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Abstract: Remote sensing images having high spatial resolution are acquired, and large amounts
of data are extracted from their region of interest. For processing these images, objects of various
sizes, from very small neighborhoods to large regions composed of thousands of pixels, should be
considered. To this end, this study proposes change detection method using transfer learning and
recurrent fully convolutional networks with multiscale three-dimensional (3D) filters. The initial
convolutional layer of the change detection network with multiscale 3D filters was designed to extract
spatial and spectral features of materials having different sizes; the layer exploits pre-trained weights
and biases of semantic segmentation network trained on an open benchmark dataset. The 3D filter
sizes were defined in a specialized way to extract spatial and spectral information, and the optimal
size of the filter was determined using highly accurate semantic segmentation results. To demonstrate
the effectiveness of the proposed method, binary change detection was performed on images obtained
from multi-temporal Korea multipurpose satellite-3A. Results revealed that the proposed method
outperformed the traditional deep learning-based change detection methods and the change detection
accuracy improved using multiscale 3D filters and transfer learning.

Keywords: multiscale three-dimensional filters; transfer learning; change detection; high spatial
resolution satellite image; fully convolutional network; convolutional long short-term memory

1. Introduction

Change detection is a major research field in remote sensing; change detection methods are used
for detecting the areas damaged by natural disasters [1-3]; monitoring vegetation [4—6]; as well as
urban expansion [7-9] by analyzing spatial, spectral, and temporal changes in an area [10]. The wide
availability of satellites and unmanned aerial vehicles worldwide and the improvements in sensor
manufacturing technology have enabled acquiring images with a spatial resolution within 1 m and
detecting regions of interest from high spatial resolution images. To use high spatial resolution satellite
images for change detection, problems associated with spatial complexity, geometric inconsistency
between images, and reflectance variability in each class must be considered [11-13].

Pixel- and object-based change detection methods are used for analyzing high spatial resolution
satellite imagery [14]. Pixel-based change detection methods, such as image differencing [15], change
vector analysis [16], and principal component analysis [17], detect changes based on the pixel, which
is the basic unit of image analysis. Although these methods detect differences in detailed spectral
characteristics at the pixel-level, the spatial context cannot be considered and the detection is easily
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affected by noise [14,18]. Object-based change detection methods were developed to minimize the
effects of georeferencing and high spectral variability [14,19,20], wherein the texture, shape, and spatial
relationship of the image object are considered [21]. These methods involve the segmentation and
extraction of features from high spatial resolution images, followed by the integration of each object.
However, validating the results of object-based change detection methods remains a challenge and
image segmentation suffers from under- or oversegmentation errors, often generating objects that are
non-representative of actual features [22].

Data-driven approaches, such as deep learning, are recently being used for effective change
detection in high spatial resolution images because they use computing equipment with sophisticated
algorithms [14]. High level features are automatically extracted from the input data through multiple
layers via deep learning. Deep learning-based change detection methods have the characteristics of
pixel- and object-based methods because pixel-wise classification maps are predicted through semantic
abstraction of the spatial context from the original data [23]. Convolutional neural network (CNN) is a
popular network used for image classification and pattern recognition. Change detection methods based
on CNN belong to two groups, with the extracting meaningful features from multi-temporal images
using CNN, followed by comparing the feature maps or classification results to detect changes [23-25].
The second group transforms multi-temporal images to reflect changes, and the transformed data
are used as input for CNNs [26-28]. Although CNN-based change detection methods effectively
extract changes in multi-temporal images, such extraction is difficult without employing pre- or
postprocessing techniques such as data transformation and post-classification because CNN cannot
handle multi-temporal data within its structure.

Recurrent neural network (RNN) is an important part of deep learning and can handle temporal
data through a recurrent hidden state with activation at each time step dependent on the past
computation. RNN considers a current input and the output learned from the previous input. Change
detection methods that use the long short-term memory (LSTM)-based RNN to deal with multi-temporal
images can learn temporal features from sequential data [29-31]. Hybrid change detection networks
were proposed to combine the advantages of the CNN and LSTM. Deep Siamese convolutional
multiple layers with RNN were proposed for detecting changes in high spatial resolution images;
this method could be used for detecting changes in homogeneous and heterogeneous images such
as LiDAR intensity and optical satellite image [32]. Two-dimensional (2D) CNN for spatial-spectral
feature extraction from input data and LSTMs for supporting sequence prediction have been utilized
for change detection [33]. CNN extracts spatial-spectral-temporal features from multispectral and
hyperspectral images. However, maintaining the spatial structure of the input image is difficult using
2D CNN-LSTM hybrid network, because all pixels are converted to one-dimensional (1D) vectors
during the process. Three-dimensional (3D) fully convolutional network (FCN) and convolutional
LSTM are combined to detect changes in images [34]. The FCN maintains the 2D structure of images
and handles semantic segmentation [35]. Convolutional LSTM networks have replaced fully connected
operators by convolutional operators for learning the spatiotemporal features. However, training data
is insufficient for verifying the use of these networks for low-resolution hyperspectral images with a
spatial resolution of 30 m.

