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Abstract: Precision agriculture and Unmanned Aerial Vehicles (UAV) are revolutionizing agriculture
management methods. Remote sensing data, image analysis and Digital Surface Models derived
from Structure from Motion and Multi-View Stereopsis offer new and fast methods to detect the
needs of crops, greatly improving crops efficiency. In this study, we present a tool to detect and
estimate crop damage after a disturbance (i.e., weather event, wildlife attacks or fires). The types of
damage that are addressed in this study affect crop structure (i.e., plants are bent or gone), in the
shape of depressions in the crop canopy. The aim of this study was to evaluate the performance of
four unsupervised methods based on terrain analyses, for the detection of damaged crops in UAV 3D
models: slope detection, variance analysis, geomorphology classification and cloth simulation filter.
A full workflow was designed and described in this article that involves the postprocessing of the
raw results from the terrain analyses, for a refinement in the detection of damages. Our results show
that all four methods performed similarly well after postprocessing—reaching an accuracy above to
90%—in the detection of severe crop damage, without the need of training data. The results of this
study suggest that the used methods are effective and independent of the crop type, crop damage and
growth stage. However, only severe damages were detected with this workflow. Other factors such
as data volume, processing time, number of processing steps and spatial distribution of targets and
errors are discussed in this article for the selection of the most appropriate method. Among the four
tested methods, slope analysis involves less processing steps, generates the smallest data volume, is
the fastest of methods and resulted in best spatial distribution of matches. Thus, it was selected as the
most efficient method for crop damage detection.

Keywords: Unmanned Aerial Vehicles; structure from motion; precision agriculture; digital surface
models; crop loss estimation

1. Introduction

At present, around an 11% of the global land surface (13.4 billion ha) is used in crop production
(arable land and land under permanent crops) [1]. According to data of the World Fact Book [2],
in 2015 agriculture accounted for 5.9% of the gross domestic product (GDP) worldwide. However,
even though other economic sectors are more profitable for the national economies, the entire world
population depends on agriculture and farming. This sector is under a high risk of investment given
the unpredictable factors that can affect the yield, such as weather conditions, natural disturbances
and market fluctuations. Furthermore, growing season coincides with the peak of disturbances: fires,
summer storms, breeding of herbivores, flourishing of plagues and diseases, etc. [3-5].
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Under many climate change scenarios, many authors point out that human systems developed
during the Holocene (such as agriculture) are under risk of disappearing or at least be compromised in
the Anthropocene era that we have entered, and it is expected that this situation might become worse
in the coming years [6-8]. While the total world precipitation has not significantly changed in the last
decade, the distribution of rainfall across the year and space has changed, implying relevant effects in
biomes and agriculture lands [9].

Farmers and agronomists are aware of the risk of their business, with an eye on possible changes
on climate. Thus, in the literature we found many studies related to alternative management practices
to face climate change [10,11]. Some effects, unfortunately, cannot be prevented, such as floods, storms
and fires. For this reason, an accurate evaluation and prediction of damages is of major importance for
farmers and stakeholders in the agriculture business, including insurance companies. Many farmers
and agriculture corporations invest in insurance in case they lose part or the totality of the yield.
Traditional crop-loss assessment methods are slow, labour intensive, biased by restricted field access,
and subjective from adjuster to adjuster. The subjectivity of damage estimation leads in many cases to
disagreements between farmers and adjusters, in terms of how many hectares are insurable. Both crop
insurers and farmers are looking for ways to improve resource management and claims reporting. The
current paper proposes more objective and accurate methods to calculate crop damages by means of
Unmanned Aerial Vehicles (UAV) remote sensing.

Precision agriculture is a farming management concept based on observing, measuring and
responding to inter and intra-field variability in crops using remote sensing tools, such as satellites,
planes or UAVs [12-15]. A review on precision agriculture companies reveals that they focus on
very-high resolution sensors [16-18], multispectral cameras [19-21], hyperspectral sensors [22-24],
thermal sensing [25] and wireless sensor networks [25-28], to measure plant and soil properties such as
plant nutrient and water content and soil humidity. At the beginning, precision agriculture made use
of light-weight remotely controlled airplanes, but in recent years, UAVs are being more and more used
in this field because of their versatility [18]. Some authors have developed remote sensing methods for
the evaluation of crop damage, such as the effects of droughts [29], the detection of fungal infection [30],
crop losses in floods [31], and detection of crops affected by fires [32]. Nevertheless, to our knowledge,
there are not many precision agriculture algorithms that account for digital canopy models of plants
and damage quantification. Moreover, the existing literature only shows case studies of one or few
crop types and/or damage types.

In the last decade, low-cost UAV technology has been significantly developed, encouraging the
use of UAVs for commercial applications, such as precision agriculture, oil and gas, urban planning,
etc., [18,33]. Now it is possible to find low-cost UAVs, cameras and software in the market that collect
high-resolution georeferenced imagery, which can be later used to generate Digital Surface Models
(DSM) and 3D point clouds by means of Structure from Motion (SfM) and Multi-View Stereopsis
(MVS) [34-37]. Specifically, low-cost light UAVs dotted with RGB cameras are the most preferred
Unmanned Aerial System (UAS) by many users, farmers among others. Whereas RGB cameras are
limited by the development of spectral products, beyond scouting and monitoring, DSMs avoid
artefacts that appear often in the UAV imagery, such as shadows projected from objects in the surface
or clouds, light differences during the flight time or different colours caused by soil moisture or wet
vegetation [38—40]. These challenges can be addressed with deep learning, but they need a large
labelled database to feed the algorithm [41]. While UAV-derived DSM from commercial UAVs have
been largely used for small scale terrain mapping and 3D modelling of urban areas [42—44], they have
been also proved useful for agricultural applications [45-50].

