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Abstract: Knowledge on the ionospheric total electron content (TEC) and its prediction are of great
practical importance and engineering relevance in many scientific disciplines. We investigate regular
ionospheric anomalies and TEC prediction by applying the least squares harmonic estimation (LS-HE)
technique to a 15 year time series of the vertical TEC (VTEC) from 1998 to 2014. We first detected
a few new regular and modulated signals in the TEC time series. The multivariate analysis of the
time series indicates that there are diurnal, annual, 11 year, and 27 day periodic signals, as well as
their higher harmonics. We also found periods matching with the global positioning system (GPS)
draconitic year in the TEC time series. The results from the modulated harmonic analysis indicate
that there exists a set of peaks with periods of 1 +0.0027j (j = 1,...,5) and 1 £0.00025j (j = 1,2,3)
days. The same situation holds also true for the harmonics higher than the diurnal signal. A model is
then adopted based on the discovered periods. This model, which consists of pure and modulated
harmonic functions, is shown to be appropriate for assessing the regular variations and ionospheric
anomalies. There is a clear maximum TEC at around 22:00 h, which we called the “evening anomaly”.
The evening anomaly occurs in the winter and autumn, and is dependent on the solar activities.
Also, the Semiannual, Winter, and Equatorial anomalies were investigated. Finally, to investigate
the performance of the derived model, the TEC values have been predicted monthly, and the results
show that the modulated signals can significantly contribute to obtaining superior prediction results.
Compared with the pure signals, the modulated signals can improve a yearly average root mean
squared error (RMSE) value in the lower and higher solar activities by 20% and 15%, respectively.

Keywords: ionospheric anomalies; Least Squares Harmonic Estimation (LS-HE); TEC prediction;
TEC time-series

1. Introduction

The ionosphere plays an important role in the disciplines of many atmospheric sciences, including
telecommunication [1] and global navigation satellite system (GNSS) signals [2]. This layer of
atmosphere extends from about 60 km to 2000 km at the top of the Earth’s atmosphere, and its main
portion is placed between 300 and 400 km [3,4]. The ionosphere is filled with charged particles of both
free electrons and ions. Its main layers are known as D, E, F1, and F2 [5]. The total electron content
(TEC) is a valuable descriptive quantity for the ionosphere, and is defined as the line integral of the
electron density of a column through the ionosphere. It is measured in TECu units, of which one TECu
is equivalent to 1016 electron/m? [6].
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Modeling and prediction of the ionosphere are important issues, on which considerable attention
has been focused over the past few decades. The ionospheric effect is one of the most important
sources of error in real-time GNSS implementations. Essentially, single-frequency receivers need
ionospheric models to eliminate/reduce their signal delays. The International GNSS Service (IGS) final
global ionospheric map (GIM) products are released with a time delay of approximately 2 weeks,
limiting its applications in real-time. For example, real-time precise point positioning (PPP) and other
satellite missions, such a soil moisture and ocean salinity (SMOS) [7] and spaceborne synthetic aperture
radar (SAR) [8] require ionospheric information in real time. Therefore, modeling and prediction
of global vertical TEC (VTEC) are essential. Many researchers have attempted to investigate the
ionospheric variation by using several forecasting models and mapping algorithms, such as least
squares, neural networks, kriging, empirical orthogonal functions, and autoregressive moving average
model (ARMA) [7,9-16]. Most of these methods have focused on the study of global and regional parts
of the ionosphere. For example, Gong and Dang [17], using IGS TEC global data and the improved
analysis of variance method for short-term forecasting, showed the root mean squared error (RMSE)
distribution of forecasting values corresponding to each set of data is between 1.5-2.5 TECu, and they
improved forecasting by the weighted method.

Ionospheric variations can generally be categorized as regular and irregular [18]. The regular
parts happen almost in cycles because of the Earth’s rotation and revolution and sun-related features,
such as 11 year and 27 day variations originated from sunspot variations [5]. Therefore, they can be
modeled with considerable accuracy. Such variations include changes due to diurnal, annual, and
solar cycle signals, to name a few. The irregular parts, however, are mainly due to abnormal solar
behavior, such as Sporadic E, caused by unusual and irregular cloud-like patches of high ionization;
sudden ionospheric disturbances, occurring without warning and usually related to solar eruption;
and ionospheric storms caused by disturbances in the Earth’s magnetic field related to the rotation
of the sun and solar eruptions [5,19]. However, modeling of irregular parts of the ionosphere is
rather difficult.