Limited training samples and computing resources degrade the performance of deep learning
networks. Labeled samples are usually limited in remote sensing images; therefore, building an
efficient network and training with a small number of samples are challenging [36]. Transfer learning
is a technique that involves the pre-training a deep learning model using a large, but different, dataset
and adapting the trained model to specific problems with smaller image datasets [37]. In other words,
given a source domain Dg and learning task 75 as well as a target domain Dr and learning task 7,
transfer learning improves learning of the target predictive function fr(-) in Dr using the knowledge
of Dg and T, where Dg # Dgs or Ts # T [38]. A previous study attempted using pre-trained weights
and biases from a semantic segmentation network for the initial convolutional layer of a hybrid change
detection network [39]. The study confirmed that transfer learning can improve the performance
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of the change detection on average and transfer learning using multispectral dataset and several
benchmark hyperspectral datasets could solve the limitation of small sample problems in hyperspectral
images processing.

However, this was limited by differences in the spatial and spectral resolution of the source and
target domain datasets. For example, multispectral images with 0.5 m spatial resolution and 4 bands
were used as a source domain dataset in the semantic segmentation network, whereas hyperspectral
images with 30 m spatial resolution and 150 bands were employed as a target dataset in the change
detection network. To improve the previous study, transfer learning was performed on a large
dataset of aerial images to detect changes in multi-temporal high spatial resolution images using the
recurrent FCN. The network is composed of 3D convolutional layers and convolutional LSTM. The 3D
convolutional layers extract the spatial-spectral features of the input images, and the convolutional
LSTM analyzes the temporal relationship between feature maps obtained from temporal images.
Therefore, extracting meaningful feature maps by considering spatial-spectral features of input images
can improve the results of change detection network. Herein, multiscale 3D filters were used in the
initial convolutional layer of the change detection network; the layer exploits pre-trained weights
and biases of semantic segmentation network trained on an open benchmark dataset. The main
contributions of this study as follows.

1.  Specialized 3D filters for spatial and spectral information were utilized to combine optimal
multiscale filters considering the complexity of the calculation process and to prevent the
redundancy of extracted information. Different surface materials can be detected using high
spatial resolution satellite images; therefore, spatial and spectral filters of different sizes can
be used to extract meaningful features, with the corresponding features maps improving the
accuracy of the change detection.

2. We attempted to address the training data limitation using the proposed change detection method
and the pre-trained information trained on high spatial resolution aerial images. The spatial
and spectral resolutions of these images are similar to those of the satellite images used herein.
Trained weights and biases can provide reasonable initial points of initial layer in the change
detection network and prevent overfitting problems.

3. To confirm the effectiveness of the multiscale 3D filter and transfer learning for change detection
in high spatial resolution satellite images, accuracies of other change detection methods based on
deep learning and the proposed method with and without transfer learning were compared; then,
the conditions for change detection were analyzed.

The remainder of this paper is organized as follows. Section 2 presents the architecture of the
proposed method, and the datasets and environmental conditions for the experiments are described
in Section 3. Sections 4 and 5 present the results and discussion, respectively, and Section 6 presents
the conclusions.

2. Methods

The proposed change detection method primarily (i) trains the FCN for semantic segmentation
using a large remote sensing dataset as the source domain, and (ii) performs transfer learning from the
pre-trained FCN to the recurrent FCN for change detection. The FCNs for semantic segmentation and
change detection includes the three multiscale 3D filters in the initial convolutional layer to extract
various spatial and spectral features from high spatial resolution images. After the layer with 3D
filters is trained on the source dataset, the pre-trained filters are transferred and fine-tuned on the
target dataset.

