species
classification process, the topographic correction effects were analyzed, and the effects, advantages
and disadvantages of each correction model were evaluated. The results showed that the SCS+C
model and empirical rotation model were the best models in terms of visual effect, reducing the
band standard deviation and adjusting the reflectance distribution. When we used the SCS+C
model to correct the remote-sensing image, the total accuracy increased by 4% when using the
full-coverage training areas to classify tree species and by nearly 13% when using the shadowless
training area. In the illumination condition interval of 0.4–0.6, the inconsistency rate decreased
significantly; however, the inconsistency rate increased with increasing illumination condition values.
Topographic correction can enhance reflectance information in shaded areas and can significantly
improve the image quality. Topographic correction can be used as a pretreatment method for forest
species classification when the study area’s dominant tree species are in a low light intensity area.
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1. Introduction

Forests are among the important components of the global terrestrial ecosystem. Whether from
the perspective of forest ecology or from a service perspective in which the function of a forest is to
provide wood and other products, it is necessary to obtain information on forest resources over time.
Many countries around the world, such as Austria, Sweden and the United States, have carried out
regular forest resource surveys to provide data for sustainable forest management [1]. The content of
forest resource investigations includes various forestland area investigations, forest tree accumulation
and many other aspects, among which the identification and distribution of forest types are the basis
for and an important direction of forest resource monitoring.

Remote sensing is particularly useful for forest species classification, as it provides information on
large areas at a high level of detail [2]. There are many sensors that provide the image data required for
tree species classification, and these sensors typically feature either high spatial resolutions or multiple
spectral bands. High-resolution satellite images and synthetic aperture radar (SAR) data have recently
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been used to classify forest tree species [3,4]. The results show that the classification works well but is
only suitable for small areas due to its high cost. Although data from satellites such as Landsat have
lower spatial resolutions, they capture more spectral information. Spectral information from satellite
imagery can also be used to effectively identify forest tree species [5–8]. Such information is widely
used in the investigation of forest species resources because of its effectiveness in species classification
and low-cost advantages. Lu et al. [9] improved the accuracy of forest classification results based on
Thematic Mapper data and adjusted entropy. Schuck et al. [10] focuses on the approach of combining
the information from both remote sensing and forest inventory statistics in order to produce a forest
proportion map. Immitzer et al. [11] mapped seven different deciduous and coniferous tree species in
Germany based on Sentinel-2 data. Grabska et al. [12] evaluated the utility of the Sentinel-2 time series
for mapping tree species in the complex, mixed forests. Chiang et al. [13] suggested that integrating
topographic information and optical satellite image classification can improve mapping accuracy
for tree species. Remote-sensing technology reduces manpower and material resource consumption,
improves the quantitative description of resource information and improves survey timeliness better
than traditional field investigations. The key to such forest tree resource investigation work is the
analysis of spectral information from remote-sensing images and the determination of the tree species
category according to the different spectral characteristics of tree resources.

The influences of the atmosphere, electromagnetic waves and topography are inevitable when
remote-sensing satellites acquire information. Among these influences, the change in spectral reflectance
caused by topography is one of the main problems affecting the quality of satellite data. The method
of reducing these influences is referred to as topographic correction or terrain illumination correction.
Therefore, various models have been developed for topographic correction of remote-sensing satellite
data. Early models included cosine correction, Minnaert correction and C correction. After correction
with each model, the accuracy of land cover classification can be improved [14]. C correction and
Minnaert correction were excellent for land cover mapping, and the overall accuracy increased by
10% [15]. C correction introduced the semiempirical coefficient C to correct the overcorrection of the
cosine model. C correction established a connection between the original image and the corrected
image. This correction method also described the quantitative relationship between the spectral value
and incidence angle. Therefore, the correction effectiveness was improved [16,17]. Previous correction
models were based on a sun-surface-sensor scheme and did not consider the relationship between
vegetation and the ground after topographic correction. The improved solar-canopy-sensor (SCS)
correction makes the change in illumination direction more realistic during the process of reflectance
change from sloping to horizontal surfaces. SCS correction can also introduce C correction and
determine C parameters for each band. This correction method can markedly improve the effectiveness
of topographic correction [18,19]. Compared with cosine correction, C correction and Minnaert
correction, another method that is based on empirical statistics, have higher accuracies in forest
classification [20], and combined with the preclassification/layering method, these methods have good
robustness for topographic correction [21]. Many models are effective for the topographic correction of
remote-sensing images, and all of these models can improve the accuracy of land cover classification.
However, the topographic correction process is complex, and all of these models can only explain this
process to a certain extent. In forest tree species classification, it is difficult to classify different tree species
because of their high spectral similarity. Furthermore, machine learning methods, such as the support
vector machine (SVM) and random forest (RF) techniques, have been used to improve the classification
accuracy [22]. However, these methods have some problems, such as overfitting, and the models are not
easy to interpret. In terms of classifying tree species, the relationship between the impact of topography
and the classification results of remote-sensing images has not been studied. Consequently, the impact
of topographic correction on forest resource surveys in complex terrain, especially in forest tree species
resource surveys, is still unclear. Therefore, it is necessary to further research the relationship between
existing typical topographic correction models and forest tree species classification.
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Given the above discussion, four typical topographic correction models were used to correct
Landsat satellite images, which were then used for tree species classification with the random forest
method. The goal in this study is to determine the quantitative effects of topographic correction
on remote-sensing bands and associated indexes by analyzing the relationship between correction
effects and tree species. This study explores effective methods for accurate tree species classification in
mountainous areas.

