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Abstract: High-throughput crop phenotyping is harnessing the potential of genomic resources for
the genetic improvement of crop production under changing climate conditions. As global food
security is not yet assured, crop phenotyping has received increased attention during the past decade.
This spectral issue (SI) collects 30 papers reporting research on estimation of crop phenotyping traits
using unmanned ground vehicle (UGV) and unmanned aerial vehicle (UAV) imagery. Such platforms
were previously not widely available. The special issue includes papers presenting recent advances
in the field, with 22 UAV-based papers and 12 UGV-based articles. The special issue covers 16 RGB
sensor papers, 11 papers on multi-spectral imagery, and further 4 papers on hyperspectral and 3D data
acquisition systems. A total of 13 plants’ phenotyping traits, including morphological, structural, and
biochemical traits are covered. Twenty different data processing and machine learning methods are
presented. In this way, the special issue provides a good overview regarding potential applications of
the platforms and sensors, to timely provide crop phenotyping traits in a cost-efficient and objective
manner. With the fast development of sensors technology and image processing algorithms, we expect
that the estimation of crop phenotyping traits supporting crop breeding scientists will gain even more
attention in the future.

Keywords: crop phenotyping traits; unmanned ground vehicle; unmanned aerial vehicle; image
processing algorithms; segmentation; classification; machine learning; different sensors data;
data assimilation

1. Introduction

Under changing climatic conditions, global food security is challenged. Crop production needs to
be increased urgently, while coping with limited resources and plant stresses. Currently, crop breeding
as the central pillar for yield increases and resource efficiency, is limited by breeding efficiency, and
phenotyping selection [1]. Phenotyping is defined as the application of methodologies and protocols
to measure a specific trait, ranging from the cellular level to the whole plant or canopy level, related
to plant structure, biochemicals, and function [2,3]. High-throughput crop phenotyping is receiving
increased attention for its potential to harness genomic resources in the genetic improvement of crop
production under changing climate conditions.
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Traditional phenotyping traits measurements are done manually with a lot of professionals’ effort,
time, and resources. Remote sensing techniques are complementary to this field work and offers
estimation of high-throughput phenotyping traits, in particular, taking into account the maturity of
unmanned ground vehicle (UGV), unmanned aerial vehicle (UAV) technology, as well as micro-sensors
and advanced sensors such multi/hyperspectral, thermal infrared, LiDAR sensors etc. Many experts
in remote sensing and plant physiology have recognized the value of UGV/UAV remote sensing
phenotyping, given their high abundant spectral, spatial, and temporal information [4,5]. The potential
advantages of UAV remote sensing are not only greatly enhancing the efficiency of data acquisition,
at the same time, data standardization is becoming easier, thereby reducing personal subjective
assessments. Moreover, image processing and machine learning algorithms are making good progress,
including advancements in physically based radiative transfer models. Advances are also made in
data preprocessing, system or platform testing, and modern machine learning algorithms. All these
elements are critical to access the target traits by raw data [6].

This Special Issue aims to contribute the latest innovative research results in the field of remote
sensing technology, senor technologies, and image processing algorithms and also provides a number
of specific applications specifically addressing issues estimating specific crop phenotyping traits based
on UGV and UAV images.

2. Overview of Contributions

The contributions published in this SI clearly demonstrate the added value that phenotyping
provides for various plants (Figure 1) that were monitored by multi-sourced sensors deployed on UGV
and UAV platforms. In particular, we wish to highlight the high number of target traits that were
addressed by machine learning and image segmentation algorithms (Table 1).
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Table 1. Estimation of crop phenotyping traits in this Special Issue. The table distinguishes between crop type, phenotyping platforms, sensors, and methods.

No. Crop Traits Platforms Sensors Methods Reference

1 Wheat Seed emergence uniformity UAV RGB ALA [7]

2 Blueberry Height, extents, canopy area,
volume; crown diameter and width UAV RGB Motion algorithms [8]

3 Wheat LAI UAV MSI OLS [9]

4 Wheat AGB Ground Hyperspectral ANN, MLR, DT, BBRT,
PLSR, RF, SVM, PCR [10]

5 Wheat Spikes Field-based phenotype
platform RGB; MSI MES [11]

6 Barley Fresh/dry Biomass Elevated position RGB CSM [12]
7 Maize CC; Senescence UAV RGB Senescence Index [13]
8 Maize Yield Ground; UAV RGB; MSI MLR [14]
9 Apple Tree LCC; 3D reconstruction Ground fixed 3D laser scanner ANN [15]