2.1. Fully Convolutional Network (FCN) for Semantic Segmentation

Figure 1 shows the FCN architecture. First, the 3D FCN performing the semantic segmentation
was trained on an aerial image dataset containing images obtained from the International Society for
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Photogrammetry and Remote Sensing (ISPRS). The network was adapted for 3D convolutions with
downsampled images followed by upsampled images with transpose convolutions for recovering the
image dimensions. The 3D convolution is calculated as follows,
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where vl ¥ is the pixel value of position (x, y,z) on the jth feature map in layer ! (the layer of the current
operation), and H and W are the width and height of the kernel, respectively. The parameter R is the
spectral dimension of the 3D kernel, w};w’ is the weight value at the position (h, w, ) connected to the nth

feature in the (I - 1)th layer, OEHP;)W )@+ represents the input at the position (x + h)(y + w)(z+ 1)

in (h,w, r) denoting its offset to (x, y,z), ¢ is the activation function, and the b is a bias parameter. The
ReLU, which rectifies negative values to zero, is used as the activation function.
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Figure 1. Illustration of a fully convolutional network containing multiple three-dimensional (3D) filters
for semantic segmentation. “Conv3D”, “Max pool”, and “Deconv” represent the 3D convolutional
layer, max pooling layer, and deconvolutional layer, respectively. The numbers on the boxes represent
the pixel size of the input images and italic fonts mean the output number of layers. For example, “30”
means the output size of the layers is 30 X 30 pixels and “6” represents the number of final feature
maps is six.

Metric to sub-metric-level spatial resolution images reflect ground objects of different sizes varying
from very small neighborhoods to large regions; therefore, multiscale filters were used to extract
different features. These features were successively applied in the classification task [40-43]. Multiscale
filters also allow observations from broad and micro perspectives [43]. Unlike previous study, herein,
the spatial dimension and aspect of the spectral band of the filter are considered. Generally, features
with smaller spatial scales such as edges of buildings and roads, respond to small convolutional filters,
whereas coarse structures are extracted by large filters [41]. Furthermore, different spectral features
are extracted depending on the number of adjacent bands included. As the input image contains
red, green, blue (RGB), and near-infrared bands, the spectral information can be sued for identifying
different materials. For example, materials with similar colors in the RGB bands are discriminated by
considering the near-infrared band characteristics.

Therefore, multiscale 3D spatial and spectral filters with different sizes were used to extract
meaningful features and improve the feature extraction robustness from the high spatial resolution
satellite images. Initially, 3D convolutional layers were applied for parallel input of the image.
The network uses multiple 3D filters in the first convolutional layer with different sizes. To confirm
the effectiveness of the multiscale 3D filters in the semantic segmentation and determine appropriate
shapes for the filters (x X y X z), the classification accuracies at pixel level for different cases were
compared using 3D filters, namely, (1x1x4), (3x3x3), (5x5x2),and (7x7x1). The size of the
filter can be determined according to the size of the input image. The width and height of the 3D
filter (x, y) were selected as 1, 3, 5, and 7 based on previous studies on the classification of satellite
images using multiscale filters [40,42,43]. The size of spectral band z ranged from 1 to 4, covering
the ISPRS dataset containing four bands (three visible bands and a near-infrared band). In particular,
to combine optimal multiscale filters, considering the complexity of the calculation process and prevent
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the redundancy of the extracted information, specialized 3D filters for spatial or spectral information
were utilized. Therefore, the sizes of 3D filters were controlled, e.g., if the spatial dimension of the
filters were large, the spectral dimension of the filters was set to be small.

The three feature maps obtained from three convolutional layers in the first layer were then
combined to create a joint feature map. Feature maps from each convolutional filter have different sizes;
therefore, they must be readjusted to match before creating the composite feature map. The features
share all dimensions using padding except for the channels used, which may differ, and all feature
maps are collected in a tensor.

The composite feature map was then used as the input for the sequential convolutional
layers. The network mainly comprises nine convolutional layers with 3D filters, two pooling
layers, and deconvolutional layers. For the downsampling, a filter size of 3 was used (3 X 3 x 3),
with pooling followed by two sets of convolutions with size and stride of 2. This step generated the
spatial size of the output map, with two convolution operations of identical output dimension followed
by a pooling layer from a block of operations. Successive blocks reduced the spatial size, and many
upsampling blocks were followed by downsampling blocks to recover the spatial size of the original
image. Upsampling was achieved via transpose convolutions; after each transpose convolution, slicing
of the output map occurred to match the size of the corresponding output map in the downsampling
block, followed by the concatenation and convolution operations. This process was repeated until the
original spatial size was recovered. The experiment was performed using Keras with TensorFlow as
the backend, and the network was trained using the NVIDIA GeForce RTX 2070 GPU memory of 8 GB;
the ISPRS multispectral datasets was used as the source data input. The size of the ISPRS image was
too large; slices of shapes with labels were extracted, separated into batches and stored with the 3D
FCN trained using 960,000 sub-images. In the experiment, the structure of the FCNs was identical to
Figure 1 but the initial convolutional layer was different. When one filter was used, the initial layer
comprised sequential two 3D convolutional layers. All patches obtained from the ISPRS dataset were
used as training and test samples. The networks were trained with the Adam optimizer, which had a
learning rate of 1073, batch size of 256, and 300 Epochs.