2. Materials and Methods

2.1. Study Area

The study area was Mount Taishan, which is located in Tai’an City, Shandong Province, China. The
study area was delimited by the boundaries of the Mount Taishan forest farm (Figure 1). Mount Taishan
is in the central part of Shandong Province. This area represents one of China’s five great mountainous
regions and has an important ecological and cultural status [23]. This region features a warm-temperate
semihumid monsoon climate. The climate changes with elevation. The terrain tends to high in the
north and west and low in the south and east, and the topography is undulatory, with a height
difference between the plain and piedmont of over 1300 m. The forest coverage rate of Mount Taishan
is more than 80%, which is mainly composed of plantation and secondary forest, and the proportion
of pure forest is 55%. This area features coniferous forest and coniferous-broad-leaved mixed forest,
which is typical in warm-temperate mountain areas. The Taishan forest farm, which covers 11,730 ha,
was selected as the research area. The main tree species in the study area are pine, Chinese arborvitae
(Platycladus orientalis), oak (Quercus) and black locust (Robinia pseudoacacia). Pine can be divided into
Pinus tabulaeformis, Pinus thunbergii and Pinus densiflora, and oak can be divided into Quercus acutissima
and Quercus variabilis. Pinus tabulaeformis accounts for the largest proportion and is the dominant
vegetation species on Mount Taishan. Secondary forests of Pinus tabulaeformis are mainly distributed
in the upper part of Mount Taishan. Secondary forests of oak and Chinese arborvitae are mainly
distributed in the middle and lower parts of Mount Taishan [24,25].
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2.2. Data

2.2.1. Satellite Data

Landsat data is suitable for long-term and large-scale resource exploration. This study used surface
reflectance (SR) data from Landsat 8 OLI (Landsat 8 OLI/TIRS surface reflectance) [26] Considering the
effects of weather conditions and forest phenology, the data were consistent with the ground survey
data. The dates of the images were March 26, 2016, September 2, 2016, October 4, 2016 and November
5, 2016. We chose Landsat 8 bands 2 through 7 for our analysis but focused our efforts on band 4
(red) and band 5 (near-infrared, NIR), as these bands are shown to respond most strongly to surface
vegetation conditions (Table 1). The research was based on the implementation of the Google Earth
Engine (GEE) platform [27], so all data were accessed on GEE.

Table 1. Spectral bands of Landsat 8 used for forest tree species classification.

Name Units Scale Wavelength (µm) Description

Band2 0.0001 0.452–0.512 blue
Band3 0.0001 0.533–0.590 green
Band4 0.0001 0.636–0.673 red
Band5 0.0001 0.851–0.879 near infrared (NIR)
Band6 0.0001 1.566–1.651 shortwave infrared 1 (SWIR1)
Band7 0.0001 2.107–2.294 shortwave infrared 2 (SWIR2)

2.2.2. Digital Elevation Model

Digital elevation model (DEM) data are important for topographic correction. The Shuttle Radar
Topography Mission (SRTM) [28] digital elevation data are an international research effort designed to
obtain DEM data on a near-global scale. The SRTM V3 product (SRTM Plus) is provided by NASA
JPL at a resolution of 1 arc-second (approximately 30 m). DEM data are the basic data for calculating
illumination conditions (ICs), and their accuracy directly affects the topographic correction effectiveness.
The slope data and aspect data in the correction model were accessed by calculating the DEM data.

2.2.3. Subcompartment Data

In China, the subcompartment is the basic unit of forest resource protection planning, investigation,
statistics and management [29]. The division of subcompartments should be based on obvious
topography and object boundaries as much as possible and should take into account the needs for
resource investigation and management. Based on the subcompartment map, a field investigation
was carried out in this study. The investigation included tree species and other information. In the
geographic information system (GIS), the study area is divided into many polygons representing
individual, homogeneous forest stands. The investigation results based on the polygon were imported
in the form of fields. The subcompartment map used in this study was the result of the 2016 survey,
which contains 1713 features and 68 fields. It was provided by the Mountain Tai Management
Committee. Field information included tree species, dominant tree species, composition of tree species
and other detailed survey data. The tree species field describes the tree species in the subcompartment
feature with a tree species code. We can also see whether the subcompartment feature is a single tree
species according to the number of tree species codes. There are many coniferous and broad-leaved
species in the Mount Taishan region, but pine, oak, Chinese arborvitae and black locust account for the
majority of the area. In this study, tree species were divided into these four categories. We created
training samples and verification samples based on subcompartment data.
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2.3. Methods

2.3.1. Topographic Correction Model

Four commonly used topographic correction models (cosine model [30], C model [31], SCS+C
model [32] and empirical rotation model [33]) were used in this study.