The effects in the ionosphere that seem unpredictable at first are called anomalies. There exist
different kinds of ionospheric anomalies. For example, the ionosphere has more electron density
during the day in winter compared to the summer. This phenomenon is called a “winter” or “seasonal”
anomaly [20]. The seasonal changes in NmF2 (maximum electron density of the F2 region) are related to
changes of constituents as the summer hemisphere is being heated and the lighter neutral constituents
are transferred to the winter hemisphere. Also, the winter anomaly’s frequency and area diminish
with decreasing solar activity [21]. By investigating TEC data, Jakowski and Forster found that when
the sun’s activity is not high, there is a nighttime winter anomaly (NWA) effect in mid-latitudes in
the American and Asian sectors [22]. Mikhailov et al. [23,24] and Farelo et al. [24] found two peaks
in NmF2 night changes. These two peaks occurred before and after midnight, showing different
characteristics because of different physical mechanisms. Meza et al. [20] used principal component
analysis (PCA) and wavelet transform (WT) for VITEC, and they found that the winter anomaly is
recorded at noon near the geomagnetic poles, the effect is more important during high solar activity,
and the NWA effect is clear.

There are some other anomalies related to the normal variations of the ionosphere. The semiannual
anomaly is caused because the NmF2 is greater at equinoxes than at solstices [25]. Although temperature
fluctuations can be the reason for the observed semiannual variations in the height of the F2 peak,
changes in NmF2 require additional variations in the neutral composition at lower heights. The
semiannual changes happen in the daytime around the world; their occurrence at night is not observed
except in South America and near the equator [26,27]. Balan et al. [28] observed an equinoctial
asymmetry in the ionospheric peak. They concluded that the NmF2 values in March are larger than
those in September by about 50% at all local times. Ma et al. [29] found that the semiannual changes in
the diurnal tide in the lower thermosphere lead to changes in the ionospheric equatorial anomaly with
a fountain effect. Meza et al. [20] showed that the semiannual anomaly is recorded at noon, mainly
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at middle and low latitudes, and has a close relationship with solar activity; at night, this anomaly
is recorded during high solar activity. The values of the VTEC at the March equinox exceed that
of the September equinox. There also exist variations of electron density in the lower geomagnetic
latitudes, reaching a maximum at geomagnetic latitude 15°, called the “equatorial” or “Appleton’
anomaly [30]. Although the above-mentioned variations are known as “anomalies”, considerable parts
of their effects can be modeled as deterministic signals in the functional model [16]. This is shown in

7

the present contribution.

The ionospheric influence on the GNSS signals is dependent on the number of TEC. We aim to
investigate regular anomalies and predict TEC values using a model that includes both pure (original
wave-like diurnal) and modulated signals, having three components: the original wave and two
sinusoidal waves whose frequencies are slightly above and below the original frequency. Since the
TEC values have cyclic variations in their regular part, they can consequently be modeled by a series
of periodic functions, such as sinusoidal ones. The least squares harmonic estimation (LS-HE), as a
method used to analyze frequencies, is applied to the TEC time series derived from ionospheric models.
LS-HE has a few unique characteristics. The method is not limited to evenly spaced data or to integer
frequencies [15]. The method can also be employed to detect the regular and modulated variations of
the ionosphere. The time series in our analysis consists of 15 years of bi-hourly TEC values provided
by the Jet Propulsion Laboratory (JPL).

This work is a follow-up to the study by Amiri-Simkooei and Asgari [16]. It differs from that
one, however, in the following three aspects: (1) we aim to detect new regular and modulated signals
in the TEC time series. A longer time series (now 15 years) allows us to detect new pure (e.g., GPS
draconitic year period) and modulated signals in the TEC time series. (2) Using all detected signals,
we then investigate the structure and nature of different ionospheric anomalies. (3) We use the final
functional model of the TEC time series to predict the ionosphere and investigate the model in local
time. The derived functional model is evaluated by predicting TEC time series using (a) pure harmonic
signals and (b) both pure and modulated harmonic signals. This is accomplished both in low and high
solar activities.

2. Methodology

The methodology in the current paper includes two main stages, illustrated in Figure 1 as a
methodology flowchart. The first part focuses on the LS-HE application to ionospheric time-series,
and the second part shows the model forming and prediction, as explained below.