As such, this study explored four terrain analysis tools, based on point cloud data or DSM, for the
delineation and quantification, in hectares, of damages in field crops due to insurable causes, such as
weather events and wildlife attacks. For this study, we focused on events that cause severe physical
damages in the plant structure, generating abrupt depressions in the surface of the canopy, from which
the plant rarely recovers. This type of damage is the most distressing for farmers and appointed by
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adjusters for monetary compensation. By the digital 3D reconstruction of the crop canopy; it is possible
to detect differences in crop height or dramatic changes in slope that are related to damages. The
accuracy of four different analysis methods are here evaluated and a workflow is proposed to deliver a
digital product that can be translated into the number of hectares of damaged crop. The proposed
workflow can be easily applied to any type of UAS equipped with snapshot cameras or video recorders,
which later produce SfM and MVS-based DSMs. Our contribution to the field of precision agriculture
is the assembling of a tool from existing methods that has been proven successful as a generic crop
damage estimator, independent of the crop type, damage type or growth stage.

2. Materials and Methods

2.1. Dataset Collection

Six sites in Europe and America corresponding to different crop types, damage types and growth
stages were selected for this study (Figure 1, Table 1). These sites present different climates and soil
conditions, and are covered by dry croplands (wheat and barley) and irrigated croplands (corn). Our
dataset comprehends the point clouds, DSMs and orthomosaics from six field crops that were damaged
and later imaged with an UAS. Volunteer farmers that suffered damages in their croplands donated the
data. A code was assigned to each dataset to keep the confidentiality of the participants (Table 1). One
goal of this study is to evaluate the potential of unsupervised remote sensing methods to deal with
generic DSMs data. Therefore, no detailed information about the crops and the events that generated
the damage was requested to the farmers. Also, no information about the UAV or camera models, or
flight conditions was available.

Table 1. Study sites described by crop type, crop damage and growth stage.

Dataset Code *  Crop Species = Damage Type  Growth Stage **  Area (ha) Site
BIL Barley Logging 73. Milking 79.4 Canada
WI1wW Wheat Wind 85. Ripening 35.4 Hungary
W2W Wheat Wind 89. Late ripening 3.9 UK
CIM Corn Man-made 69. Flowering 41 Brazil
C2A Corn Wildlife 31. Jointing 7.1 Hungary
C3wW Corn Wind 49. Booting 34.7 Chicago, US

* Code naming: Crop type—sample #—Damage Type; Crop Type: B: barley, C: corn, W: wheat; Damage type: L:
Logging, M: man-made, A: animals, W: wind. ** According to BBHC growth scale.

The data were selected to represent different situations that might affect the results of the terrain
analysis: crop type, damage type and growth stage. Plant structure, and particularly crop canopy, are
related to the crop type (species) and growth stage; the height of the plant, density and distribution,
leaf clumping, texture of the canopy, etc., affect the surface of the canopy, and therefore, the DSM.
On the other hand, damage type and intensity define the geometry and size of the damage, which
is expressed as depressions in the crop canopy. This is also reflected in the DSM. To cover different
scenarios, crops with significant different height and vertical geometry were selected: corn vs. barley
and wheat. In the same fashion, different damage types were selected to have a variety of situations:
logging, wildlife attacks, windstorms and man-made damages. To add heterogeneity to the dataset,
each crop in the dataset was in a different growth stage (Table 1).

DroneDeploy [51] (DroneDeploy, San Francisco, CA, US) was used as the platform where the
participants of the study uploaded their datasets. The data was nominally generated at 5 cm pixel
size, but this fine resolution increases and hinders greatly the computational time. Therefore, the
orthomosaics and DSMs were downloaded with a resolution of 10 and 50 cm pixel resolution. In
addition, for some of the tested methods, a larger pixel size is recommended to identify the canopy
depressions as an entity [52]. The Digital Surface Models were processed and generated by DroneDeploy;,
which use an algorithm based on SfM [53-59].
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Figure 1. Location of study sites.

2.2. Workflow to Detect Crop Damages Using UAV-DSM

Certain events, such as windstorms and wildlife attacks, affect the structure of plants in the form
of depressions on the crop canopy. These damages cause a dramatic change of elevation between
healthy and damaged vegetation, and are visible in a DSM. This motivated the selection of methods
that can detect changes in elevation directly from the data. Surface morphology has been defined using
DSMs in other disciplines such as topography, hydrology, forestry or urban planning [60-63]. In this
study, we took advantage of existing algorithms for the delineation of crop damages.

However, there can be other elements in the DSM that cause discontinuities or depressions in the
crop canopy, such as machinery tracks or water ponds, which can be wrongly classified as damage in
terrain analysis. In order to distinguish crop damages from other elements of the landscape, additional
processing steps were implemented before and after the terrain analysis, based on spatial characteristics
of the different depression types. Overall, we are presenting a workflow in this article, which includes
(1) the preprocessing of the input DSMs, (2) terrain analysis and (3) postprocessing of the outcome
results (Figure 2).

2.2.1. Terrain Analysis Methods

In this study, four terrain analysis algorithms were tested: slope detection [64], variance
analysis [65], geomorphology classification [52,66] and cloth simulation filter [18] (Table 2).

Slope detection and Variance were developed to detect changes in topographic elevation.
Geomorphology classification was developed in the field of hydrogeology, to locate areas where
water would run off or accumulate in a given landscape. Cloth simulation filter was designed to
separate digital surface and ground points from a LiDAR dataset of urban or forested areas.

From an analytical point of view, Geomorphology classification [66,67], Slope [64] and Variance [65]
compare each pixel of the scene with the neighbouring pixels to discern the relative elevation in
respect to their surroundings. These are known as “kernel-based” methods. On the contrary, Cloth
Simulation Filter (CSF) [18] considers the relative position of points and surfaces in reference to all the
observed area.

The results of Slope and Variance are rasters in floating data format. In this study, low values
correspond to flat or invariant areas (standing vegetation or bent vegetation); high values correspond
to areas that present a significant change in elevation (edges of damage).
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Figure 2. Full crop damage detection process, including pre and postprocessing workflows and 3D
analysis. Slope analysis on study site “W1W” as example. See Table 1 for description of the site.