Illumination conditions (IC) are the basis of all reflectivity compensation correction models. The IC
has a proportional relationship that is determined by the cosine of the angle between the solar zenith
and the normal line of the slope, and the model is defined as follows:

cosγi = cosθz cosθs + sinθz sinθs cos(ϕz −ϕs), (1)

where θz is the solar zenith angle, θs is the topographic slope angle, ϕz is the solar azimuth angle and
ϕs is the slope direction of the topographic surface.

(1) Cosine model:
ρH = ρI(cos θz/ cosγi), (2)

where ρH is the reflectance of the horizontal surface or corrected reflectance, and ρI is the reflectance
of the slope surface, or observed reflectance. The model considers that the correction has nothing to
do with the wavelength, underestimating the reflectance of the topographic illumination surface and
overestimating the reflectance of the topographic backlight surface, resulting in abnormal values [31].

(2) C model:

ρH(λ) = ρI(λ)
cosθz + Cλ
cosγi + Cλ

(3)

where Cλ is the correction coefficient for the λ band, C = b/a, and a and b are the slopes and intercepts
of linear regression calculated between the IC data and this particular band, respectively.

ρI(λ) = a(λ) cosγi + b(λ), (4)

The C model avoids wavelength independence of the cosine model to a certain extent and avoids
overcorrection in lower cosγi value regions.

(3) The SCS+C model:
This is based on the relationship among the sun, canopy and sensor; because tree growth is

geotropic, the topography cannot affect the geometric relationship between the sun and the tree.
The topography affects the positional relationship between the tree and the surface. The SCS+C
model is a model based on the canopy, which enables a change in illumination direction that is more
consistent with practice during the process of light canopy correction from sloping to horizontal
surfaces. This model is defined as follows:

ρH(λ) = ρI(λ)
cosθz cosθS + Cλ

cosγi + Cλ
, (5)

(4) Empirical rotation model:
The model is defined as follows:

ρH(λ) = ρI(λ) − a(λ) ∗ (cosγi − cosθz), (6)

where a is the interception of the band linear regression calculated in Formula (5). This model eliminates
the linear dependence of reflectivity on cosγi. The results show that this model can accurately obtain
top-of-atmosphere and top-of-canopy reflectivities from Landsat data.

These four models can be used on the GEE platform. Topographic information was obtained by
SRTM, and satellite metadata were used to obtain information such as the angle of the satellite on the
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solar zenith. The Cλ parameters used in the model were calculated for each band in Landsat data,
which made the models more applicable [34].

2.3.2. Evaluation of the Topographic Correction

The evaluation involved the use of standard deviation (SD) and histograms to evaluate the
effectiveness of the topographic correction [35]. First, the SD of all bands before and after correction
were counted, and the contrast histogram of the NIR band before and after correction was created.
Based on all data from the whole image, the effectiveness of the correction model was evaluated.
Then, we chose a reservoir in the study area, which was very obvious in the remote-sensing image,
and drew the region of interest to evaluate the stability of the correction model by calculating the
reflectance changes before and after correction. Finally, the SDs of the NIR and red bands before and
after correction and the correlation coefficients of the NIR band, red band and IC before and after
correction were calculated according to each tree species by using the tree species survey data.

2.3.3. Method of Tree Species Classification

Tree species classification includes three parts: topographic correction of multitemporal
remote-sensing images, training data production and random forest algorithm classification (Figure 2).
First, according to the forest phenology and cloud amount factors, we chose four representative Landsat
images. Multiseasonal remote-sensing data help to improve classification accuracy [36]. We use the
four methods in the dotted box of Figure 2 to correct the remote-sensing image shadow and create
the correction dataset. Then, the training data were created as random points in the pure forest data,
which were extracted from the subcompartment data by forest structure fields. The field describes the
composition of forest species in the subcompartment data. These data are full-coverage training data.
To study the impact of training data distribution on classification, we created shadowless training
data that used the shadow region extracted by the IC data to mask the full-coverage training data.
We used these training data and a random forest algorithm to train classification models. The random
forest algorithm [37] is a machine-learning algorithm that contains multiple decision trees [3,38].
Model training is the process of establishing the relationship between remote-sensing images and tree
species labels. Since machine-learning algorithms have overfitting problems, shadowless training
data avoid the algorithm, covering up the effectiveness of topographic correction, because the correct
classification is based on spectral consistency, not by providing tree species information in shaded
areas to the classifier. Finally, the training dataset was used to train the random forest classifier. We use
a training model to classify the remote-sensing data.