2.2. Recurrent FCN for Change Detection

The proposed change detection network combined 3D FCN and convolutional LSTM, wherein
a fully connected layer at the end of the network was replaced with a convolutional layer. The 3D
convolutional layers with multiscale 3D filters extracted spatial-spectral features from the input images,
whereas the convolutional LSTM recorded and analyzed the change information of the multi-temporal
image. The network was developed as a recurrent 3D FCN (Re3FCN) [34] by adding the transfer
learning and multiscale 3D filters to apply for high spatial resolution satellite images. Figure 2 shows
the architecture of the proposed change detection network.

Creating meaningful feature maps from multi-temporal images improves change detection
accuracy because the change detection network detects changes based on the temporal information
from the feature maps generated from temporal images. Therefore, the transfer learning resolves the
problem of insufficient training samples using many remote sensing images as the source data. As the
ultimate goal of transfer learning is to improve the change detection performance, the low-level features
learned by deep networks from the source domain are transferred to the target domain. This provides
excellent initial configurations in the transfer learning method to quickly initiate meaningful feature
extraction from the multi-temporal high spatial resolution satellite images; proper initialization is
crucial for network training [44]. The hypothesis is that the lowest layers of the FCN extract general
features from the images; therefore, the learned weights are extended to other recognition tasks,
as these mostly detect generic features. Concurrently, the topmost layers detect higher level features
from the images, and therefore these are specific for the trained network’s classification task. Thus,
it is hypothesized that initializing a convolutional network with weights from a network pre-trained
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on another dataset accelerates the training process, and improves performance because the low-level
features are generic across different tasks.

...............................................................................
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Figure 2. Architecture of the proposed change detection network, with “Conv2D” representing the 2D
convolutional layer. “ig”, “fg”, “0g”, “c”,”c”, and “h” represent input gate, forget gate, output gate,
candidate memory cell, memory cell, and hidden state, respectively. The colored layers exploit the

pre-trained weights and biases from semantic segmentation network.

Considering I"! and I'2 as the images obtained at times T1 and T», respectively, the 3D patches
obtained from each image are passed through the 3D convolutional layers with different 3D filters
in parallel. Multiscale 3D filters were used to create different feature maps with identical 3D filters
employed in the classification network. The weights and biases of initial layer with multiscale
filters were later fine-tuned, with two more 3D convolutional layers included after the multiscale 3D
convolutional layers. This is because small patches were used as input, which naturally reduced the
network depth, and the predicted classes are relatively simple (change and no change) compared to
other classification tasks. For example, the ImageNet classification involves 1000 categories, whereas
the PASCAL VOC classification shows 20 classes [33]. A simple network is suitable for detecting
changes in high spatial resolution images.

The spectral-spatial feature maps obtained from 3D convolutional layers were fed into the
convolutional LSTM layer. In this phase, the temporal information between two images was reflected.
Let 71 and f'2 be the spectral-spatial feature maps obtained from "t and I72, respectively. The RNN
architecture recollects values over arbitrary intervals using a memory cell ¢; at a time step ¢t. The
convolutional LSTM involves three gates, namely, the input gate ig, output gate 0g, and forget gate
fg, each of which has a learnable weight. fg; is the gate for forgetting the previous information, and
the output range of the sigmoid function is 0-1. If o = 0, the previous state information is forgotten;
if 0 =1, the previous state information is memorized. ig; is the gate for remembering the current
information, and the cell states are regulated by deleting or adding information through the gates.
These gates are expressed as follows.

gt = o(Wigg # iy + Wipg » [T + 1) )
ige = 0(Wiig * hu-1 + Wig» f7 + big) ®3)
08t = G(Whog * ht—l + Wfog *th + bog) (4)
= tanh(WhE M+ Wﬁ * th + bg) (5)
= fgOc1+igOC (6)

ht = 0g¢ © tanh(cy) ()
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The subscripts associated with the weight matrix W have specific meaning. For example, Wy,
and by, are the weight matrices between /;_1 and fg and the bias of f¢, respectively. ¢; is the candidate
cell value for constructing a new candidate value with ig;, which is then added to the memory cell
¢t to influence the next state. Finally, the output /; is determined by multiplying tanh(c;) and o0gy;
“+” is the convolutional operator and “©” is the element-wise multiplication. The three gates of the
convolutional LSTM are represented by 3D tensors, and the convolutional LSTM determines the future
state of a cell in the pixel-based on the input and past state of its adjacent region using a convolutional
operator [45]. The outputs of the convolutional LSTM layer were then fed into the prediction layers to
generate a score map, and the number of final feature maps and classes is equal. Finally, the pixels

were classified into final classes according to the score map.