10 Sugar Beet Beet cyst nematode; yield Handheld and UAV
Hyperspectral;

Thermal images;
HSI

PCR; DT [16]

11
Eggplant,
Tomato,
Cabbage

Height; biomass UAV RGB RF; OLS [17]

12 Wheat Senescence Rate UAV MSI Correlation [18]

13 Tree Crown perimeter; width; height;
area; CC UAV MSI Image segmentation [19]

14 Wheat Height; vigor Ground; UAV RGB - [20]
15 Wheat Height; LAI; AGB UAV HSI; RGB RF; PLSR; [21]
16 Soybean Height; greenness index Ground Photonic mixer detector; RGB DBSCAN; PCR; ICP [22]
17 Oilseed Rape Flower number UAV MSI; RGB RF; OSR [23]
18 Potato Late blight severity UAV MSI MLP, SVR, RF, ANN [24]
19 Mazie Lodging UAV MSI NC [25]
20 Cotton WUE, FVC UAV MSI ET model [26]
21 Maize AGB UAV RGB + point cloud CSM; PLSR [27]

22 Cotton Cotton bolls; yield UAV RGB Automatic open cotton
boll detection algorithm [28]

23 Maize Height UAV RGB; LiDAR CSM [29]
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Table 1. Cont.

No. Crop Traits Platforms Sensors Methods Reference

24 Maize Leaf length; width; inclination angle;
azimuth; area; height Ground 3D laser scanning;

3D digitizing – [30]

25 Avocado tree Crown height; extent; CC UAV MSI CSM; OLS; RF [31]

26 Blueberry Stem water potential; Cab;
fluorescence; leaf gas exchange Ground Hyperspectral MLR; PLSR [32]

27 Barely Height; lodging percentage; severity UAV RGB SfM [33]
28 Rice CC UAV MSI OLS [34]

29 Cotton Height Ground; UAV Nadir/Multi-Angle View
Sensor – [35]

30 Soybean Height; breadth; color Ground RGB-D [36]

Note: Traits: LAI, leaf area index; AGB, above ground biomass; CC, canopy cover; FVC, fractional vegetation cover; LCC, leaf chlorophyll content; WUE, water use efficiency; Cab, leaf
chlorophyll a. Platforms: UAV, unmanned aerial vehicles. Sensors: RGB, red-green-blue imagery; MSI, multi-spectral imagery; HSI, hyperspectral imagery; RGB-D, RGB and depth
imagery. Methods: ALA, area localization algorithm; ANN, artificial neural network; MLR, multivariable linear regression; DT, decision-tree regression; BBRT, boosted binary regression
tree; PLSR, partial least squares regression; RF, random forest regression; SVM, support vector machine regression; PCR, principal component regression; MES, Maximum entropy
segmentation; CSM, crop surface models; OLS, ordinary least squares; DBSCAN, density-based spatial clustering of applications with noise; ICP, iterative closest point; OSR, optimal subset
regression; MLP, multilayer perceptron; NC, nomogram computation; SfM, structure from motion.
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2.1. Platforms and Sensors

High-throughput phenotyping is currently mostly based on remote sensing, or more specifically,
near ground platforms: actual ground and aerial platforms. Twelve papers in this special issue reported
results from ground platforms, and twenty-two papers used the UAV platform.

For ground platform, ground fixed scanning system [15,22,30,35], handheld-based field
measuring [11,14,16,32], mobile ground platform (MGP) [14,20], and lifting hoist-based elevated
platform [12,36] were reported for different crops types (Figure 2). These platforms were easy-to-use
with low cost, but data acquisition was semi-automatic.
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Figure 2. Platforms included in this special issue.

The recent development and increasing acceptance of UAV or drones in terms of cost and reliability
has made data collection much more efficient with unprecedented spatial, spectral, and temporal
detail, thereby supporting their application in phenotyping traits mapping [6]. The UAV remote
sensing improves the efficiency of crop phenotyping traits data acquisition. It allows high-throughput
measurements of canopy structure (e.g., crop height, leaf angle, leaf area, etc.,) in more than 1000 plots
within more or less one day by RGB stereo imagery. This is clearly far more efficient compared to
traditional manual measurement. Khan et al. [20] also compared the estimating accuracy based on
mobile ground platform (MGP) and UAV platform, and showed that the estimated canopy height
derived from MGP imagery were better than UAV imagery, while the opposite results were obtained
regarding the estimating of canopy vigor.