2.3.4. Evaluation of the Effectiveness of Different Topographic Correction Models on Tree Species
Classification

The original data and tree species classification results after correction were visually evaluated, and
the accuracy was evaluated based on the validation data. Based on the area size of the subcompartment
data, 240 sampling points are generated by using the function of randomly generating points in GIS.
A total of 240 sampling points was randomly generated in the study area. Based on subcompartment
data and high-resolution Google Earth images, tree species labels were added to the sampling points.
Some sampling points were moved to the shaded area to evaluate the impact of the shaded area on tree
species classification. To study the influence of topography in topographic correction on tree species
classification, we used 1 to subtract the area ratio of correctly classified tree species in the pure forest
area to calculate the inconsistency rate, zonal statistics of the inconsistency rate and the IC data, and we
drew the distribution histogram of the inconsistency rate and evaluated the relationship between
topographic correction and tree species.
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Figure 2. Methodological framework for the classification accuracy of topographic correction on tree
species. IC: illumination conditions and RF: random forest.

3. Results

3.1. Effectiveness of the Topographic Correction Models

3.1.1. Visual Evaluation of the Topographic Correction

A qualitative evaluation was conducted by visual comparison of the correction effectiveness of
the topographic correction model in the study area. The visual comparison is mainly based on three
aspects: (1) the effectiveness of removing shadows, (2) whether the color is consistent before and after
and whether there is an overcorrection problem and (3) texture features of the images. Through color
synthesis, we can see the effect before and after correction (Figure 3). The original reflectance data have
three-dimensional characteristics because of topographic fluctuations. IC data can reflect the change in
brightness caused by the topographic influence. The comparison of the two pictures demonstrated that
the three-dimensional characteristics of the original data were consistent with the change in brightness
and shade of the ICs.

All four models can remove most of the topographic shadows and restore the reflectivity
information of the shaded areas, which was consistent with the visual impression of adjacent nonshaded
areas. The cosine model had many obvious bright spots in the ridge area, which was quite different
from the original data and had the problem of overcorrection. There was no obvious overcorrection in
the other models. However, after being stretched with SD enhancement, the color depth of the cosine
model was found to have decreased, and the color depth of the C model was found to have increased,
while the results of the SCS+C model and empirical rotation model were more consistent with and
closer to the original data. All images can retain the texture features of objects well, but the corrected
images were flatter, and the stereoscopic effect disappeared. Ridges, valleys and other topographic
features were difficult to recognize. In summary, from the visual effect, the SCS+C model and empirical
rotation model were better than the other models.
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3.1.2. Analysis of Band Information before and after Topographic Correction

The SD reflects the degree of data dispersion. Generally, the spectral value of the same ground
feature should be the same, but due to the influence of topography, there will be great variations.
We calculated the SD of different bands of the image before and after correction (Table 2). SWIR1 band
reflectance data had the largest SD. After correction, the cosine model and empirical rotation model
had the best correction effectiveness, and the SDs of the other two models were also reduced. The NIR
and red bands are important bands for vegetation monitoring. The smallest SD after the NIR band
correction was observed in the empirical rotation model, followed by the SCS+C model and C model,
and the worst SD was observed in the cosine model. The empirical rotation model had the smallest SD
after the red band correction, and the effectiveness of the four models was very close. All correction
models can effectively reduce the SD of each band, and the empirical rotation model (followed by the
SCS+C model) was the best in all bands.
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Table 2. Standard deviation statistics of spectral bands before and after topographic correction. SR
refers to “surface reflectance” and represents precorrected conditions. The model represents the
conditions after topographic corrected by the specify model.

SR Cosine Model C Model SCS+C Model Empirical
Rotation Model

Blue 0.013 0.008 0.009 0.009 0.008
Green 0.016 0.012 0.011 0.011 0.009
NIR 0.042 0.037 0.030 0.029 0.027
Red 0.022 0.014 0.015 0.015 0.013
SWIR1 0.055 0.035 0.040 0.039 0.034
SWIR2 0.044 0.030 0.033 0.032 0.028

The NIR band responds well to the changes in vegetation. We obtained histogram statistics
before and after the NIR band correction (Figure 4). The graph shows that the NIR band reflectance
histogram of the remote-sensing image did not show a normal distribution due to topographic factors.
It formed two peaks: a low value (0.12) and a high value (0.20). This showed that due to the influence
of topographic slope and slope direction, some pixels received insufficient illumination, while the
other parts showed a saturation trend. After the treatment of the four correction models, the NIR band
histogram showed an approximate normal distribution, which was consistent with the random features
of natural phenomena, showing the reflection characteristics of objects in the real state. In the four
models, the cosine model greatly compressed the original data, gathered many values in the 0.15–0.2
reflectivity region and the left and right sides were not completely symmetrical. There were also data
outside the original range, which was considered to be the result of overcompressing. Compared
with the C model, the SCS+C model had the same area with values higher than 0.2. In the range of
0.12–0.17, the SCS+C model was smoother, which was related to the canopy correction rather than the
topographic correction of the SCS+C model. The empirical rotation model was smooth on both sides
of the peak. Compared with the former two models, the reflectance distribution was concentrated at
the peak. All models can correct the NIR band reflectivity to approximate a normal distribution. In
terms of comprehensive distribution morphology, continuity and deformation, the SCS+C model and
empirical rotation model had better correction effectiveness.