2.3. Quality Evaluation

To evaluate the utility of the proposed change detection method, the overall accuracy, Kappa
coefficients, and F1 scores by class were calculated. The overall accuracy is the number of correctly
classified pixels divided by the total number of sampled pixels. It is described as true positive (TP),
true negative (TN), false negative (FN), or false positive (FP), with its calculation expressed in Equation
(8). The F1 score considers the precision (Equation (9)) and recall (Equation (10)) in computing scores.
Precision is the number of correct positive results divided by the number of all positive results returned
by the classifier, and recall is the number of correct positive results divided by the number of all
samples that should have been identified as positive. F1 score is expressed in Equation (11) as the
harmonic mean of the precision and recall.

overall accuracy = TP+ TN (8)
Y= TP+ TN + FP + EN
Precision = L )
(TP + FP)
TP
Recall = ——— (10)
(TP 4+ FN)

2 x (Precision X Recall)
Precison + Recall

F1 score = (11)

The Kappa coefficient measures the closeness of the classified images using the specific classifier
with the ground truth map. For the Kappa coefficient, values greater than 0.8 imply a strong agreement
between the classification result and ground truth, 0.6-0.8 indicates good accuracy, 0.4-0.6 indicates
moderate accuracy, and <0.4 indicates poor accuracy [46]. The Kappa coefficient is defined as Equation
(12), and it uses the overall accuracy and random accuracy (Equation (13)). Random accuracy is the
sum of the products of reference likelihood and results likelihood for each class.

. OA —-RA
Kappa coefficient = T-RA (12)
TN +FP) x (TN + EN EN + TP) x (FP + TP
ws _ (TNFP) X (TN + EN) + (FN + TP) x (EP + TP) i~

n2
where OA and RA represent overall accuracy and random accuracy, respectively. # is total number
of samples.

Herein, the proposed network was compared with other methods, such as fully connected
LSTM, 2D CNN-fully connected LSTM (2D CNN-LSTM), and Re3FCN combination composed of 3D
convolutional layers and convolutional LSTM [34]. The LSTM deals with temporal information and
is used to detect changes between two images [29]. The 2D CNN-LSTM involves the same structure
of the paper of Mou et al. [33], and it comprises 2D convolutional layers and fully connected LSTM
layers. The Re3FCN from a previous study was designed for extracting spatial and spectral features
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from hyperspectral images. The difference between the Re3FCN and the proposed network is that the
Re3FCN used a sequence of three convolutional layers, whereas the proposed network uses multiple
convolutional layers and pre-trained values in the initial phase. To assess the effectiveness of the
transfer learning, the change detection network with and without pre-trained weights and biases were
compared. All three cases involved identical training and test samples and experimental parameters
such as learning rate, Epochs, and optimizer type.

3. Datasets

3.1. The International Society for Photogrammetry and Remote Sensing Dataset

ISPRS 2D semantic labeling challenge Potsdam is an online open benchmark dataset [47] that
provides high spatial resolution airborne images with a spatial resolution of 5 cm. The data contain
near-infrared, red, blue, and green orthorectified imagery and corresponding digital surface models.
Furthermore, the data include ground truth images that show the impervious surface, buildings, trees,
low vegetation, cars, and unidentified features (Figure 3).

6.0 6-d8 6.09-1 6.10 6 6 614
LN ¥ se
0 08 09 | 10 b7 2121\ 243

Figure 3. Example of the International Society for Photogrammetry and Remote Sensing (ISPRS) dataset
with patch number of 6-8: (a) color-infrared image and (b) ground truth map. The classes involve
impervious surface (white), buildings (blue), low vegetation (cyan), trees (green), and cars (yellow).

Although the dataset contains 38 patches, only 24 images with ground truth images were used for
training and validation, and the patch numbers of the labeled data are presented in Table 1. Twenty-four
large multispectral images containing 6000 x 6000 X 4 pixels in tiff format were the initial data input
sources. Because the size of the ISPRS images was too large, slices of 30 X 30 x 4 pixels with labels (a
total of 960,000 images) were extracted, separated into batches, and stored. The classification network
was then trained using the sub-images.

Table 1. The patch numbers of labeled data utilized for the ISPRS dataset.