Table 2. General description of terrain analysis methods in this study.

Slope Detection  Variance Analysis  Cloth Simulation Geomo.rPho.logy
Classification
Software ArcMap ENVI Cloud Compare GRASS
File format Raster Raster Point cloud Raster
Statistics .
. Kernel-based Kernel-based Point cloud Kernel-based
calculation
Topography Any Any Detrended Any
Output Edge of damage Edge of damage Depression area Depression area
Output format Raster Raster Points Raster
Slope Detection

Slope was calculated in ArcGIS 10.2. (ESRI, Redlands, CA, US) using the DSMs in raster format.
The calculation of slope is based on a trigonometric rule (1) [64]. For clarity in the equations, please
follow the naming of pixels of Figure 3:
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Slope = tan 6 (\/([dz/dx}Z + [dz/dy]Z)) 1)

where fan is the tangent of the angle 6; x and y are dimensions in the horizontal plane and z is the
height. In this case, slope is calculated in a 3D model; therefore, both the relationship between x vs. z
and y vs. z are calculated. Considering that we would like to calculate the slope of the central pixel e in
a kernel window of 3 x 3 pixels, the change of direction rate is calculated in the x axis as:

[dz/dx] = ((c + 2f + i) — (a + 2d + §)/(8 X x_cellsize) (2)

where ¢, f and i are the pixels on the right column to e while a, d and g are the pixels on the left column.
In the same way, the change of direction rate is calculated in the y axis as:

[dz/dy] = ((g + 2h + i) — (a + 2D + ¢)/(8 X y_cellsize) 3)

where g, h and i are the pixels on the top row to e while 4, b and c are the pixels on the bottom row. As a
summary, taking the rate of change in the x and y direction, the slope for the center cell e is calculated

using:
2 2
slope = [[Z—i] + [s—;] ] (4)

Degree of slope =0
Percent of slope = rise/run *100

rise

run

Figure 3. Trigonometric fundamentals of slope calculation. Modified from [68].
Variance Analysis

Variance is a measure of the dispersion of values around the mean. In the case of our study, the
variance is calculated on the DSMs, where the values of pixels refer to crop height, and compares pixels
within a determined kernel size. First-order metrics operate on the counts (occurrences) of the different
digital number (DN) values within a kernel. For the aim of comparison, the same 9 X 9 kernel size was
defined for the six tested DSMs.

Variance was calculated in ENVI 5.0. [67] (Exelis Visual Information Solutions, Boulder, CO, US).
For each pixel in the image, ENVI obtains the normalised histogram of the values in the kernel that
determines the frequency of occurrence of the quantised values within the kernel. Then, it computes
the first-order occurrence metrics to calculate the variance [65]:

Ng-1
Variance = Z (i—M)?* x P(i) ()
i=0

where i is the pixel value, M is the mean value of all pixels in the kernel, P(i) is the probability of
each pixel value, and Ny is the number of distinct grey levels in the quantised image [65]. P(i), or
probabilities, are the normalised occurrence values, obtained by dividing the pixel values by the
number of values in the kernel [65].
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Geomorphological Tools

Geomorphology classification is a module (r.geomorphon) in GRASS 7.8.2. [68] (OsGeo, Beaverton,
OR, US) designed for classifying landforms from DSMs in raster format [52,66]. Originally, it was
designed for satellite-derived data. The Geomorphon tool analyzes the relationship of a given point
regarding its surroundings. Eight orthogonal lines are traced having the observed point in the center.
The intersection of the DSM with the lines marks the reference points to determine if the surroundings
are higher, lower or at the same level than the observed point.

Form recognition depends on two parameters; search radius and flatness threshold. Small values
of radius identifies landforms of a size smaller than the search radius, while landforms having larger
sizes are broken down into components. Larger values of search radius allow for simultaneous
identification of landforms on variety of sizes in expense of recognizing smaller, second-orders forms.
Flatness threshold is the z-values surface that separates the point cloud into ground points and
not-ground points. There are two additional parameters: skip radius and flatness distance. Skip radius
is used to eliminate impact of small irregularities. On the contrary, flatness distance eliminates the
impact of very high distance (in meters) of search radius, which may not detect elevation difference if
this is at very far distance. Flatness distance is important especially with low resolution DSMs [52,66].

Cloth Simulation Filter (CSF)

Cloth Simulation Filter (CSF) is a plug-in into CloudCompare [18] to extract ground points in
discrete return LiDAR point clouds. The parameters that define the cloth are:

1.  Cloth resolution. It refers to the grid size (the unit is the same as the unit of point clouds) of
cloth which is used to cover the terrain (xy dimensions). The bigger the cloth resolution is set, the
coarser the Digital Terrain Model (DTM) achieved.

2. C(lassification threshold. It is the distance between points in the z dimension. It refers to a
threshold (the unit is the same as the unit of point clouds) to classify the point clouds into ground
and nonground parts based on the distances between points and the simulated terrain.

The tool simulates laying a cloth on an inverted Digital Elevation Model (DEM), connecting the
points in the cloud that define the edges of elevated objects. The cloth represents the ground points of
a DEM, and the rest the objects with certain elevation. The purpose in our study is to use it on DSM
of the crops to separate the surface of the healthy crops from the depressions on the canopy, which
correspond to damaged crops. The rationale behind it is the opposite of the common use of CFS: in our
case, we are not separating elevated objects from ground, but crop canopy surface from depressions.

Table 3 summarises the parameters that were chosen for the different tested terrain analyses.
Except for CSF’s cloth resolution, all parameters were the same for all study cases to ensure consistency:
a kernel of 9 x 9 pixels was used for the calculation of the Variance; a classification threshold of 0.2 was
used for CSF; while for the Geomorphology classification, an outer search radius of 60 and a flatness
threshold of 1 were set. Unfortunately, it was not possible to find a logic for cloth resolution that
responds to the data characteristics (i.e., pixel resolution, topography, etc.); therefore, the thresholds
were selected manually after testing different values and choosing the best result visually. In addition
to the parameters shown in Table 3, a threshold to separate damage and no-damage in slope and
variance was calculated, using a logistic function [69].