3.1.3. Effectiveness of Topographic Correction on Tree Species Reflectivity

Based on forest species composition information in pure forest data, we counted the SD changes
for pine, Chinese arborvitae, oak and black locust in the NIR and red bands before and after correction,
respectively (Figure 5). When we examined a single tree species, the SD of the cosine model increased,
and the pine species stretched abnormally in the NIR band. The empirical rotation model reduced the
SDs of all tree species. When we examined pines, the SD of the blue, green and red bands of the C
model was higher than the original SD of reflectance. The SD of the SCS+C model-corrected image
was higher than the original SD in the blue band for pines and the red band for oak. Statistical results
showed that different correction models had different effects on different tree species, which was
related to the distribution of tree species and the inconsistencies in the reflections of different bands.
The empirical rotation model was very stable, and the SD of all bands of all tree species was less than
the original SD of reflectance. The second-best results were obtained by the SCS+C model.
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3.1.4. Stability Analysis of Topographic Correction

Changes in the water body reflectance can be used to evaluate the validity of a topographic
correction model by statistical comparisons of this reflectance before and after correction has been
applied to the study area (Figure 6). Water bodies are horizontal, so the topographic correction model
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should not have a large impact on them. The change in reflectance of all models was less than 10%,
and the change in the SCS+C model was the smallest, at less than 2%. The empirical rotation model is
an experience-based rotation model. Compared with other models, the reflectivity of the water surface
changed greatly, especially in the NIR and short-wavelength infrared (SWIR) bands. The changes
induced by the other two correction models were between 3% and 5%.

Remote Sens. 2020, 12, 787 11 of 22 

 

 
Figure 5. Comparison of tree species NIR band (a) and red band (b) standard deviation before and 
after topographic correction by the four models. SR represents the precorrected conditions of the 
spectral band. The model represents the conditions after topographic corrected by the specific model. 

3.1.4. Stability Analysis of Topographic Correction 

Changes in the water body reflectance can be used to evaluate the validity of a topographic 
correction model by statistical comparisons of this reflectance before and after correction has been 
applied to the study area (Figure 6). Water bodies are horizontal, so the topographic correction model 
should not have a large impact on them. The change in reflectance of all models was less than 10%, 
and the change in the SCS+C model was the smallest, at less than 2%. The empirical rotation model 
is an experience-based rotation model. Compared with other models, the reflectivity of the water 
surface changed greatly, especially in the NIR and short-wavelength infrared (SWIR) bands. The 
changes induced by the other two correction models were between 3% and 5%. 

 
Figure 6. Percent change in band reflectance over water bodies after topographic correction by each 
of the four models. 

In summary, compared with the other two models, the cosine model and C model did not 
perform as well in terms of the correction effectiveness and stability. Therefore, the SCS+C model and 
empirical rotation model were the main models used in the further study of tree species classification. 

 

Figure 6. Percent change in band reflectance over water bodies after topographic correction by each of
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In summary, compared with the other two models, the cosine model and C model did not perform
as well in terms of the correction effectiveness and stability. Therefore, the SCS+C model and empirical
rotation model were the main models used in the further study of tree species classification.

3.1.5. Analysis of Correlations among the IC, NIR Band and Red Band of Different Tree Species before
and after Correction

The tree species distributed in the shaded area will affect the remote-sensing image, resulting in
a correlation between the remote-sensing spectral value and topography. We used the tree species
information of subcompartment data to calculate the correlation between the remote-sensing spectral
value and the IC value in the region (Table 3). Before correction, both the NIR and red bands of the
image had a high correlation with the IC. The highest correlations were observed in the NIR bands
of pines and Chinese arborvitae, which were 0.58 and 0.69, respectively. The lowest correlations
were found for the red bands of Chinese arborvitae and oak, which were 0.29 and 0.30, respectively.
The correlation of the NIR band was higher than that of the red band. The correlation coefficients of
pines and Chinese arborvitae after SCS+C correction were lower than those of the empirical rotation
method, whereas those of oak exhibited the opposite pattern. For black locust, the SCS+C model was
better than the empirical rotation model in the NIR band, and vice versa in the red band. The correlation
reflects the degree of influence of the topography on the spectral reflectance of trees. Except for the
red band of Chinese arborvitae, the correlation of the NIR band and red band of all tree species was
significantly reduced by the models.
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Table 3. Correlation coefficient of spectral band and illumination conditions (IC) before and after
correction in the NIR band and red band. SR represents the coefficient before correction, SCS+C
represents the coefficient after correction by SCS+C model, and empirical rotation represents the
coefficient after correction by the empirical rotation model.