Patch Numbers
2.10,2.11,2.12,3.10,3_11,3_12,4.10,4_11,4_12,
Potsdam dataset 5.10,5.11,5.12,6_7,6.8,6.96_10,6_11,6_12,7_7,
7.8,7.9,7_10,7_11,7_12

3.2. KOMPSAT 3A

This dataset of the Korea multipurpose satellite (KOMPSAT)-3A involves multi-temporal
images obtained from Daejeon in South Korea (Figure 4). KOMPSAT-3A is Korea’s first earth
observation/infrared satellite with two imaging systems on board and was developed by the Korea
Aerospace Research Institute (KARI) [48]. It provides high spatial resolution panchromatic and
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multispectral imagery in the near-infrared, red, blue, and green bands. The spatial resolutions of the
KOMPSAT-3A are 0.55 m (panchromatic image) and 2.20 m (multispectral images with five bands).
The multi-temporal images were acquired in October 2015(T1) and July 2018 (T;), with vegetation
distribution changes due to seasonal change and changes in urban areas attributed to new construction.
To improve the spatial resolution of the KOMPSAT-3A images, a hybrid pan-sharpening method
based on the normalized difference vegetation index (NDVI) [49] was applied during preprocessing.
Locations of the images with improved spatial resolution are shown in Figure 4. Before the change
detection, geometric correction was applied to the multi-temporal images using ground control points.

127°19°31"E 127°20°12"E
A 2
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—_—
0 02  04km

October 2015 July 2018

Figure 4. Locations of the two study sites; the background map was obtained from the ArcGIS world
map [50]. The upper images are of sitel and the lower images are of site 2. The first images were
obtained in October 2015, and the second images were obtained in July 2018. Both the images highlight
the differences due to seasonal changes and newly constructed buildings.

Binary change detection distinguishes the pixels of the sites into changed (().) and unchanged
(Q)) classes. Ground truth data were generated using web maps and KOMPSAT images with high
spatial resolution. We defined changes involving land cover classes, from waterbodies to building
areas. The land cover classes include vegetation, bare soil, buildings, waterbodies, and roads. Colored
roofs, such as blue, brown, and white are classified as “buildings.” The “bare soil” represents ground
without buildings and vegetation, whereas “road” encompasses asphalt roadways. Changes due to
relief displacement and shadows are not considered as changes in the ground truth data.

4. Results

4.1. Semantic Segmentation Results

The semantic segmentation results of the FCN for differently sized filters are presented in Table 2.
The FCNs with (1x1x4) and (7 X7 x 1) filters produced lower overall accuracy than (3 X 3 x 3) and
(5x5x2) filters. In contrast, (3 x3x3) and (7 x 7 x 1) filters have relatively higher F1 score than other
3D filters. In particular, the (3 x 3 x 3) filter shows the highest F1 scores for all classes and the (7x7 x 1)
filter more effectively classifies the five classes—impervious surface, building, low vegetation, tree, and
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car—than (5x5x2) and (1 x1x4) filters. The (1 x 1 x 4) filter addresses spectral correlation rather
than spatial information, whereas the (7 X7 x 1) filter addresses local spatial correlation rather than
spectral information. The filter that considers only the spectral information could not classify materials
of five classes. Sematic segmentation results demonstrate that 3D filters, which consider spatial and
spectral features, improve the classification results; further, spatial information significantly influences
the classification of five classes than spectral information. Therefore, the (3 x3 X 3), (5x5x2), and
(7x7x1) filters were selected to create multiscale 3D filters. When the multiscale 3D filters were
used in the initial convolutional layer of the semantic segmentation network, the F1 scores and overall
accuracy display remarkable improvements. For example, the F1 scores and OA displayed remarkable
improvements. For example, the F1 score of the impervious surface, buildings, low vegetation, trees,
and car increased by 0.0303, 0.0143, 0.0656, 0.049, and 0.104, respectively, compared with the highest
existing values. Furthermore, the FCN with multiscale 3D filters delivered an improved OA value of
87.17%, which was 2.9% higher compared with when the (3 x 3 x 3) filter was used.

Table 2. Classification results for validating the ISPRS Potsdam dataset using the fully convolutional
network (FCN) with differently-sized 3D filters. “OA” represents overall accuracy.