2.2.2. Data Preprocessing

The preprocessing step of the workflow involved (1) the detrending of the data and (2) the
projection of the point clouds into Universal Traverse Mercator (UTM), and (3) the conversion of the
DSM into a point cloud. Steps (2) and (3) were only required for the CSF method.

The detrending of the digital elevation data (DSM or point cloud) aimed to remove the topography
trend and keep only the height of the objects in the surface—crops, in this case. The specific term
in precision agriculture for the product of this process is Crop Surface Model (CSM), which refers
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to the 3D representation of the crop heights, alone. However, for simplicity, we will keep the term
“DSM” in the core of the text. There are two main reasons for detrending the data. On the one hand,
the Cloth Simulation Filter (CSF) is sensitive to topography. Since crop depressions are less evident
than terrain topography, a previous detrending of the DSMs is necessary to locate crop depressions
in nonflat terrains. On the other hand, despite Slope, Variance and Geomorphology classification
methods are independent of the general topography of the terrain (since the analysis is made at a
kernel level), detrended DSMs were also necessary later in the postprocessing step. Therefore, all
DSMs were detrended at the beginning of the workflow [63].

Table 3. Parameters defined for each of the 3D analysis methods. All units are “pixels”.

Variance = Cloth Simulation Filter (CSF) = Geomorphology Classification

Kernel Classification Cloth Outer Search Flatness
Size Threshold Resolution Radius Threshold
B1L 9%x9 0.2 3.0 60 1
WIW 9%x9 0.2 2.0 60 1
W2W 9%x9 0.2 2.0 60 1
CiM 9%x9 0.2 4.0 60 1
C2A 9%x9 0.2 1.0 60 1
C3W 9%x9 0.2 2.0 60 1

The detrending process requires a first step of calculating the trend of the terrain, which is
calculated on a grid of points that contain the elevation values. The DSMs were transformed into a
point structure, transferring the elevation value to a point in the center of each pixel of the raster. The
trend was calculated in ArcMap [69] with a linear regression (polynomial order 6), which removed the
topography without eroding the elements of the surface. The last step of the preprocessing involved
the subtraction of the trend from the original DSM (Figure 4).

DSM Trend De-trended DSM

-

Original DSM

W High: 442 ™ High:427 ™ High: 178

[} -
Low: 120 Low: 12¢ Low:68

—— Original DSM
DSM Trend
— De-trended DSM

——

Figure 4. Calculation of topography trend using linear polynomial factor 6 and detrending of Digital
Surface Models (DSM).

CloudCompare requires the input data to be projected in Universal Transverse Mercator (UTM).
Since detrended point cloud was needed for CSE, we derived the points from a CSM that was projected
into UTM, in ArcMap.
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2.2.3. Data Postprocessing

The postprocessing step was meant to (1) convert data formats for the next steps of the workflow,
(2) select the data from the outcomes of the analyses that correspond to damaged vegetation (3) reduce
errors in the results of the terrain analysis and (4) calculate the damages areas in hectares (Figure 5).

To start, the tested terrain analysis methods do not deliver “damages”, directly. Variance and
Slope detect the edges of the damage but not the damaged area. Geomorphology classification delivers
a map of geomorphologies, from which only classes that represent depressions are of interest. Only
in the case of CSF, the output of the analysis is directly damaged areas, but the output is not in the
appropriate format.

Afterwards, the refined results of the methods were transformed into a polygon shape, to be able
to calculate the damaged areas in the crops under study.

For Slope, values close to vertical, 90 degrees, depict the edge of the damage. For Variance, high
variability means a change of elevation, therefore the edge of the damage. Once the edge of the damage
was delineated by a threshold, it was required that we label which areas are within the edge (damage)
and out of the edge (no damage). This classification was made based on the elevation of the crops,
calculated from the CSM.

First, it was required to select the threshold value that represents the edge of the damage. We
used a logistic function over the histogram of values defined as [70]:

d(t) = 1/1+¢e7) (6)

where d(t) is the logistic function and t is a parameter to be fitted to our data.

The logistic model describes a sigmoid curve separating the values into two groups. The inflexion
point of the curve projected on the x-axis is the threshold that separates the edges of damage from
the rest of values (standing and damaged vegetation). The result of this operation is a boolean raster
where 1 refers to the edge of the damage and 0 to anything else (crop canopy and damaged crops).

The boolean rasters were converted into a polygon vector, and the average height of each polygon
was calculated by crossing the polygons with the CSM. This allowed for interpreting which areas were
damage (low crop height) or standing vegetation (high crop height).

Again, the logistic function was used to separate polygons with high and low crop height, by the
evaluation of histogram of heights. Therefore, the threshold for damage edge and the damaged areas
were not selected manually by the user, but the decision came from the data itself.

In the case of the Geomorphology classification, classes 9—valley and 10—depression represent
crop damages. For this reason, these two classes were selected from the geomorphology
classification map.

CSF separates ground points, from the whole point cloud. In this study, those points are
depressions in the canopy surface (crop damage). To calculate the area that those ground points cover,
they were transformed into a surface, in the form of raster or polygon.

As expected, the terrain method selected all canopy depressions that were present in the data.
To keep only those that correspond to crop damage areas, the postprocessing aimed to identify and
remove nondamage areas, such as machinery tracks and ponds.