Tree Species NIR Red

SR SCS+C Empirical
rotation SR SCS+C Empirical

rotation
Pine 0.58 0.79 × 10−3 0.15 × 10−1 0.43 0.28 × 10−3 0.77 × 10−2

Chinese arborvitae 0.69 0.13 × 10−1 0.24 × 10−2 0.29 0.22 0.22
Oak 0.41 0.94 × 10−2 0.61 × 10−2 0.30 0.33 × 10−2 0.58 × 10−3

Black locust 0.47 0.80 × 10−5 0.85 × 10−2 0.44 0.13 × 10−2 0.60 × 10−3

By constructing density plots between the IC dataset and the individual bands for pine, we can
better understand the process of spectral value processing of the topographic correction method
(Figure 7). As shown in the Figure 7, IC values of 0.3–1.0 were distributed over a large area. The original
reflectance data were highly correlated with the IC values. After correction, the correlation coefficient
between reflectance and IC was significantly reduced. As shown in the Figure 7, both the SCS+C
model and empirical rotation model rotated the reflectance distribution of the original data from tilted
to nearly horizontal, while the empirical rotation model rotated the distribution only on the basis of the
original data, and its interior distribution was very close to that of the original data. The distribution
of points in the scatter plot for the SCS+C model changed obviously to different degrees. In the NIR
band, the density of red points with high densities was reduced after correction with the SCS+C
model. The ed band exhibited clear changes: the empirical rotation model rotated the data as a whole,
while the SCS+C model transformed one density center into two distinct density centers. Due to the
relatively small distribution area of other tree species, the rotation changes were not obvious.

3.2. Topographic Correction Effectiveness on Tree Species Classification

3.2.1. Classification Results of Tree Species and Accuracy Evaluation

Whether the training data were covered with shaded areas had a great impact on the accuracy
of the classification results (Table 4). The classification results of the full-coverage training data
showed little difference in terms of accuracy before and after correction; the SCS+C model performed
better, and the empirical rotation model showed slightly improved accuracy. The classification
results of shadowless training data had great differences before and after topographic correction.
The SCS+C model performed the best, and its accuracy was 13% higher than that before correction.
The performance of the empirical rotation model also improved significantly. Due to the inconsistency
in the reflectance of the original data in the shaded area, the accuracy was low. Therefore, when the
survey data in the study area are comprehensive, the influence of topography can be avoided to some
extent by including training sample points in shaded areas; when the amount of data in the study area
is not adequate, the classification must rely on visual or partial data, and the topographic correction of
the data should be included in the pretreatment step to improve the classification accuracy.
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Figure 7. Scatter density map of the spectral band and IC of pine. (a) NIR band before correction (b)
red band before correction, (c) NIR band corrected by SCS+C model, (d) red band corrected by SCS+C
model, (e) NIR band corrected by empirical rotation model and (f) red band corrected by empirical
rotation model.
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Table 4. Classification accuracy with different training data. SR represents the data before correction,
and SCS+C model and empirical rotation model represent the data after correction.

Shadowless
Training Data

Overall
Accuracy Kappa Full-Coverage

Training Data
Overall

Accuracy Kappa

SR 0.65 0.52 SR 0.76 0.68
SCS+C model 0.74 0.67 SCS+C model 0.79 0.73
Empirical
rotation model 0.72 0.64 Empirical

rotation model 0.77 0.70

The random forest algorithm was used to classify the data before and after correction, and maps
of the resulting forest species distribution were created. As shown in Figure 8, Chinese arborvitae is
mainly distributed in the northwestern and southern parts of Mount Taishan. Oak species are mainly
distributed in the northern part of Mount Taishan, while a small amount is distributed in the central
and southern parts. Black locust covers the least area, and the distribution is fragmentary. Pines are
widely distributed throughout the whole area. The Landsat 8 data corrected by the four models can
effectively distinguish among these four tree species, but the classification results of the four models
differed in terms of specific distributions due to the different corrections of each model (Table 5).Remote Sens. 2020, 12, 787 15 of 22 
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Table 5. Area statistics derived from classification of the tree species. SR represents the data of the
precorrected data classification results. The SCS+C model and empirical rotation model represent the
data after topographic correction. The gradient represents the change rate between the before and after
correction data.

Tree Species SR SCS+C Empirical Rotation

Area (m2) Area (m2) Gradient (%) Area (m2) Gradient (%)

Pines 57,028 58,647 2.84 58,981 3.424
Chinese arborvitae 27,515 26,101 −5.14 26,779 −2.67