1 Identification of pure and modulated signal by
e LS-HE

T4/

Pure Signals Modulated Signals

v . v

Model Forming Model Forming

L—D J 2
- TEC Prediction Investigation of

lonospheric

Anomalies
Compare Two
Predictions

3 —

Figure 1. Methodology flowchart based on least squares harmonic estimation.
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2.1. Least Squares Harmonic Estimation (LS-HE)

Most parts of the ionospheric variations, including ionospheric anomalies, are of periodic nature.
Therefore, periodic base functions, such as pure and modulated sinusoidal signals, can be used to
model and predict the ionosphere. We employ LS-HE to identify and investigate possible pure and
modulated signals in TEC time-series. The LS-HE was introduced and applied to the GPS position
time series by [31,32]. The LS-HE was also applied to the TEC time series by Amiri-Simkooei and
Asgari [16]. We briefly review this method.

Consider the following linear model of observation equations:

E(y) = Ax, D(y) = Qy @

where A is the m X n design matrix, Qy is the m X n covariance matrix of the of observations y, x is
the vector of unknown parameters, m is the number of observations, # is the number of parameters,
and E and D are the expectation and dispersion operators, respectively. In the case of a time series,
a preliminary functional model E(y) = Ax may simply include a linear regression model (see [16],
for example). Further improvement of the functional model is achieved using LS-HE. The LS-HE
formulation has been presented in the univariate (single) and multivariate (multiple) time series. A
few features of the LS-HE compared to its counterpart, Fourier spectral analysis, are as follows:

e LS-HE s a generalized form of the Fourier spectral analysis. It is thus neither limited to evenly
spaced data nor to integer frequencies. In many real time series, there are some considerable gaps
in the data. LS-HE can handle gaps in the data [16,33].

e In the earlier studies by Vanicek [34], Lomb [35], and Scargle [36], a modified variant of Fourier
analysis, called least squares spectral analysis, applicable to unevenly spaced data series has been
presented. LS-HE is superior over this method because it may, in addition, include the following
terms into the analysis: (1) the linear trend Ax, as a deterministic part of the model, and (2) the
covariance matrix Qy, as a stochastic part of the model [31].

e A unique feature of LS-HE is its multivariate formulation. The performance of the multivariate
formulation is superior over its univariate formulation, because it allows the detection of the
common-mode signals in a time series. Parts of such signals cannot be detected in the univariate
analysis [16,33].

e  LS-HE can also be applied to detect modulated signals. This is also another important feature of
LS-HE. Many real time series are suspected to have modulated sinusoidal signals rather than pure
sine functions. LS-HE can detect possible modulated signals.

We apply the multivariate LS-HE of the multivariate linear model to detect common-mode pure
and modulated signals of multiple TEC time series. To combine TEC time series in different longitudes
and latitudes (r is the number of time series) Equation (1) is generalized to

E(vec(Y)) = (I; ® A) vec(x) + (I ® Ag) vec(Xy) ()

where vec is the vector operator, ® is the Kronecker product, which is an operation on two matrices of
arbitrary size resulting in a block matrix, I is the identity matrix, A and Ay are the designs matrix.
The structure introduced in (I; ® Ay) indicates that there exists a common periodic signal in all of the
series. The m X r matrix Y = [y1 ¥ ... Y] collects observations from the r series, as do the n X r matrices
X = [x1 x2...x] and Xy = [x1x X2k . . - Xyk] for the unknowns. For a detailed description of the theory
and applications of LS-HE, we may refer to Amiri-Simkooei and Asgari [16].
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2.2. Total Electron Content Modeling and Prediction

The TEC time series consists of some pure and modulated harmonic signals [16]. To model regular
variations of the ionosphere, one can form the functional model of the time series with the following
two terms:

y(t) = ya(t) + y2(t) ®)
where )
y(t) = Z al.l cos wjt + a? sin w;t (4)

i=1
consists of a series of pure sinusoidal signals expressing the regular pure harmonic term (w is angular
frequency), and

9
y(t) = Z b, cos Wit + b sinwit + by cos a)Zt +b; sin th ()
k=1

consists of a few modulated sinusoidal signals expressing the regular modulated harmonics by the
frequencies a)ls< =wy +w; and wi = wy — w1, with p being the number of pure harmonics and g the
number of modulated signals. The combined effect of y;(t) and y»(t) is considered to be the entire
regular variations of the ionosphere. The coefficients a} and af and b, i = 1,2,3,4 are unknowns.
The estimation of these coefficients is referred to as “modeling”. After the identification of pure and
modulated signals of the TEC time series and forming the model, we aim first to investigate the
ionospheric anomalies, and second to predict the TEC values by the identified model. The first part
detects the anomalies of the ionosphere, while the second part predicts the behavior of the ionospheric
TEC using the estimated coefficients. Further details are explained as follows.