Besides the platforms, sensors play a very important role in advance phenotyping. Lightweight
sensors can be loaded in the UAV platform improving their data capture quality. In this special
issue, applications based on RGB and multi-spectral imagery cameras, hyperspectral sensors, thermal
cameras, and light detection and ranging (LiDAR) sensors are shown (Figure 3). Up to now, RGB
imagery for classification or segmentation and multi-spectral imagery cameras for biochemical or
physical traits are most prominently exploited. Hyperspectral sensors and LiDAR loaded on UAV
platforms are recommended to be further exploited in the future.

2.2. Phenotyping Traits

For this Special Issue, phenotyping traits are broadly classified into two types: morphological/
structural traits and biochemical traits (Figure 4). Morphological and structural traits include canopy
height, leaf area, canopy coverage, as well as the volume, size, diameter, and width of crowns, etc.
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These structural traits were determined by three-dimensional point clouds from RGB imagery or
LiDAR scans. Tu et al. [31] and Patrick et al. [8] established a structure from motion algorithm (SfM) for
accurately estimating crown height, extent, plant projective cover in avocado tree and Blueberry bush,
respectively. Wang et al. [30] compared three representative 3D data acquisition approaches, including
3D Laser scanning, multi-view stereo reconstruction, and 3D digitizing estimates, and these approaches
with respect to leaf length, width, inclination angle, azimuth, area, and height in Maize. The SI also
reports work on seed emergence uniformity [7], number of spikes [11] in wheat, number of flowers in
oilseed rape [23] and cotton bolls [28] under various ecological conditions. Concerning biochemical
traits, senescence, beet cyst nematode, late blight, water use efficiency, stem water potential; chlorophyll
a, fluorescence, were measured by RGB camera, thermal images and multi/hyperspectral images from
handheld and UAV platforms. Measurements of fluxes were also reported, e.g., leaf gas exchange.
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2.3. Data Processing Methods

In the age of big data, data processing methods are at the core for improving the quality
and efficiency of information extracted from data capture systems. The application of various data
processing methods is shown in this special issue (Figure 5). The methods are broadly classified into two
types, and each was applied to the two above mentioned types of phenotyping traits. For biochemical
traits, machine learning and artificial intelligence methods, including principal component analysis
(PCA), partial least squares regression (PLSR), random forest regression (RF), artificial neural network
(ANN), etc., were usually preferred and recommended [10,14–18,21,23,24,32]. Those methods proved
to be very efficient for the various target phenotyping traits. Physical model integrating optimizing
algorithm was also considered in one remote sensing application, and there was one study introduced
by Thorp et al. [26], which used the fractional vegetation cover (FVC) to drive a daily ET-based soil
water balance model for seasonal crop water use quantification.

In comparison to biochemical traits, morphological and structural traits were widely extracted
using image segmentation methods. In Zhou et al. [11] study, the maximum-entropy method was used
to do the coarse-segmentation for recognizing wheat spikes. Junho et al. [28] proposed an automatic
open cotton boll detection algorithm from UAV imagery for yield estimation. Above referred methods
and other image segmentation methods in this special issue were mainly used for extracting the
target morphological traits, while reducing the interference from the background information. Other
morphological traits such as crown height, extent, volume, and diameter were mainly derived and
processed from three-dimensional point clouds by structure from motion algorithms [8,19,30,31,33].
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3. Conclusions

The contributions of 30 papers reported in this special issue highlight the hot topic on estimation
of crop phenotyping traits using by UGV and UAV imageries. The Special Issue—and our short
Editorial—show the importance of high-throughput crop phenotyping for crop production. Second,
the SI discusses the application of the platforms and sensors for high-throughput phenotyping traits of
crops. Finally, it provides important hints on how to use data processing methods to estimate crop
phenotyping traits for different crop types.

Despite the tremendous progress in the field of phenotyping, there is still ample opportunity for
follow-up investigations into some key points. In particular, we recommend more research on the
development and application of UGV platforms and data fusion algorithms combining multi-source
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data. More research is also warranted regarding deep learning methods, linking radiative transfer
models and functional structure models, which are not sufficiently covered in this spectral issue.
With fast development of sensors technology and image processing algorithms, the above key points
will certainly receive more attention by the respective remote sensing, image processing, and crop
breeding communities.
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