Oak 21,438 22,631 5.56 21,801 1.69
Black locust 18,987 18,376 −3.22 20,535 8.15

3.2.2. Topographic Correction Effectiveness on Tree Species Classification in Shaded Areas

The tree species in the area with low ICs were entirely composed of Chinese arborvitae (Figure 9).
In the original SR data classification results, most of these trees were identified as pine species and
only the edges were identified as Chinese arborvitae. However, after correction, both the SCS+C
model and empirical rotation model correctly recognized most of the species as Chinese arborvitae
by recovering their reflectivities. Even so, there were still some errors in the two correction models.
On the one hand, the spectral characteristics of these two tree species are similar, which can easily lead
to errors. On the other hand, although the correction maintains the spectral information in shaded
areas, the information recovery is not complete due to DEM error and the influence of the distribution
of the vegetation itself. Complete restoration is only an ideal situation.
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Figure 9. Contrast map of Chinese arborvitae classification in shaded areas by using shadowless
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The classification results for oak were slightly different from those for Chinese arborvitae.
The original data can be better distinguished by using training sample points in no-shadow areas.
Even in areas with low illumination values, the classification accuracy of oak was high (Figure 10).
The reason is that the spectral characteristics of oak are quite different from those of pine and Chinese
arborvitae and are therefore easy to distinguish. After the correction, the results of the SCS+C model
were better than those of the original image. After correction by the empirical rotation model, oak was
easily distinguished, and a few areas were recognized as other tree species.Remote Sens. 2020, 12, 787 17 of 22 
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Figure 10. Contrast map of oak classification in full-coverage areas by using shadowless training
data. SR represents the precorrected conditions of the classification result. The model represents the
classification result after topographic corrected by the specific model.

3.2.3. Effect of Topographic on Classification Inconsistency Rate

The black symbols in Figure 11 are the normalized values of the area of tree species in pure forests
in different intervals of the IC. The four types of tree species had different topographic distributions
based on observation of the standard IC distribution. Pine had two peaks at IC values of 0.6 and
1.0. Black locust had similar peaks at IC values of 0.6 and 0.9. Chinese arborvitae and oak were
mostly distributed in the IC range of 0.8–1.0. The red symbols in Figure 11 show the inconsistency
rate of tree species classification results by remote sensing. After correction, the inconsistency rate of
interval 0.4–0.6 increased and that of interval 0.7–0.9 decreased. After correction, the inconsistency
rate of Chinese arborvitae increased in the 0.5–0.7 interval and decreased in the 0.9–1.0 interval.
After correction, the inconsistency rate of oak increased in the 0.4–0.7 interval and decreased in the
0.7–0.9 interval. The inconsistency rate of black locust increased from 0.7 to 0.8 after correction.
The inconsistency rate of pine changed greatly after correction and was greatly affected by correction.
Black locust showed the opposite result. The relationship between the inconsistency rate and IC
was determined by the combination of tree species and their topographic distributions. Topographic
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correction mainly reduced the inconsistency rate in the 0.4–0.6 interval. Obviously, the correction
model maintained the reflectance information of the low IC area throughout the correction, but the
model also introduced uncertainty in the classification of the high illumination area.Remote Sens. 2020, 12, 787 18 of 22 

 

 

Figure 11. Inconsistency rate distribution histogram with different tree species before and after 

topographic correction. (a) Pine before correction, (b) Pine corrected by the SCS+C model, (c) Chinese 

arborvitae before correction, (d) Chinese arborvitae corrected by the SCS+C model, (e) Oak before 

correction, (f) Oak corrected by the SCS+C model, (g) Black locust in SR data and (h) Black locust 

corrected by the SCS+C model. 

Figure 11. Inconsistency rate distribution histogram with different tree species before and after
topographic correction. (a) Pine before correction, (b) Pine corrected by the SCS+C model, (c) Chinese
arborvitae before correction, (d) Chinese arborvitae corrected by the SCS+C model, (e) Oak before
correction, (f) Oak corrected by the SCS+C model, (g) Black locust in SR data and (h) Black locust
corrected by the SCS+C model.
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4. Discussion

Topographic correction can reduce the effects of varying topography/terrain surfaces and associated
shadowing on spectral reflectance. Although there is no effective method to completely remove this
effect, researchers have attempted to improve the effectiveness of topographic correction using various
methods. The influence on the topographic correction effectiveness is controlled mainly by the
selection of the correction model and the accuracy of the DEM. At present, none of the models can
fully explain the relationship between the illumination coefficient and the band reflectivity. Of the
four models discussed in this study, the cosine model is a simple optical function, the C model is
used to calculate the empirical relationship between the band reflectance and illumination coefficient,
the SCS+C model considers the relationship between the sun canopy and sensor and uses the C model
to avoid overcorrection and the empirical rotation model eliminates the linear relationship between
the band reflectance and illumination coefficient. Although these models all achieve the effectiveness
of topographic correction, they are not able to remove all illumination differences resulting from
topographic variability. This requires more in-depth research to find a model that fully explains the
relationship between reflectivity and the care factor.