Two scenarios were used for the prediction and identification of the TEC. The first scenario
considers only pure signals. The second scenario takes both pure and modulated signals into
consideration. For both scenarios, the design matrix A is based on the observation equations in
Equations (4) and (5). Least squares estimation of the pure and modulated signal parameters for a
given TEC time series is obtained through the following equation:

= (ATA) ATy ©)

where y is the vector of observables, £ is the vector of estimated parameters, and the design matrix A
includes only pure signals under the first scenario and both pure and modulated signals under the
second scenario. The pure signal introduces two columns to the design matrix, while a modulated
signal introduces four columns.

The identification stage is related to the time instants t1, f, . . . t;;, of which time series observations
Y1,Y2,- .. Ym are available. In the estimation (modeling) stage, the signals parameters are estimated
using the observations y1,12,... Y, in the time instants t1,t,...t;. Then the time series can be
predicted outside the time-series interval ty,ts,...t,—i.e., within t,, 11, ty42 ...tk With k being the
total number of time instants for prediction. We may use the corresponding design matrix from the
following equation:

Ap = [A§1>,...,A(”), Al A" %

()

where A1

, 1=1,2,...,p are the design matrices corresponding to the pure signals;
Cos Wity 41 SINWity41
Ccos Witym4+2  Sinwity42

(i) _
All o : : ®)

CoS Wity 4k SNty
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and Agj ), j=1,2,...,q are the design matrices corresponding to the modulated signals;

cos sztm+1 sin sztm+1 cos w].dtm+1 sin w}?itmﬂ
. COS Witmyn  Sinwstpmys cos wdtm o sin Wty
G) _ j j j j
Ay = . } i ) )

cos sztm+k sin sztm+k cos w].dthrk sin wj‘itm+k

)

In the first scenario, only the Ail values are used, whereas in the second scenario, both Agl) and

A;j ) values will be used. The predicted (extrapolated) values can then be obtained as follows:

yp = ApX (10)

To investigate the performance of the predicted values, a comparison criteria based on the root mean
squared error (RMSE) values will be used:

n

(yi - ?pi)z (11)
i=0

RMSE =

I |-

where y; is the real value and y,; is the predicted value of the VTEC.

3. Results and Discussions

3.1. Data Set Description

In this study, we used about 15 years of VTEC data from 1998 to 2014, with global coverage provided
by JPL. Global ionospheric maps are generated on a bi-hourly basis at JPL using data from over 100 GPS
sites of the IGS and other institutions. The vertical TEC is modeled in a solar-geomagnetic reference
frame using bi-cubic splines on a spherical grid. A Kalman filter is used to solve simultaneously for
instrumental biases and VTEC on the grid (as stochastic parameters) [37,38]. The data is open-access
in this file transfer protocol (FIP) server ftp://cddis.gsfc.nasa.gov/gnss/products/ionex [39]. Each JPL
GIM VTEC map given in the data center has a spatial resolution of 2.5° in latitude and 5° in longitude,
with bi-hourly time intervals covering from 180°W to 180°E and from 87.5°N to 87.5°S. Figure 2 shows
an example of a TEC time series generated in this study. The JPL GIM file format is IONEX (The
IONosphere Map Exchange Format).

plot of time serie for phi=0 & lambda=0
160,— \ ‘

120

-

=

(=]
T

VTEC (TECu)
[-1] [--]
= =
T T

B
=

N
(=]

1 h 1 i
2004 2006 2008 2010 2012 2014

Time

0 1 1 1
1998 2000 2002

Figure 2. One typical example of a total electron content (TEC) time series generated in this study. It

was obtained from the global ionospheric maps (GIMs) from 1998 to 2014, on the basis of the bi-hourly

time interval.
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Many global GIMs are based on spherical harmonic expansion up to a degree and order of 15 or
so. The information in such models has a spatial resolution that is not consistent with 2.5° X 5° spacing.
However, 2.5° x 5° products were available in the JPL data center, and are used in this study.

3.2. Pure Periodic Signals

We applied the multivariate variant of the LS-HE method, presented in Section 2, to the TEC time
series in two directions: along the equator and along the prime meridian. This method can combine
individual time series to obtain the common-mode, least-squares power spectrum of the time series,
and hence their common-mode periods. The lowest frequency used in the estimation is based on the
time span of the data (15 years), and is performed to have one cycle over the total time span. The
highest frequency is based on the sampling rate, the Nyquist frequency, which is 4 h in this analysis.