Several spatial analyses were used to remove errors and enhance the accuracy crop damage
detection. For instance, sparse pixels were removed using a majority filter, using a kernel of up to
8 x 8 pixels and a replacement threshold to half. In addition, a ratio area: perimeter was calculated to
identify and remove linear structures, which generally corresponded to machinery tracks or field edges.
An area: perimeter ratio close to 1 corresponds to rounded shape-forms, while long linear structures
present low area: perimeter values because of long perimeters. Also, area: perimeter values under
one represent polygons with a very irregular shape. By selecting polygons with an area: perimeter
between 1 and 5, damages from machinery tracks were filtered.
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Figure 5. Postprocessing workflow. Circles represent data, diamonds represent processes.
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2.3. Validation of Data

A validation workflow was designed to generate independent data that can be used to calculate
the overall accuracy of the tested methods, as well as the user and producer’s accuracy (Figures 6
and 7).

/

) 4
= e

Figure 6. Workflow for the validation process of final results of 3D analysis.

The orthomosaics of the six study sites were used to manually digitalise polygons of damaged
vegetation, following the expert criterion (Figure 8). The owners of the data provided the coordinates
of the centroid of a damaged area as an example, which facilitated the photointepretation of the
damage class.

For validation, two classes were defined: damaged and nondamaged vegetation. For each
orthomosaic, a “damage” polygon vector was drawn by photointerpretation. By default, the
“no-damage” class was the rest of the crop that is not damaged. A “no-damage” polygon vector
was obtained by clipping a polygon vector that represented the boundary of the crop field with the
“damage” polygon (Figure 8). These vectors were considered the ground truth data to validate the
results of our study. The “damage” and “no damage” ground-truth data were crossed with the results
of the crop damage workflow (from this point on, “classified” layer), to compare the percentage of
coincidences and errors (Figure 8). By intersecting the “damage” vector with the results vector, two
new layers were obtained: (1) a layer of the damage correctly classified, composed by the area that
is coincident in both the ground-truth “damage” vector and the “results” layers; and (2) a layer that
depict the errors, which is the area that was wrongly classified as “damage” in the results, which does
not coincide with the photointerpreted “damage” vector (Figure 8).

According to the authors of [71], using a sample that represents the 15% of the total population
for accuracy assessment leads to a pessimistic evaluation of the method. Therefore, in this study, a 10%
of the surveyed area (whole crop field area) was used to evaluate the accuracy of the tested terrain
analysis methods. To obtain a random sample from each crop field, the data (ground truth and results)
were transformed from polygon vector to raster, and later into a point vector. The 10% of points were
randomly selected. A distance between random points of 1 m was set (Figure 7).
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3D analysis results

Photointerpreted Damage

Crop boundary

10% image - random points

10% classified damage

10% damage

12 0f 23

10% no damage

Figure 8. Photointerpretation and digitalisation of severe damages by expert observation. Slope
analysis on study site “W1W” as example. See description of the site on Table 1.

The random points layer was intersected with the “damage” layer, the “no-damage” layer, the
“matches” layer and the “classified” layer to obtain the 10% of random points of each class. The values
of the class were transferred to the random points vector and these were used to calculate the accuracy

of the methods.
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The expressions used to evaluate the accuracy of the tested methods were defined by the authors
of [72] (Figure 9):

Overall accuracy = (no-damage + matches) x 100/n (7)
Users” accuracy = 100 - ((damage — matches) x 100/n) 8)
Producers” accuracy = 100 — ((classified — matches) x 100/n) 9)

where:
n: # points at the 10% random points layer for the full surveyed area
Damage: # points at the 10% random points layer for the damage layer
No-damage: # points at the 10% random points layer for the no-damage layer
Classified: # points at the 10% random points layer for the classified layer
Matches: # points at the 10% random points layer for the matches layer

1. Damage areas are photointerpreted: 2. Results of terrain analysis are compared:
Reference = Classified <

3. Intersection of reference and classified:
Matches

Figure 9. Calculation of matches by the intersection of photointerpreted damages (reference) and
final results of the terrain analysis (classified). Slope analysis on study site “W1W” as example. See
description of the site on Table 1.

3. Results

3.1. Calculation of Thresholds to Separate Damaged and Nondamaged Crops from Preliminary Results

As observed in the resulting rasters from Slope and Variance analyses, these methods depict a
dramatic change of values along the edges of crop damages. In other words, the majority of values are
low or high, with a low representation of intermediate values. A logistic function was used to separate
the high from low values by finding the threshold value that separate edges of damage from the rest of
values. These thresholds are shown in Table 4.

As observed in Table 4, the slope threshold delimiting the edges of damage is very similar in
each DSM, which is very close to a value of 90 degrees, a vertical slope. On the contrary, the variance
thresholds that define the edges of the damage are very variable from one to another DSM.



Remote Sens. 2020, 12, 981 14 of 23

Table 4. Thresholds to discriminate edges of damage for slope and variance.

. Slope Variance
Study Site
Slope Degrees Decimal Degrees

BI1L 89.99 0.0005
Wi1w 89.994 0.1
W2w 89.99 0.01

CiM 89.9985 0.02

C2A 89.998 0.005

C3W 89.994 0.0025

In the case of CSF, we could not find a statistic to determine the optimal threshold to classify crop
canopy depressions. In a preliminary exploration of the output data, it was observed that a classification
threshold of 0.2 worked better than any other threshold for all DSMs. This parameter is related to
the xy dimension, in other words, the pixel size. We set this as a fixed parameter. However, the cloth
resolution parameter showed different results (z value) for the different tested crops, suggesting that
the height of the crop (related to the crop type and stage of growth) influences the result of the tool.
Namely, the height of the damage and the height of the standing vegetation are related.

3.2. Crop Height Values Thresholds for Damaged and Nondamaged Vegetation

The study cases present different crop heights, as they represent crops of different species and
growth stage. Moreover, the intensity of the damage is different in every case and it is difficult to
estimate the crop height in those cases. The farmers did not provide information about the mean crop
height (nor in standing or damaged vegetation), as one of the purposes of the study was to develop a
method to detect damages independently of characteristics of the crop fields.

Therefore, the height was assessed as the relative difference in crop height between standing and
bent vegetation, independently of the absolute height values. The evaluation of the histogram allowed
to separate damaged and nondamaged vegetation through a logistic function analysis [72]. Table 5
shows the crop height thresholds that allowed for the separation of healthy and damaged vegetation.