F1 Score
Filter Shape OA
Impervious Surface Building Low Vegetation Tree Car
(Ix1x4) 0.7770 0.8306 0.5817 0.4703 0.4589 0.7532
(3x3x3) 0.8745 0.9088 0.6775 0.7370 0.6733 0.8427
(5x5x%x2) 0.8365 0.8696 0.6057 0.6040 0.6419 0.8134
(7x7x1) 0.8386 0.8611 0.6121 0.6263 0.6855 0.7842
3X3X%X3
[ 5x5x2 ] 0.9048 0.9231 0.7431 0.7819 0.7895 0.8717
7XxX7x1

4.2. Change Detection Results

During the process, the Adam optimizer with a learning rate of 107> was used and the Epoch was
set to 500. Training data were randomly generated from the ground truth data, and the number of
training, validation, and test samples was 40,000, 20,000, and 30,000 pixels, respectively. ReLU served
as the activation function of the convolutional layers, whereas softmax served as the activation function
of the last convolutional layer. The final output of the change detection network could be classified
into changed and unchanged classes.

Figures 5 and 6 display change detection maps generated using the proposed and other change
detection methods for sites 1 and 2. The overall accuracy, Kappa coefficient, and F1 score for all classes
from different methods are presented in Tables 3 and 4. The LSTM network shows the lowest overall
accuracy, Kappa coefficient, and F1 score for sites 1 and 2 (for site 1, overall accuracy = 0.9136, Kappa
coefficient = 0.6384, and F1 score = 0.6876, and for site 2, overall accuracy = 0.8826, Kappa coefficient =
0.5350, and F1 score = 0.6010). In site 1, LSTM classified the pixel changes from gray bare soil to green
vegetation into unchanged classes (Figure 5b). In the same way, LSTM did not recognize the pixel
changes from dark colored bare soil to building with brown roof. In contrast, the 2DCNN-LSTM and
Re3FCN produced relatively higher accuracies than the LSTM and could classify the changed and
unchanged pixels according to the training data. The accuracy of the 2D CNN-LSTM for site 1 is an
overall accuracy of 0.9597, Kappa coefficient of 0.8443, and F1 score of 0.8680, and that for site 2 is
overall accuracy of 0.9565, Kappa coefficient of 0.8518, and F1 score of 0.8783. In addition, the Re3FCN
yielded an overall accuracy of 0.9674, Kappa coefficient of 0.8984, and F1 score of 0.8978 for site 1,
and overall accuracy of 0.9633, Kappa coefficient of 0.8766, and F1 score of 0.8990 for site 2. However,
many spot noises and errors are noted at the boundaries of buildings, road, and trees.

Because the proposed change detection method uses transfer learning, change detection was
performed with and without transfer learning to assess the effectiveness of transfer learning. To briefly
explain the method and avoid confusion, the proposed change detection method without transfer
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learning is termed “multiscale Re3FCN without transfer learning” and the proposed change detection
method with transfer learning is named “multiscale Re3FCN with transfer learning”. The change
detection method with the multiscale 3D filters outperformed other change detection methods for both
study sites. The method without transfer learning produced an overall accuracy of 0.9717, Kappa
coefficient of 0.8923, and F1 score of 0.9090 for site 1, and an overall accuracy of 0.9759, Kappa coefficient
of 0.9158, and F1 score of 0.9304 for site 2. The multiscale Re3FCN with transfer learning showed
the best results for all approaches. It produced an overall accuracy of 0.9790, Kappa coefficient of
0.9201, and F1 score of 0.9326 for site 1, and overall accuracy of 0.9795, Kappa coefficient of 0.9288, and
F1 score of 0.9412 for site 2. The proposed change detection method could detect the pixels with the
changes in class type although the colors appeared to be similar in RGB images. In addition, the spot
noises were reduced and edges of changes were detected clearly.

Figure 5. Cont.
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Figure 5. Change detection maps obtained from the proposed and other methods for site 1 including
(a) ground truth map (b) LSTM, (c) 2D CNN-LSTM, (d) Re3FCN, (e) the proposed method without
transfer learning, and (f) the proposed method with transfer learning. (); and (), represent changed

and unchanged classes, respectively.

Table 3. Comparison of results of assessment parameters for different change detection methods for
site 1. “Kappa” and “TL” represent Kappa coefficient and transfer learning, respectively.

Change Detection Methods OA Kappa F1 Score
LSTM 0.9136 0.6386 0.6876
2DCNN-LSTM 0.9597 0.8443 0.8680
Re3FCN 0.9674 0.8984 0.8978
Multiscale Re3FCN without TL 0.9717 0.8923 0.9090
Multiscale Re3FCN with TL 0.9790 0.9201 0.9326

Figure 6. Cont.
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Figure 6. Change detection maps obtained from the proposed method and other methods for site 2
including (a) ground truth map (b) LSTM, (c) 2D CNN-LSTM, (d) Re3FCN, (e) the proposed method
without transfer learning, and (f) the proposed method with transfer learning. (. and (), represent

changed and unchanged classes, respectively.