Figure 3 illustrates the resulted spectrum for 71 TEC time series located at A = 0° and J¢ =
[-87.5° :2.5° :87.5°],ie., at a specific longitude and different latitudes. It shows that there are regular
signals, in agreement with the findings of Amiri-Simkooei and Asgari [16]. Common-mode regular
signals can be detected using the multivariate analysis. The spectrum shows a periodic pattern with
periods of 24/n hour, n = 1,2, ... ,6. Therefore, the spectral peaks are at the harmonics of 1-6 cycles
per day. Higher harmonics could likely be seen if the sampling rate was higher than 2 h. A periodic
pattern with periods of 365.25/n days, n = 1,2, ... 4, is the most obvious annual signal and its higher
harmonics. In addition, there are three signals with periods of 27 days, 11 years, and 5.5 years, which
are in conjunction with the solar cycle periods. As can be seen in Figure 3, the detected signals (peaks)
are more elongated/flattened at lower frequencies (e.g., 5.5 year or 11 year periods), which is due to
the leakage effect in the spectral analysis [33]. Longer time series are required to see the detected
signals sharper.

87.5:2.5:87.5]
T T il T T

+ m=2 n=l 11/2 11 year =
: 365.25 day/n | ]

n=2 n=1 27 day

Multivariate LS-HE for lambda=0 & phi=| -

Spectrum

10
Time (days)

Figure 3. The multivariate, least-squares power spectrum of 71 bihourly total electron content (TEC)

time series covering latitudes ranging from —87.5 to 87.5 degrees and the period 1998-2014. The vertical

dashed lines indicates diurnal and annual signals, along with their higher harmonics, a 27 day signal,

an 11 year signal, half of the 11 year signal, etc.

Figure 4 illustrates the power spectrum of 72 TEC time-series located at | = 0° and A =
[-180° :5° :180°],i.e., at a specific latitude and in different longitudes. We observed similar draconitic
signals in the TEC time series as observed in the time series of the GPS coordinates [33]. The GPS
satellite’s orbital error and multipath are recognized as two possible sources of these signals [40]. The
effect of Earth shadow crossing of GPS satellites is another probable reason for these signals [41].
These signals can be seen in the TEC time series from JPL with a period of 351.4/n days, where
n=2,6,7,...,15 (mainly at the higher frequency of the draconitic effect). As seen in Figure 4, a similar
flatness problem can be observed in the lower frequencies portion of this spectrum (e.g., draconitic
year period), which occurs because of the same leakage effect mentioned above. This leads to a shift
between the annual signal and the draconitic year period. The length of the TEC time series is not yet
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long enough to distinguish between the annual signal and the draconitic year period; the time-series
should be at least 25 years long [33].

Multivariate LS-HE for phi=0 & lambda=[ -180: 5 : 180]
T T N v v T

104 n=15

In=3E 11=23 ‘n=i '
'l 3514 day/n /

. - ||| 365.25 day

Spectrum
=
(=]
%
T

P LN PRI N A u PRI |

10! Time (days) 10?

Figure 4. The multivariate, least-squares power spectrum of 72 bihourly total electron content (TEC)
time series covering longitudes ranging from —180 to 180 degrees and the period 1998-2014. The
vertical dashed lines indicate draconitic signals and higher harmonics found in this study.

3.3. Modulated Periodic Signals

The regular signals with the periods mentioned above are not the only signals in the TEC
time-series. A zoom-in on the diurnal signal in Figure 3 shows signals close to that diurnal signal
(Figure 5). There are a series of peaks, with the periods close to the diurnal signal having the periods of
1+7/365.25 =1+0.0027j days (j = 1, 2, ...,5). Each pair of plus and minus signals corresponds to
the diurnal signal modulated with the annual signal. The same situation holds also true for harmonics
higher than the diurnal signal, i.e., semi-, tri-, and quad-diurnal signals. These are consistent with
the findings of Amiri-Simkooei and Asgari [15]. Furthermore, closer to the diurnal signal, we also
found other signals with periods of 1+ j/(11 x 365.25) = 1 +0.00025] days (j = 1, 2,3), which are
modulated into the diurnal signal (Figure 5, vertical dashed lines within the ellipse). The diurnal signal
is modulated with 11 year signals of the solar cycle. The same situation holds also true for the higher
harmonics of the diurnal signal.

Multivariate LS-HE for lambda=0 & phi=[ - 87.5: 2.5 : 87.5]
T T T T 0 T !
o

~ T T T T
10°F ! i v
F 1, ! 1, il I, i, I

1j=3 j=2 1j=1 il 1j=1 1j=2 1j=3
| | ! 1£0.00025] 1 H !