Table 5. Crop height thresholds to discriminate damaged from nondamaged polygons.

. . Geomorphology

Study Site Slope Variance CSF Classification

BIL —1.0000 -2 -20.0 -8

WIW 100-1500 925 900.0 900

W2W 3 Any except 0 None Any except 0

CiIM 0-4000 -5 —40.0 -125

C2A 0 -3 None -5

C3wW 15 Any except 1 None 0

3.3. Validation of Terrain Analyses

In order to decide which method is more appropriate for the detection of crop damages in field
crops, we calculated the overall accuracy and producers” accuracy for each study case (Table 6). The
maps with all results are shown in the Supplementary Materials.

Since only two classes are explored (damage vs. no damage), “overall accuracy” equals “users
accuracy”. According to the results, the four tested methods are highly accurate in the classification
of crop damage, independently of the crop type, growth stage or damage type. Overall and users’

7

accuracy are always between 87-99% accuracy, while producers” accuracy moves between 83-100%.
The damage was underestimated in B1L, C1M (except for variance), C2A (except for CSF) and C3W
(variance and CSF), and slightly overestimated for the rest of cases (Table 6).
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Table 6. Accuracy assessment of the tested terrain analysis methods.

Terrain Analysis B1L WI1W W2W C1IM C2A C3W Average
Method Number of Samples 189,900 90,500 11,900 7700 18,600 52,600

Overall accuracy 98.9 96.6 97.3 97.0 95.7 95.8 96.9
Slope User’s accuracy 98.9 96.6 97.3 97.0 95.7 95.7 96.9
Producer’s accuracy 97.6 97.7 80.9 97.6 83.1 95.7 92.1
Overall accuracy 98.9 98.0 88.6 96.2 92.6 95.8 95.0
Variance User’s accuracy 98.9 98.0 88.5 96.2 92.6 95.8 95.0
Producer’s accuracy 97.2 96.5 89.2 97.2 84.9 94.1 93.2
Overall accuracy 98.0 97.0 95.5 96.3 94.4 92.6 95.6
CSF User’s accuracy 98.0 96.9 95.5 96.3 94.4 92.6 95.6
Producer’s accuracy 99.1 94.4 90.0 99.1 94.9 98.1 95.9
Overall accuracy 97.5 95.2 87.0 96.7 90.2 88.5 92.5
Geomorphology ;50 1g accuracy 975 952 8.0 968 902 885 92.5
classification  p_ 4 cer'saccuracy 958 961 778 992 860 882 90.5

Based on users’ accuracy, Slope and Variance achieved the best results, while the Geomorphology
classification performed the worst, for all tested sites (Table 6). The accuracies vary from a 93-99% in
Slope and Variance (with the exception of C1M site) to an 87-97% for Geomorphology classification
(Table 6). According to the producers” accuracy, CSF provides the best results for most sites (90-99%),
with the Geomorphology classification having the lowest values of the table, between 77-88% (Table 6).
Therefore, Slope and Variance are good estimators of overall accuracy of crop damage, although slightly
overestimating the damaged area, while CSF produces smaller errors of commission.

B1L presents the highest users” accuracy and performed well in producers” accuracy, together
with W1W (Table 6). B1L corresponds to a barley cropland affected by logging, during the milking
growth stage, in a terrain with heterogeneous topography (Table 1). W2W, C2A and C1M present the
lowest users’ and producers” accuracy (Table 6) for all methods, although still high, between an 87-97%
users’ accuracy and 77-90% producers’ accuracy (Table 6). W2W is winter wheat damaged by wind,
while C2A and C1M are corn fields damaged by wildlife and humans, respectively. In the three cases,
the crops were in an advanced stage of growth (Table 7).

Table 7. Hectares and volume of damage and relative errors.

) ) Study Site BIL WIW W2W CiM C2A C3W
Terrain Analysis
Method Reference ¢ 0007 25,9984 8037 27112 20,500.7  35,192.7
Area (m?)
Slope Area (m?) 257744 251179 78189 26292 19,6167  33,698.7
P Error (%) 11 3.4 2.7 3.0 43 42
) Area (m?) 22,7709 254833  7117.8 2608.7 18,9907  33,703.4
Variance o
Error (%) 11 2.0 114 3.8 7.4 42
CSF Area (m?) 255413 252058 76743 26109 19,3555  32,580.0
Error (%) 2.0 3.0 45 3.7 5.6 7.4
Geomorphology ~ Area(m?) 251445 247539  6995.6 2622.8  18,501.3 31,1482
classification Error (%) 2.5 4.8 13.0 3.3 9.8 11.5

For the selection of the most appropriate method, other factors apart from accuracy were
considered, since all methods performed with an accuracy of over 90% (Table 6). The complexity
of the process, data volume of intermediate and final files and computing time the workflow, using
different terrain analysis methods, was calculated (Table 8). Slope was shown to be the method that
consumes a smaller data volume and performs faster. On the other side of the ranking, Geomorphon
was the most time consuming process and Variance was the process that produced a larger amount of
intermediate data.
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Table 8. Processing steps, data volume (value on the left, in Mb) and processing time (value on the
right, in sec.) for each terrain analysis method. Values are average for all six study sites. (NA: Not

Applied; NAcc: Not Accounted).