The accuracy of the DEM data is another aspect that has a great influence on the correction
effectiveness. In the topographic correction model, the illumination coefficient is an important
parameter. The IC is calculated based on the slope and aspect, and the slope and aspect are calculated
based on the DEM. Thus, the accuracy of the DEM has a great influence on the parameters of the
topographic correction model. In this study, we used the elevation data provided by the SRTM,
which has a spatial resolution of 30 m. We also used the data of TanDEM-X 90 m for comparison [39].
For TanDEM-X, the overall accuracy and kappa coefficients of the classification results increased by
0.03–0.08 and 0.03–0.09, respectively, but the accuracy of the empirical rotation model results decreased.
Since TanDEM-X only obtains 90-m resolution data, the IC calculation involves both slope and aspect.
In addition to elevation, horizontal distance is also needed in the calculation. Hence, the spatial
resolution affects the accuracy. Although there is no in-depth study on how the DEM accuracy affects
the classification accuracy, the higher the DEM accuracy is, the better the correction effectiveness.
If the area is small, we can use photogrammetry technology to generate a more accurate surface.
We believe that if we can obtain accurate ground data, the topographic correction effectiveness will be
greatly improved. Topographic correction adjusts the value and distribution of the band reflectance
according to the relationship between the band reflectance and IC. After the four models are corrected,
the SD of the band reflectivity can be reduced. However, according to the histogram, the cosine
model with different methods has greatly changed the distribution of the band histogram, while the
changes associated with the other three models are more moderate. The difference in the histogram
after correction is the difference in the interpretation of the band reflectance and the illumination
coefficient by the correction method. Different topographic correction models produced different
patterns (Section 3.1.5). In the density maps rotated by the topographic correction models, the overall
structure of the graph has not changed, which shows that the models are based on the IC and adjust the
spectral values in a predictable fashion. Small changes in the form of different shapes and centers are
evident after adjustment. This is because both the SCS+C model and the empirical rotation model use
coefficients derived from IC data and band regression. In this way, the model adaptability is good, but
there are also problems. This regression value is only an empirical value, and there is great uncertainty.
The topographic corrections affect different bands differently, and the empirical coefficients of different
bands calculated by the C model can eliminate this difference. The empirical rotation model uses the
slope, and the SCS+C model uses the slope and intercept.

The distribution of training data and topographic distribution of tree species also affects the
accuracy of tree species classification. The spectra of objects in the shaded area definitely vary; thus,
training our model with this knowledge will certainly improve the classification accuracy. However, this
will also increase the uncertainty, as it may make the spectral values of a feature close to those of other
features. Therefore, the selection of training samples is always a process of regional applicability. This
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is also demonstrated by the influence of the distribution of tree species on the accuracy of tree species
classification. Different species have different IC intervals with good correction effects. This may be
related to the spectral reflection, canopy structure or canopy direction of the tree species. However,
the influence on the spectral reflectance of different tree species is more complicated. It is not always
possible to retain all the information. The best way is to eliminate the impact of the topography. In fact,
ratio indexes such as the normalized difference vegetation index (NDVI) can eliminate the influence
of topography [40,41]. However, the influence of topography on the spectral band is not completely
consistent, so we think that, although the index can reduce the influence, it cannot completely eliminate
the influence in the same way that system error can be eliminated. It is necessary to correct the band
reflectance. When we perform quantitative research on the band reflectance, we want to know the
absolute value of the band reflectance rather than the relative value. This value may be more useful in
revealing the influence of topography on the features.

5. Conclusions

Based on Landsat 8 data, we developed four topographic correction models on the GEE platform,
and their effectiveness on forest tree species classification were compared in detail. The SCS+C model
and empirical rotation model were the best models in terms of visual effects, reducing band SD and
adjusting the reflectance distribution. The empirical rotation model had the best effect on reducing the
SD of the tree species in the NIR and red bands, while the SCS+C model had a high level of consistency
with the original scatter density in adjusting the correlation between the NIR and red bands and the IC.
All of the corrected images were associated with improved tree species classification accuracy. When
using the full-coverage training areas, the accuracy increased by 4%, and when using the shadowless
training area, the total accuracy of the SCS+C model increased by nearly 13%. The inconsistency rate
distribution histogram showed that the relationship between the inconsistency rate and the IC was
determined by the comprehensive effect of tree species and topographic distribution. When forest
species were concentrated in the IC interval of 0.4–0.6, the inconsistency rate decreased significantly
after correction, whereas with increasing IC values, the inconsistency rate increased. In other words,
the corrected image significantly improved the quality and maintained the reflectance information of
the shaded area. This technique can be used as a pretreatment method for forest species classification
in mountain areas.

The change in the reflectance of forest areas shaded by topography is the result of complex and
multifactor interactions, so it is difficult to maintain an exact value with a single mathematical model.
The DEM data used in this study have a resolution of 30 m. In this study, it was found that there were
some dislocations between the DEM data and the remote-sensing data. Although the effect can be
reduced by resampling, DEM data with higher accuracy should provide better topographic correction
results. In addition, the complexity of the ground objects is another factor affecting the topographic
correction. The uncertainty in the mixed pixels caused by the 30-m resolution of the Landsat data also
led to a reduction in the classification accuracy.

In this study, the effectiveness of four commonly used topographic correction models on tree
species classification were analyzed. This work provides a basis for the use of satellite data topographic
correction in tree species classification. In future research, we will seek a more accurate model and a
more accurate DEM to eliminate the influence of the topographic to the greatest extent. The application
of topographic correction can produce more consistent spectral characteristics of ground objects,
reduce misclassifications and improve the accuracy of forest tree species investigations, which are very
important for the promotion of forest resource investigation methods using remote sensing.
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