11-0.0027j day '1+0.0027) day |
! l

10°E

Spectrum

!
:I 1 ! 1 : 1 il : 1 : l 1 ! 1 : 1 1 :
0.99 0.992 0.994 0.996 0.998 1 1.002 1.004 1.006 1.008
Time (days)

Figure 5. Zoom-in of the multivariate least squares spectrum of the total electron content (TEC)
time-series in Figure 3. The diurnal signal is modulated with the annual and 11 year signals.

3.4. Regular Ionospheric Anomalies

After considering the multivariate analysis of the TEC time series, we developed a model including
the above-mentioned periods (24/n hour, 27 day, 365.25/n year, 351.4/n year, 1 + 0.0027j, 1 + 0.000255, 11
year, and 5.5 year). The ionospheric variations were then modeled to further study the ionospheric
anomalies. This goes through the following subsections.
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3.4.1. Semiannual Anomaly

Figure 6 shows the vertically modeled TEC values at the latitude and longitude of 0° in 2012.
The vertical TEC values close to the equinoxes (80th and 264th days of a year, equivalent to 21 March
and 23 September, respectively) are larger than those for the solstices (172nd and 355th days of the
year, equivalent to 21 June and 22 December), in agreement with the previous work. Figure 7 shows
the vertical TEC values at the equinoxes and solstices in local times, at different latitudes, and when
A = 0°. We observe that this anomaly occurs at lower and mid-latitudes during the daytime. Also, the
VTEC value of the March equinox is larger than that of the September equinox. Similar results were
reported by Millward et al. [27], using the coupled thermosphere ionosphere plasmasphere (CTIP)
model; by Balan et al. [28], using the middle and upper atmosphere (MU) radar observations; and by
Meza et al. [20], using PCA and WT for VTEC. In addition, we also observed that the March equinox
has a similar pattern to the September equinox at different latitudes. This is not the case, however, for
the June solstice when compared to the December solstice. An interchange between the southern and
northern hemispheres at different latitudes can be observed (Figure 7C,D).

(Lon=Lat=0) in 2012
80 e 1 N A R vy

3
5 60
9
=40
N
D20
= i 1
() i 1 ] 1 . 1 sl il L ! i i {1 "
0 50 80 100 150 172 200 250264 300 350 400
DOY

Figure 6. Vertically modeled total electron content (TEC) values at the latitude and longitude of 0°
in 2012; the horizontal axis shows time (day), and the vertical axis shows the modeled vertical total
electron content (VTEC) values. Equinoxes and solstices are shown by vertical dashed lines.

N Longitude =0 2012 - Mar - 21 - Longitude =0 2012 - Sep - 23
—phi=-875
—phi=-45
60 phi=0 60
—phi=45
40| —phi=875 40
20 20
=~ = =
o
m 0 0
2 0 5 10 15 20 0 5 10 15 20
g A) B)
[_.
3 Longitude =0 2012 - Jun - 21 Longitude =0 2012 - Dec - 22
= 80 80
=3
=}
=
60 60
40 40
# @[& 20
0 0
0 5 10 15 20 0 5 10 15 20
Q) D)

Local time (hour)

Figure 7. Vertical total electron content (VTEC) values of equinoxes and solstices in the local time and
at latitude: +87.5°, +45°,0°, and A = 0°. (A,B) show values in the equinoxes, (C,D) show values in
the solstices.
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3.4.2. Seasonal Anomaly

Figure 8 shows the modeled VTEC values from 2010 to 2013, and Figure 9 shows them in the
local time for a single day in different seasons and latitudes during high solar activity. We observe
that the lowest values of TEC belong to summer, and likely occur in July; in addition, the TEC has the
highest values in autumn, which occur in October. This is known as the seasonal or winter anomaly.
Figure 10 illustrates the modeled VTEC values in the summer and the winter in 2008 during low solar
activity. Comparison of the VTEC values in 2012 (solar maximum, Figure 9) and 2008 (solar minimum,
Figure 10) shows that winter anomaly is larger during high solar activities than low solar activities.
Also, this anomaly is larger in the daytime than the nighttime. Therefore, this phenomenon occurs
mostly in daytime. In addition, there is a nighttime peak in autumn and winter, which is discussed
below (evening anomaly). Similar results were achieved by Mikhailov et al. [23], Farelo et al. [24], and
Meza et al. [20].
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Figure 8. Modeled vertical total electron content (VTEC) values from 2010 to 2013 (solar maximum).
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Figure 9. Modeled vertical total electron content (VTEC) values in a single day and in different seasons
in two and three dimensions, in terms of the local time (the color of lines represent different latitudes).
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Figure 10. Modeled vertical total electron content (VTEC) values on 15 July 2008 (summer) and 15
January 2008 (winter).