Processing Steps Slope Variance CSF Geomorphon
DSM Preprocessing
DSM converted to point 52/15 52/15 52/15 52/15
Trend calculation 0.6/39 0.6/39 0.6/39 0.6/39
DSM detrending 0.6/0.6 0.6/0.6 0.6/0.6 0.6/0.6
DSM projection into UTM NA NA 0.6/6.6 NA
Conversion of.re-pro].ected UTM raster NA NA 52/12 NA
into points
Analysis
Terrain analysis preliminary results 0.2/0.3 784/1.0 0.2/0.2 0.06/15.0
Postprocessing
Conversion of plzllsliz;nary results into NA NA 03703 NA
Generation of a mask for damaged pixels 0.005/0.06 202/1.3 NA /NA 0.002/0.07
Conversion of damage mask into 10/01 56/09 02/01 15/02
polygons
Conversion of pglyggns containing mean 0.8/03 0.8/06 10/03 0.8/04
elevation into raster
Conversion of CVSal\l/flz:ster ItoINegEr  004/0.04  0.06/0.04  0.003/0.06 0.05/0.4
CSM raster converted into polygons 0.9/0.1 1.8/0.2 0.2/0.07 0.9/0.1
Selection of polyg(?ns with lowest 03/23 0.03/2.3 NA 0.07/2.3
elevation
Aggregation of polygons of same class 0.03/0.3 0.03/0.6 0.003/2.1 0.003/0.3
Validation
Photointerpretation of ground truth 4 551/ Nace 0,001 /NAce  0.001/Nace  0.001/ Nace
damage polygon layer
Generation of "No damage" layer 0.04/0.08 0.04/0.08 0.04/0.08 0.04/0.08
Generation of "Matches layer" 0.2/0.2 0.003/0.6 0.004/0.1 04/03
Generation of random points from CSM 0.3/0.7 0.3/0.7 0.3/0.7 0.3/0.7
Extraction of damage points from 0.009/03  0009/03  0.009/0.3 0.009/0.3
random points layer
Extraction of not damage points from 05/08 05/0.8 05/08 05/08
random points layer
Extraction of classified points from 0009/03  0004/13  0.006/0.4 0.004/1.1
random points layer
Extraction of matches points from 0.006/03  005/03  0.006/0.3 0.006 /0.3
random points layer
TOTAL Data Volume (Mb) 10.6 114.2 15.0 11.0
TOTAL Computation time (sec) 11.9 16.7 21.6 27.6

In addition, a visual inspection of the results was done per terrain method, for the evaluation of
the spatial distribution of errors. Figure 10 shows the results for one of the sites (C1M) across the four
tested methods. To see all results for all study sites, please check the Supplementary Materials.

In the visual inspection, it was also observed that the edges of the damage were not so clear in
W2W, C1IM and C2A, which presented a lower accuracy for all terrain analysis methods. In these
cases, the vegetation lays within the damaged areas, being the limits between healthy and damaged
vegetation not as abrupt as in other cases. On the other hand, BIL, W1W and C3W—which present the
highest crop damage detection accuracies—showed defined damages, with it being possible to see the
ground in the damaged areas. Therefore, we can say that the efficiency of the methods depends on the

severity of the damage.
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Figure 10. Final crop damage detection for C1IM at the end of the workflow, using four different terrain analysis methods (Slope, Variance, Cloth Simulation Filter
(CSF) and Geomorphology classification).
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In addition, CSF was penalised in the selection of the best method because it required certain
supervision from the user, since we did not find a way to calculate the classification threshold and
cloth resolution parameters statistically from the data.

Considering that Slope was the fastest and simplest method (Table 8), the one that performed the
best with an average overall accuracy of 96.9% among all tested sites (Table 6), and the method that
presented the best spatial performance (Figure 10), this is the method that is best recommended for the
detection of crop damages from UAV derived DSMs.

4. Discussion

Agriculture is the most important economic sector worldwide. At the same time, it is a risky
activity due to many factors that are outside of human control or difficult to predict, such as weather
and market fluctuations. The incorporation of remote sensing to agriculture management is largely
improving the efficiency of the agrobusiness and facilitating farmers and other stakeholders” work.

Farmers and agronomists are incorporating UAVs into their daily crop management. However,
most users use only some UAV functions, such as videos or single-shots of the entire cropland at a
high elevation and low pixel resolution. Also, most users use basic RGB cameras and light low-cost
UAS that do not allow sophisticated spectral analysis, but provide DSMs.

There are numerous studies that use DSM analysis for precision agriculture [45-47,49]; however,
the use of DSM for crop damage estimation has been scarcely explored [29-32,40,73-76]. Michez et
al. [77] proposed a method to detect damages in corn fields caused by wildlife, using UAV-based DSMs
and height thresholds. In a similar fashion, Kuzelka and Surovy [78] used classification algorithms of
crop heights in UAV-DSM to locate damage in wheat generated by wild boars, using accurate height
estimations at the field taken with GNSS (Global Navigation Satellite System) for validating their
results. Stanton et al. [79] reported that crop height extracted from SfM DSM and NDVI from UAV
products were related to stress caused by aphid plagues. Similarly, Yang et al. [80] used a hybrid
method of spectral and DSM data to classify logging damage in rice fields. As we see, the existing
literature only evaluates study cases or use DSM data as a proxy. Our contribution to the sector is a
workflow that can potentially be used in any case of structural crop damage, crop type and growth
stage, in field crops that present significant damage intensity.

The goal of the present study is to provide a versatile and unsupervised tool, based on DSMs
products and Geographic Information Systems analysis, for assessing crop damage after a disturbance.
These events (i.e., wildlife, windstorms, fires) bend the vegetation or, in case of a very intense event,
remove plant stands from the terrain. In effect, the damaged vegetation is relatively lower than the
healthy vegetation and the damage is characterised as a depression or discontinuity in the crop canopy.
These depressions can be modelled in Digital Surface Models (DSM) of the crop canopy and be used
to detect damage in a terrain model analysis. The presented workflow delivers an estimation of
damage in area units. Eventually, if the height of the crop is known, the damage can be estimated as a
volume metric. If the yield and plant metrics from other years are known, yield loss can be inferred by
regression analysis.