Table 4. Comparison of results of evaluation parameters for different change detection methods for

Site 2.
Change Detection Methods OA Kappa F1 Score
LSTM 0.8826 0.5350 0.6010
2DCNN-LSTM 0.9565 0.8518 0.8783
Re3FCN 0.9633 0.8766 0.8990
Multiscale Re3FCN without TL 0.9759 0.9158 0.9304
Multiscale Re3FCN with TL 0.9795 0.9288 0.9412

5. Discussion

5.1. Comparison with Previous Studies

Although the LSTM learns the rules for change detection between temporal data, the images must
be flattened for use with the fully connected LSTM network. Therefore, the LSTM is unsuitable for
image analysis because it ignores spatial connectivity and the large weight matrix size increases the
computational cost [44]. Therefore, change detection methods using LSTM, such as LSTM and 2D
CNN-LSTM, relatively detect changes as unchanged areas than FCN-based change detection methods.
However, using LSTM with 2D CNN, the change detection accuracies increase compared with when
only LSTM is used. For example, the improvements in overall accuracy and Kappa coefficient are 4.6%
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and 0.2057 for site 1 and 7.3% and 0.3168 for site 2. The results show that convolutional layers extract
meaningful features from temporal images, with the features improving change detection accuracies.

When comparing 2D CNN-LSTM with Re3FCN, the results show superior performance for the
Re3FCN for sites 1 and 2. The difference in the two change detection methods is that the fully connected
LSTM is replaced by the convolutional LSTM and 3D filters are used instead of 2D filters in the
convolutional layers. The convolutional LSTM models the temporal dependency of inputs, maintaining
the spatial structure, whereas the 3D convolution effectively exploits spatial and spectral information
simultaneously [34]. The reflectance pattern through spectral bands is crucial information for high
spatial resolution spatial satellite images ranging from the visible to near-infrared. For example, when
reflected radiation is in the near-infrared than visible bands, the vegetation in that pixel is likely dense
vegetation. Therefore, the spectral information is crucial for change detection using satellite images.

The Re3FCN was developed using multiscale 3D filters and transfer learning. The improvements
in overall accuracies are 1.16% and 1.62% for sites 1 and 2, respectively. Furthermore, the F1 score for
sites 1 and 2 increased to 0.0348 and 0.0422, respectively. Results show that changed pixels are correctly
classified as changed classes by the proposed change detection method. Objects with different shapes
and characteristics are identified in high spatial resolution images; therefore, multiscale 3D filters assist
in extracting meaningful features and improving the change detection results.

5.2. The Effect of Transfer Learning

The multiscale Re3FCN without transfer learning was randomly initialized at the start of the
iteration. Conversely, the multiscale Re3FCN with transfer learning used pre-trained weights and
biases, which are convolutional layers with multiscale filters, in the FCN for semantic segmentation.
When the network involves pre-trained convolutional layer with multiscale filters, the change detection
results slightly improved. For example, the overall accuracy increased from 0.9717 to 0.9790 and
Kappa coefficient from 0.8923 to 0.9201 for site 1. Furthermore, the F1 scores increased to 0.0236 (site
1) and 0.0108 (site 2), respectively. Thus, transfer learning provides more rational initial values than
the randomly selected values, thereby improving the change detection performance under the same
experimental conditions.

6. Conclusions

In this study, change detection was conducted using an FCN with multiscale 3D filters and
convolutional LSTM. As the proposed change detection network detects changes by analyzing the
temporal information of feature maps obtained from temporal images, extracting meaningful features
can improve the change detection results. Therefore, multiscale 3D filters were used in the initial
phase of change detection network development to extract various spatial and spectral features from
high spatial resolution images. Furthermore, the filters used pre-trained values from the ISPRS
dataset to overcome the lack of training samples. The appropriate combination of 3D filters was
determined by analyzing accuracy by class, and the classification and change detection performance
were improved using multiscale 3D filters. The change detection results on the KOMPSAT-3A were
compared with those of the LSTM, 2D CNN-fully connected LSTM, and Re3FCN; results revealed that
the proposed change detection method outperformed others. Particularly, the change detection results
were improved when using pre-trained values.

However, several problems are associated with the proposed change detection method.
For example, since it uses multiple 3D filters for temporal images in parallel, the computing cost may
increase depending on the learning environment. Furthermore, differences in spatial resolution and the
class types between the source domain (ISPRS dataset) and target domain (KOMPSAT-3A) were not
considered. To solve this problem, we developed the transfer learning technique applicable for broad
applications. This is expected to improve usage of the large amounts of data extracted for detecting
changes in different high spatial resolution satellite images.
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