3.4.3. Evening Anomaly

As can be seen in Figure 9, there is a peak around 22:00 in the autumn and winter. We call this
the evening anomaly. This phenomenon is highly dependent on solar activities. They are stronger
and longer in high solar activities. This is represented in Figures 11 and 12, where the VTEC values
are shown for 2012 (high solar activity) and 2008 (low solar activity) in terms of the local time in
different latitudes and when A = 0°. The evening anomaly most likely starts to occur in August and
reaches its highest value in November. It gradually disappears until the end of winter in equatorial
regain (Figures 11 and 12). Moreover, this nocturnal event occurs in equatorial and mid-latitude. This
phenomenon can be observed in the mid-region in summer (Figures 9C and 10B). Mikhailov et al. [23],
Farelo et al. [24], and Meza et al. [20] found the same phenomenon in winter, known as NWA. The
pre-midnight peaks in winter occur due to a heavy, equatorward, thermospheric wind raising the F2
layer to heights with a lower recombination rate [23].
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Figure 11. Vertical total electron content (VTEC) values in the local time in fall and winter 2012. In the
three-dimensional (3D) figure, the values represent the VTEC in local time, in different latitudes, and

when A = 0°.
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Figure 12. Vertical total electron content (VTEC) values in the local time on one day of the month in fall
and winter 2008. In the 3D figure, the values represent the VTEC in local time, in different latitudes,
and when A = 0°.

3.4.4. Equatorial Anomaly

Figures 10-12 (three-dimensional figures) indicate that the maximum TEC values occur around
latitudes +20°, peaking at +£15°. This phenomenon develops in the morning at around 10:00, and exists
well beyond the sunset. This structure is known as the equatorial or Appleton anomaly. Our results
are in agreement with those presented by Schlatter [30].



Remote Sens. 2020, 12, 936 13 of 17

3.5. Total Electron Content Prediction

The proposed method of TEC prediction is based on the extrapolation approach, which requires
no input of physical observations for the time interval of prediction. Equations (6) and (10) were used
to perform a prediction of VTEC values. Two scenarios were considered. The first one uses only
pure signals, whereas the second scenario implies both pure and modulated signals. We investigated
whether or not the modulated signals improved the prediction results. The VTEC values were predicted
(extrapolation) for each month of 2008 (solar minimum) and 2013 (solar maximum). In this process, to
predict the VTEC for each month, we used the data of the past 36 months (3 years) for model fitting.
In this way, we could investigate the effect of solar activities and modulated signals on the model
performance. The performance of each of the two scenarios is investigated by the RMSE between the
real data and the predicted values.

Table 1 shows that the RMSE of the predicted values is higher in high solar activities than in low
solar activities, and there is about 5 TECu difference in the monthly mean RMSE values of these two.
In other words, TEC values show better prediction in low solar activities. This is, first of all, due to
lower TEC values in the solar minimum than in the solar maximum. The errors are also expected to
be lower in the solar minimum. The other reason is likely that the model could not sufficiently be
adapted to the sudden changes in (high) solar activities. Moreover, a comparison of the two prediction
scenarios, based on the pure and the combination of pure and modulated signals, shows a reduction of
3.2 TECu in the monthly RMSE experiences in some of the months. Figure 13 shows the performance
of the prediction model in these two scenarios. The dashed lines show the yearly average of the RMSE
values. This figure shows that the modulated signals significantly improve the quality of the prediction,
reducing the yearly RMSE 3.6 to 2.9 TECu in low solar activities, and 8.8 to 7.5 TECu in high solar
activities. In other words, the modulated signals lead to the RMSE reduction of 0.7 TECu and 1.3 TECu
in the low and high solar activities, respectively.