Since we did not find any terrain analysis developed specifically for agriculture, we used
algorithms for other applications—such as hydrology, topography and forestry—for the analysis
of crop canopies. Four terrain analysis methods were tested: Slope detection, Variance analysis,
Geomorphology classification and Cloth Simulation Filter. A selection of six croplands located in
different locations in America and Europe were used, representing different crop types (C: corn, W:
wheat and B: barley), damage types (W: wind, A: animals, L: logging, M: Man-made) and growth
stages, in order to evaluate the influence of those parameters in the accuracy of the tested terrain
analysis methods. The results of this study revealed that all tested methods are very accurate detecting
crop damage from UAV DSMs. The worst results are above the 77% (for Geomorphology classification),
while some of the methods almost reached the 100% accuracy (98% for Slope and Variance analyses).
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Our results also showed independence of our workflow to environmental and geographic factors, such
as topography, soil type and irrigation management.

One of the challenges of this project was to create a tool that is able to analyze any generic
DSM, independently of the UAV and camera types, in order to support a broad audience of farmers,
agronomists and other agri-businesses’ stakeholders. Also, we wanted our workflow to be independent
of the observed target, covering large number of situations, such as different crop types, damage
types and growth stage. From a technical point of view, one important achievement is the use of
unsupervised methods. Other authors, such as Li et al. [41], used deep learning techniques to detect
tree plantations in UAV images successfully. Deep learning overcomes problems such as projected
shadows and colour differences in UAV imagery, at the cost of a large labelled database. A limitation of
this study is that the workflow only works on field crops (i.e., wheat, barley, corn or canola). Damage in
row crops would require different methods [74], which are based in image or 3D artificial intelligence
algorithms [41]. The proposed workflow has been proved to be a versatile tool that delivers accurate
crop damage estimations independently of the crop type, damage type and growth stage.

A major limitation of our study is that the presented workflow can only detect severe damage
in crops. In this study, the damage intensity has not been specifically defined, among other reasons,
because of the challenge of defining the term from a technical perspective. However, from the dataset
it was possible to observe that the damage was more evident in some cases than in others. The
orthomosaics allowed to observe that the workflow was more effective in those crops where the
vegetation was completely bent than in the cases where only few plant stands were broken or partially
bent. For instance, only Slope values above 89.9 degrees produced a good separation between damaged
and not damaged vegetation. The same was observed for the rest of the methods: for Variance, only
large variances in elevation; for Geomorphology tools, only large; and for CSF, only points in the clouds
that were clearly separated from the surrounding points, were interpreted as damaged vegetation.
That implies that damage at leaf level, such as that generated by hail, frost or diseases cannot be
detected with this method. For damages that do not affect the plant structure, other methods based on
spectral properties of the plant (i.e., using multispectral or hyperspectral sensors) can be useful [74,75].
However, rather than being a limitation, small damages are unlikely to cause losses in yield; therefore,
the most significant damages (structural damages) are detected with our method.

A significant constraint of the workflow is the requirement for quality DSM as input data.
Originally, around 20 farmers signed up as volunteers for this study. However, most DSMs had to be
discarded because of low quality, which turned into artefacts that were interpreted wrongly as damage.

Since all terrain methods perform really well, the selection of the best terrain analysis was also
evaluated taking into account technical factors, such as data volume, processing time, the number of
processing steps and the possibility of a statistical selection of thresholds and parameters. The data
volume generated was similar in all methods except for Variance, which was more than 3 times higher.
CSF requires more steps for preprocessing and postprocessing; plus, it was not possible to select the
appropriate parameters unsupervised. Therefore, Slope analysis was selected as the most accurate and
efficient method for the detection of crop damage.

5. Conclusions

The present study intends to help farmers, agronomists and professionals of the agrobusiness
in improving their field management and have accurate and objective estimations of damage to be
used on insurance claims. In a world of a changing climate where it is expected to experience a rise
in plagues, fires, floods, droughts and storms, unsupervised, accurate and fast estimations of crop
damages will simplify the task of adjusters and farmers.

The current study explored existing terrain analysis methods to detect crop damage from
Unmanned Aerial Vehicles (UAV) Digital Surface Models (DSMs). Datasets from different locations in
Europe and America corresponding to different crop types, crop damages, growth stages and damage
intensities were tested. This method was designed for field crops (i.e., barley, corn, wheat, rice, etc.)
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and not for row crops. Four existing terrain analysis methods were tested: Slope detection, Variance
analysis, Cloth Simulation Filter and Geomorphology classification. The proposed workflow did not
require training data nor expert knowledge, but a posteriori refinement of the results was needed to
remove machinery tracks and other sources of noise. The results of our study revealed that all methods
are able to detect crop damage in our tested dataset with an accuracy above 90%, and that Slope and
Variance were the methods that presented a higher overall accuracy, around 98%.

The presented workflow proved successful in terms of different crop type, growth stage, and damage
type. However, our workflow is only effective for field crops data and severe intensity of damage.

Future research will focus on the implementation of the workflow into a programming language
and the estimation of crop damage in biomass volume or yield by intersecting the information
retrieved from this study (hectares of damaged crops) with information about the absolute height of
the observed crops.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/6/981/s1,
Figure S1. Results of the six terrain analysis and post-processing workflow on dataset W1W (shown in yellow).
In red, the damages detected from photointerpretation. UTM WGS84 Zone 34N, Figure S2. Results of the six
terrain analysis and post-processing workflow on dataset CIM (shown in yellow). In red, the damages detected
from photointerpretation. UTM WGS84 Zone 20S, Figure S3. Results of the six terrain analysis and post-processing
workflow on dataset BIL (shown in yellow). In red, the damages detected from photointerpretation. UTM
WGS84 Zone 14N, Figure S4. Results of the six terrain analysis and post-processing workflow on dataset W2W
(shown in yellow). In red, the damages detected from photointerpretation. UTM WGS84 Zone 30N, Figure
S5. Results of the six terrain analysis and post-processing workflow on dataset C2A (shown in yellow). In red,
the damages detected from photointerpretation. UTM WGS84 Zone 33N, Figure S6. Results of the six terrain
analysis and post-processing workflow on dataset C3W (shown in yellow). In red, the damages detected from
photointerpretation. UTM WGS84 Zone 16N.
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