Table 1. Monthly root mean squared error (RMSE) of vertical total electron content (VTEC) prediction
in low and high solar activities, using only pure and both pure and modulated signals at the latitude

and longitude of 0°.
Low Solar Activities (2008) High Solar Activities (2013)
Months Only Pure Both Modulated Only Pure Both Modulated
Signals and Pure Signals Signals and Pure Signals
1 3.8 35 7.3 7.1
2 2.6 3.1 5.7 41
3 3.5 2.9 9 5.6
4 45 43 9.9 7.5
5 4.5 3.9 12.7 124
6 4.3 2 4.7 4.8
7 4.4 1.9 5.6 5.7
8 4.3 2.7 8.6 8.3
9 3 2.3 16 15.7
10 3.7 3.9 9.6 6.7
11 24 2.2 10 6.8
12 24 22 6.4 5.5

Mean 3.6 2.9 8.8 7.5
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Figure 13. Root mean squared error (RMSE) values for total electron content (TEC) prediction in (A)
low (2008) and (B) high (2013) solar activities at the latitude and longitude of 0°. The red color is related
to the model with both pure and modulated signals, and the blue color is related to the model only
with pure signals. The dashed line shows the yearly RMSE.

There is some ongoing research in the field of TEC forecasting. The study conducted by Gong
and Dang [16] using IGS TEC (global) data showed the RMSE distribution of forecasting value
corresponding to each set of data is between 1.5-2.5 TECu. Huang and Yuan [41] use the radial basis
function (RBF) neural network to forecast ionospheric 30 min TEC. Their predicted results have an
RMSE of less than 5 TECu [42]. Liu and Chen, for the regional long-term interval, use spherical cap
harmonic analysis, and results of prediction have 4.5 TECu for a 2 month latency [13]. Compared with
our results, one may argue that they provide superior results. Note, however, that we used long-term
prediction, and the area of investigation was the most complex equatorial region. These all indicate the
importance of the modulated signals, and in particular, the effectiveness of the prediction model in
this study.

4. Summary and Conclusions

Weinvestigated the ionospheric TEC time series to model and predict regular ionospheric variations
and anomalies. This study focused on the TEC time series obtained from TEC GIM models with global
coverage. We used the least-squares harmonic estimation for time series analysis. Multivariate and
modulated least-squares spectra were estimated for the series to detect and subsequently model the
regular and modulated dominant frequencies of the periodic patterns.

The multivariate analysis indicates that there are periods of 24/# hours; 365.25/n days (n =
1, 2, ... ); 11 year periodic signals, as well as their higher harmonics; periods matching with the
GPS draconitic year (351.4/n days, n = 1, 2, ... ); and periods around 27 days in the TEC time
series. The modulated harmonic analysis results indicates that there are a set of peaks with periods
of (1+j/365.25 = 1+0.0027) days (j =1, 2,...,5) and (1+j/(11x365.25) = 1 +0.00025j) days
(j = 1, 2,3). The same situation holds also true for the higher harmonics of the diurnal signal.

Thereafter, a model consisting of a linear trend plus regular sinusoidal functions (pure signals),
along with the modulated sinusoidal signals, was applied for studying anomalies and prediction. By
investigation of the developed model, the following anomalies were detected:

e  Semiannual anomaly: most of this effect occurs at low-mid latitude during the day, and the TEC
value of the March equinox is significantly larger than that of the September equinox. The VTEC
variation has a similar pattern to the September equinox in local time at different latitudes, but it
is dissimilar for the June and the December solstices as an interchange between the southern and
northern hemispheres at different latitudes.

e  Winter anomaly: the intensity of the winter anomaly on high solar activity is more than that of
low solar activity, and this anomaly is larger during the daytime than nighttime.
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e Equatorial anomaly: this occurs between latitudes ~+20° peaking at ~+15 and from around 10:00
AM to the sunset.

e Evening anomaly: this has a clear peak around 10:00 PV, is likely to occur in August, and its
highest value is observed in November. It also occurs approximately in low- and mid-latitudes,
and can be observed in the mid-region in the summer.

By replacing the functional model, using only pure harmonic signals, with a functional model
including both pure and modulated harmonic signals, we have improved the prediction of TEC values.
The improvement of the RMSE value of the comparison between the prediction model and real data
reaches to 3.2 TECu in some of the months. The modulated signals can improve a yearly average of
RMSE value in the lower and higher solar activities by 0.7 TECu and 1.3 TECu, respectively. This
indicates the importance of the modulated signals, and in particular, the effectiveness of our model to
predict the TEC values.

The proposed model, consisting of a linear trend plus regular sinusoidal functions along with
modulated sinusoidal functions, performs well for regional-scale GNSS observations or other techniques,
e.g., using MU radar observations. However, this needs to be investigated and possibly improved in
future studies. Short-term prediction for the regional models could also be another application of the
proposed method. The irregular parts of the ionosphere could also be investigated in more detail in
future work.
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